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Table 1 contains an overview of all symbols used in this lab report.

Symbol Meaning

d Thickness of a crystal
D Dielectric displacement
E Electric field
H Strength of magnetic field
I Current
J Intensity
k Wave number
l Length of one ADP crystal
` Rod length
L Coil length
n Refractive index
r Distance, section 2.1
r41 Electro-optical coefficient
U Voltage
V Verdet constant
α Angle of rotation, Faraday effect

ℵ,i, ,k,ג ð,z Fit parameters
∆φ Phase shift
β, γ Angles measured
ε Dielectric constant
ε Angle of the half-shade polarimeter
κ Damping factor
λ Wave length

φ, ϕ, θ Angle, fig. 1
sx Uncertainty of x

Table 1: Symbols used in this lab report.

1 Introduction

1.1 Task

The experiment is divided into two seperate tasks.

1. The first task is to analyse the Faraday effect. To do this both the Verdet
constant of a heavy flint rod and the characteristic angle of a semi-shade
polarimeter are to be determined.

2. In the second task the Pockels effect is to be considered. For this the electro-
optical coefficient of the pockels cell is determined using the half-wave voltage
which is measured using two different methods:
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• By applying a sawtooth voltage.
• By applying a DC voltage modulated with a sine wave.

1.2 General theory

The theory explained in this report is based on the Staatsexamen [1] and the in-
structions [2].

1.2.1 Polarization of light

Generally, light is an electromagnetic wave consisting of an electric and a magnetic
wave component where the magnetic field is perpendicular to the electric field. Polar-
ization describes the oscillation state of light. Light is said to be complete polarized
if there is a fixed phase relation. As the electric field is always perpendicular to the
propagation direction of the wave, only two components of the field amplitude are
to be considered. Therefore, three different polarizations can be distinguished: If
both field components have the same phase the electromagnetic wave is said to be
linearly polarized. If the phase shift amounts to π

2 and both components have the
same amplitude the light is circular polarized. With elliptical polarization the phase
and amplitude can be arbitrary, but there has to be a fixed phase relation.

For this experiment linearly polarized light is needed. In order to achieve this,
polarization filters are used which only allow the field components parallel to their
optical axis to pass through. Naturally, this process decreases the intensity of the
light. If linearly polarized light passes through a polarization filter, where the angle
between filter and field is θ, the intensity afterwards can be described with Malus
law:

J = J0 · cos2(θ). (1)

1.2.2 Birefringence

Birefringence is an effect which occurs in optically anisotropic materials if the ve-
locity of propagation of incident light depends both on polarization and direction
of propagation. The light gets split up in two rays which are called ordinary and
extraordinary. The ordinary ray behaves according to snellius’ law of refraction, so
the ray won’t refracted at straight incidence. The extraordinary ray on the other
hand is refracted by straight light incidence. As a result the two rays are exposed
to deviating refractive indices and therefore the rays have a different velocity of
propagation. As a consequence, the polarization of the light changes after passing
through the material.

The dependence of the refractive indices and the velocity of propagation can be
described by an index ellipsoid introduced by Fresnel:

x2
1
n2

1
+ x2

2
n2

2
+ x2

3
n2

3
= 1 , (2)
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where x1, 2 and x3 denote the axes of a three dimensional right-angled coordinate
system and n1, n2 and n3 are the refractive indices belonging to the these three
axes.

2 Faraday Effect

2.1 Physical Basis

The Faraday effect is a magnetooptic effect named after its discoverer Michael Fara-
day describing the rotation of the polarizing angle of an electric wave propagating
through an transparent isotropic medium in the presence of a strong magnetic field.
Consider a linearly polarized plane wave entering a transparent isotropic medium.
Thanks to the linear polarization one can decompose the electric wave into two cir-
cularly polarizied plane waves with different directions of rotation. Because of the
strong magnetic field circular an effect called circular birefringence occurs: Both
waves interact with the electrons of the material and create a circular motion, effec-
tively creating a magnetic dipole. Because both waves rotate in opposing directions,
the direction of the magnetic field created by the induced dipole is along the propa-
gation direction for one wave (and thus amplifying the external field) and opposed to
the propagation direction for the other wave (decreasing the external field). As the
external field is strengthened for one wave and weakened for the other, both waves
propagate with different velocities through the material. If both waves emerge from
the material, both waves can be combined again to form a linear wave. Since the
propagation speed of both waves was different, a phase shift occurs at the end of
the material causing a linearly polarized wave with the same amplitude but different
polarization direction as the initial wave, effectively rotating the initial wave. Natu-
rally, the angle of rotation α is directly proportional to the length ` of the material
as well as the strength H of the magnetic field:

α = V ·H · ` (3)

The constant of proportionality V is called Verdet constant. Because the magnetic
field isn’t usually constant throughout the material one can divide the material into
infinitesimal slices dz. Each slice contributes an infinitesimal angle

dα = V ·H(z) dz (4)

to the total angle of rotation α which in turn can be obtained by integrating eq. (4)
over the total length ` of the material.

In the following section we would like to calculate the magnetic field of a coil
using the law of Biot and Savart. Consider an infinitesimal piece of wire d` carrying
a current I. The magnetic field dH created by the wire observed at a distance r
relative to the wire equals

dH = 1
4π

I

r3 d` × r. (5)
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This can be used to calculate the strength of the magnetic fieldH at axis of symmetry
of a magnetic loop with radius x (cf. fig. 1(a)): Symmetry dictates that if the observer

x

z

y

φ

d`

x

θ

r

`′

(a)

y z

x

x1

x2

`

d`′

dx

z

L

(b)

Figure 1: (a) Geometry of the loop. (b) Geometry of the coil with cross section.

is at a distance `′ to the center of the loop along the axis, the x- and y-components
of the magnetic field must cancel. The remaining component Hz can be calculated
using

dHz = | dH | sin θ

= 1
4π

I

r2 sinϕ sin θ · d`

= 1
4π

I

r2 sin θ · x dφ ,

(6)

where we changed the integration variable to an infinitesimal angle dφ and used sinϕ =
1, where ϕ is the angle between r and d`. Integration and the use of sin θ = x/r
yields the magnetic field of a magnetic loop observed at a distance `′ from the center:

H(`′) = I

2
x2

r
= I

2
x2√

x2 + `′2
. (7)

Now one is able to calculate the field of a coil by approximating the geometry as
a continuous distribution of current loops each carrying a current dI. The basic
geometry is outlined in fig. 1(b). Let the inner radius of the coil be x1, the outer
radius x2, the number of windings N and the total length of the coil L. The cur-
rent dI flowing through one loop is the total current I multiplied by the fraction of
area the loop occupies:

dI = I ·N · dx
x2 − x1

· d`′

L
(8)

The infinitesimal magnetic field generated by each loop can now be calculated using
eq. (7):

dH = 1
2

x2√
x2 + `′2

dI = NI

2(x2 − x1)L
x2√

x2 + `′2
dx d`′ (9)
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Sodium-vapor lamp

Polarizing filter Coil with heavy flint bar
Half-shade polari-
meter with okular

Figure 2: Schematic setup of the Faraday effect experiment. The cooling mechanism
of the coil as well as the wiring is not shown.

The magnetic field of the coil can now be obtained by integrating over the area of
the cross section of the coil which can be done by elementary means:

H(z) = NI

2(x2 − x1)L

L−z∫
−z

x2∫
x1

x2√
x2 + `′2

dx d`′

= NI

2(x2 − x1)L

[
(L− z) log

(
x2+
√

(L−z)2+x2
2

x1+
√

(L−z)2+x2
1

)
+ z log

(
x2+
√
z2+x2

2
x1+
√
z2+x2

1

)] (10)

Now, one can calculate the total angle of rotation α: Using eq. (4), one obtains

α = V ·

L+`
2∫

L−`
2

H(z) dz . (11)

where ` is the total length of the material within the coil.

2.2 Setup and Procedure

The experiment setup of the Faraday effect and its execution is are explained in the
following sections.

2.2.1 Setup

The basic structure of the Faraday effect experiment is sketched in fig. 2. The
light of the sodium-vapor lamp (shown leftmost in the figure) hits a polarizing filter
creating linearly polarized light. The beam travels through a heavy flint rod which
is located inside a coil and is interspersed by its magnetic field. The field strength
can be controlled by adjusting the current flowing through the coil, which can be set
from −5 A to 5 A. An external cooling mechanism (not shown in the figure) ensures
a constant coil temperature throughout the experiment. After passing through the
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rod the light hits an analyzer inside an half-shade polarimeter where its polarizing
angle α can be measured.

The half-shade polarimeter uses a nicol as an auxiliary prism which is rotated at
an angle ε relative to the polarizer. As the nicol rotates the polarizing angle of a part
of the incoming beam, different regions (belonging to different parts of the beam)
can be distinguished. Since the human eye is better able to compare intensities
relatively to one another than to judge the intensity absolutely, the analyzer angle α
is measured at which both areas have the same brightness. These angles correspond
to the intersections of the curves in fig. 3.

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

α/◦

I
/
I 0

Light beam unaffected
by the nicol

Light beam rotated at ε

2ε

Figure 3: Intensity curves of both beam parts at the analyzer with respect to the
analyzer angle α according to Malus’ Law.

2.2.2 Procedure

Before starting the actual experiment, both the coil cooling and the sodium-vapor
lamp need to be switched on for a few minutes. After that, the first measurements
can be taken: Without supplying current to the coil (so that there’s no magnetic
field present) one measures the angle at the analyzer at the half-shade polarimeter
at which both regions appear to be equally illuminated. As described above, two
positions of equal illumination exist (cf. intersections in fig. 3); since the human eye
can distinguish darker regions better, the measurements of this position are to be
preferred. Now the current is increased in equal steps up to 5 A and the measurement
of the analyzer angle is carried out just like described above. Both the coil current I
and the analyzer angle α is to be noted. After reaching 5 A, the current is switched
off and the polarity of the coil voltage is reversed. Now one can take analyzer angle
meausurements for negative currents down to −5 A.

After all measurements are taken, the angle shift of ε is to be determined. By ad-
justing the analyzer to the point where each of the regions appears to be completely
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dark (corresponding to the minima in fig. 3), one can infer 2ε from the minimum
angles. During further analysis, the angle at which the inner region appears com-
pletely dark will be called β, the angle at which the outer region appears dark will
be called γ.

As the analyzer setting allowed for a bit of leeway (especially in the brighter
region of equal illumination), we decided to measure α in a slightly different way:
Instead of measuring one angle where both regions are equally illuminated, we de-
termined the two angles at which the regions where just barely distinguishable from
eachother. By taking the mean of these two angles one should not only arrive at a
good estimate for α but also obtain a rough guess for the statistical error by taking
the derivation of the mean and one of the bounds (cf. section 2.3.2).

For the sake of convenience we took both darkness angle measurements every
time right after measuring the angles of equal illumination.

2.3 Analysis

2.3.1 Determination of the Field Integral

In order to determine the Verdet constant V from measurements of current I and
polarization angle α, one has to compute the integral in eq. (11). As the H-field
depends on the current I linearly (cf. eq. (10)) and the coil geometry is given, one
can can evaluate the integral divided by the current numerically. In our calculations
we refer to the coil geometry given in the manual [2, p. 6]:

Rod length: ` = 150 mm
Coil length: L = 175 mm
Inner radius: x1 = 10 mm
Outer radius: x2 = 75 mm

Windings: N = 3600

Using the method quad from the Python module scipy.integrate, the integral
yields

L+`
2∫

L−`
2

H(z)
I

dz = 2554.85, (12)

where H is the magnetic field as of eq. (10). The error reported by quad reads
1.41× 10−10 and will be neglected in the further analysis. Substituting the integral
in eq. (11), one arrives at

α = V · 2554.85 · I. (13)

In addition to the calculation above, the manual of the experiment suggests com-
paring the rather tedious calculation with the approximation of the magnetic field
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using
Happrox = N · I

L
. (14)

Using the given geometry, the magnetic field modulo current reads

Happrox
I

= N

L
≈ 20.571 1

m . (15)

In comparison, according to eq. (10), the magnetic field in the mid of the coil amounts
to

H
(
L
2

)
≈ 18.350 1

m . (16)

However, the above approximation becomes more inexact when considering other
positions within the coil: If one were to integrate over the whole rod length us-
ing Happrox, the integral becomes

L+`
2∫

L−`
2

Happrox
I

dz = ` · N
L
≈ 3085.71, (17)

which differs by about 20.8 % from the result in eq. (13), leading us to use the latter
value instead.

2.3.2 Determination of the Verdet Constant Using the Intensity Minima

In this section we attempt to determine the Verdet constant using the measurements
of the angles αmin

dunkel, α
max
dunkel of the dark setting of equal illumination. By defining

the mean of these bounding angles one arrives at a good estimate for the “true”
angle of equal illumination:

αdunkel := αmax
dunkel + αmin

dunkel
2 . (18)

Furthermore, we estimate the error on the mean as the derivation of αdunkel from
one of its bounds:

sαdunkel = αdunkel − αmin
dunkel = αmax

dunkel − αdunkel. (19)

The calculated angles of equal illumination are listed alongside their respective mea-
surements in table 6.
Now one can plot the values for the data pairs (I, αdunkel) (cf. fig. 4) and carry out
a linear regression of the form

αdunkel = ℵ · I + i, (20)
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Figure 4: Plot of the polarizing angle, with respect of the current using the darker
regions.

where ℵ and i are parameters of the regression. Using the method curve_fit from
the Python module scipy.optimize, one arrives at

ℵ = (−2.5580± 0.0010)
◦

A ,

i = (0.46± 0.03)◦.
(21)

Because the angle αdunkel is just the angle of polarization of the electromagnetic
wave shifted by an offset, the Verdet constant V can be calculated by comparing
eqs. (13) and (20) and using eq. (21):

V = − ℵ
2554.85

= (1.001± 0.004)× 10−3
◦

A

= (4.7805± 0.0190)× 10−2
′

Oe cm

(22)

As the given literary value is positive, the sign of the Verdet constant was changed
accordingly. During the above calculation, Gaussian error propagation as well as
the unit conversions

1◦ = 60′,

1 A = 4π
1000 Oe m = 4π

10 Oe cm
(23)

were used.
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2.3.3 Determination of the Verdet Constant using the Intensity Maxima

Analogously to the last section we attempt to determine the Verdet constant using
the measurements of the angles αmin

hell , α
max
hell of the bright setting of equal illumina-

tion. The calculated angles of equal illumination are listed alongside their respective
measurements in table 6. Defining

αhell := αmax
hell − αmin

hell
2 (24)

and carrying out a linear regression of the form

αhell = ג · I + ð, (25)

one retains the regression parameters

ג = (−4.43± 0.25)
◦

A
and ð = (83.8± 0.7)◦.

(26)

The data pairs (I, αhell) are shown with the linear regression in fig. 5. In addition, a
line with slope ℵ from the linear regression from section 2.3.2 is delineated as well,
acting as a comparison. Using the parameters of regression, one can calculate the
Verdet constant V :

V = − ג
2554.85

= (1.73± 0.09)× 10−3
◦

A

= (8.3± 0.4)
′

Oe cm

(27)

2.3.4 Determination of the Polarimeter Shift 2ε

Lastly, the angle ε between the polarizer and the analyzer in the half-shade po-
larimeter is to be determined. As our meausurements of β and γ correspond to the
minima in fig. 3, one is able to extract 2ε by subtracting the two angles from one
another and taking the mean value 2ε. As the error on β and γ is sβ = sγ = 2◦, the
error on each value of 2ε can be calculated using Gaussian error propagation:

2ε = γ − β =⇒ s2ε =
√
s2
γ + s2

β = 3◦ (28)

Taking the mean of the 2ε’s yields

2ε = (12.2± 0.6)◦, (29)

where the error on the mean was calculated using

s2ε = s2ε
N
, (30)

where N is the amount of values of 2ε. The data used to compute the mean is shown
in table 7.
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Figure 5: Plot of the polarizing angle, with respect of the current using the brighter
regions.

3 Pockels Effect

3.1 Physical Basis

For crystals the dielectric constant ε isn’t really a constant, but rather depends on
the electric field applied to the crystal. Due to the dependence of the refractive
index on the dielectric constant, also the refractive index depends on the electric
field. The correlation between the dielectric displacement D and electric field E can
be described as

D = aE + bE2 + cE3 + ..., where a, b, c, . . . ∈ R (31)

and with that, ε can be described as

ε = ∂D

∂E
= a+ 2bE + 3cE2 + . . . . (32)

The linear term is decisive for the Pockels effect, which is the one observed in this ex-
periment. Terms of higher-order can be neglected. For the experiment a pockels cell
consisting of four ADP crystals (ammonium dihydrogen phosphate NH4H2PO4) is
used. The ADP crystals are optical single axis crystals without a center of symmetry.
Two reasons exist for using multiple crystals: If the light which is linearly polarized
parallel to the x1-axis of the first crystal gets into the crystal, the light splits up in
an ordinary and an extraordinary ray. To compensate for this effect, other crystals
are placed behind the first one which are rotated relatively. The rotated crystals
also compensate the natural birefringence. It is important that the polarity of the
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Figure 6: Alignment of the crystals in the Pockels cell[2, p. 3].

voltage for the second pair of crystals is reversed, otherwise the pockels effect would
also be compensated. In fig. 6 is a sketched illustration of the arrangement of the
used crystals. If a voltage is applied along the x1-axis of an ADP crystal, the index
ellipsoid can be described as

x2
1
n2

1
+ 2r41x2Ex3 + x2

2
n2

2
+ x2

3
n2

3
= 1 , (33)

with the electrooptical coefficient r41. Now if the coordinate system gets rotated by
45◦ around the x1-axis, the coordinates transform to:

x2 = 1√
2

(x′2 + x′3) x3 = 1√
2

(x′2 − x′3) (34)

with the new coordinates and the definition of

n2
x = 1

2

( 1
n2

1
+ 1
n2

3

)
, (35)

the index ellipsoid can be written as

x2
1
n2

1
+ x′2

2

n2
x

(1 + r41En
2
x) + x′23

n2
x

(1− r41En
2
x) + x′2x

′
3

( 1
n2

1
− 1
n2

3

)
= 1 . (36)

The use of a Taylor series to the third order in nx yields the refractive indices of the
new coordinates:

nx′2 = nx√
1 + r41En2

x

≈ nx + 1
2r41En

3
x (37)

nx′3 = nx√
1− r41En2

x

≈ nx −
1
2r41En

3
x . (38)
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Figure 7: A sketched visualization of the setup for the Pockels-effect.

The phase shift ∆φ caused by birefringence can be calculated as

∆φ = k(n1 − nx′2)l′ (39)

with the wave number k and a path length traversed by the light of l′. Substitut-
ing nx′2 using eq. (37) and neglecting the natural birefringence n1 − nx, the phase
shift can be written as

∆φ = π

λ
r41En

3
xl . (40)

Since the pockels cell consists of four ADP crystals, the length l′ is four times the
length l of one crystal. As the electric field is mostly uniform, E can be expressed
through the voltage U applied to the crystal, E = U

d , where d is the thickness of a
crystal. At a certain voltage the phase shift after the pockels cell is exactly π; this
certain voltage is called half-wavelength voltage and is denoted by Uλ/2. Overall,
eq. (40) can be solved for r41:

r41 = λd

4lUλ/2

[1
2

( 1
n2

1
+ 1
n2

3

)] 3
2
. (41)

3.2 Setup and Procedure

3.2.1 Setup

In fig. 7 the setup for the Pockels experiment is delineated. A He-Ne-Laser attached
to an optical bench is used to create a ray of monochromatic light. As linearly
polarized light is needed for the experiment, a polarizer is mounted behind the
laser. Next, the pockels cell described in section 3.1 is attached to the optical
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bench. Behind the cell is an analyzer in order to measure the polarization of the
light after passing through the cell. The analyzer is set to be 90◦ relative to the
polarizer. A photo diode is mounted at the end of the optical bench to measure the
intensity of the light.

The voltage applied to the Pockels cell can be changed with different voltage
generators, where one is able to switch between the different voltage types quickly.
The voltage applied to the Pockels cell and the signal of the photo diode can be
visualized with an oscilloscope.

3.2.2 Procedure

Firstly the laser was turned on. The components of the optical bench have been
adjusted so that the reflected part of the laser beam is adjusted to be reflected
back into the beam path of the laser. Afterwards the sawtooth voltage was applied
to the Pockels cell and the oscilloscope was turned on. To minimize measurement
errors, the analyzer was set so that the signal on the oscilloscope was maximum.
The oscilloscope was connected to a computer where the measurement data could
be saved. In addition, the data was displayed graphically and with cursors two
different positions of the graphs could be marked. Eight different sets of data and
screenshoots of the corresponding graphs, on which the maxima and minima of the
diode signal are marked, were saved. The sawtooth voltage was changed to a direct
current voltage modulated with a sine voltage. First, a positive voltage was applied
and increased until the diode signal had just doubled the frequency of the sine signal.
This voltage and the frequency of the sine signal have been noted. Then, a negative
voltage was applied and the measurement was carried out just as before. Because
the signal of the diode fluctuated strongly, it was difficult to find the right voltage,
especially with the negative voltage. Therefore the signal of the sawtooth voltage
got be dumped before getting to the oscilloscope, this dumping factor must also be
measured. To do so, the sine voltage got plugged into the oscilloscope two times,
once with the signal getting damped and the other directly. Both measurements
were saved for later analysis.

3.3 Analysis

3.3.1 Damping factor

To determine the damping factor a sine fit of the form

Udiode = ℵ+ i · sin(גt+ k) (42)

was applied to the damped and the raw sine signal, where ℵ,i, ג and k are parame-
ters of regression. The fit was made using the method curve_fit from the Python
module scipy.optimize. The values of the fit parameters can be viewed in table 2.
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ℵ/V i/V 1/ג
s k

0.070 ± 0.005 5.705 ± 0.007 3234.2± 0.4 −0.213± 0.002
−0.000 95± 0.000 05 0.053 80± 0.000 07 3234.2± 0.5 −0.745± 0.003

Table 2: Fit parameters of the sine fit for the damped and undamped measurements
of the sine signal.

The damping factor is the quotient of the undamped and damped amplitude:

κ = iundamped
idamped

= 106.04 (43)

with Gaussian error propagation one gets an error of 0.12.

3.3.2 Sawtooth voltage

Figure 8: Picture from the analysis program of one measurement.

As shown in fig. 8, the maxima and minima of the diode signal were determined
by using the cursors. The voltage difference of the sawtooth voltage which is the
dampened halve wave voltage could then be retrieved from the program. The volt-
ages obtained in this way can be viewed in table 3. The errors were estimated at
0.2 V, which was based on accuracy of the cursors when trying to determine the
maxima and minima. The plots of the remaining measurements can be found in
the appendix (cf. figs. 11 to 18). The mean of the values were calculated to be
U = (2.3± 0.3) V. In order to obtain the half wave voltage, the damping factor was
multiplied to U :

U sawtooth
λ/2 = κ · U = 240 V (44)
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Udamped/V

2.1± 0.2
2.5± 0.2
2.6± 0.2
2.1± 0.2

Udamped/V

2.2± 0.2
2.1± 0.2
2.1± 0.2
2.3± 0.2

Table 3: The damped voltages, which were read directily from the computer

with Gaussian error propagation one arrives at an error of sUsawtooth
λ/2

= 30 V. To
calculate the electrooptical coefficient using eq. (41) the following values are required
which have been taken from the instructions [2]:

n1 = 1.522 n3 = 1.477
d = 2.4 mm l = 20 mm (45)
λ = 632.8 nm.

This leads to the following value for the electrooptical coefficient:

rsawtooth41 = (24± 3) pm
V . (46)

In addition, using the method curve_fit from the Python module scipy.optimize,
a sine fit of form

Udiode = ℵ+ i · sin(גt+ k) (47)

was applied to the diode data, where ℵ,i, ג and k are parameters of regression.
With the help of the fits the positions of the maxima and minima of the diode
signal were determined. Also, using the method curve_fit from the Python module
scipy.optimize, a linear fit of the form

Usawtooth = ð + z · t, (48)

where ð and z are parameters of regression, was applied to the data of the sawtooth
voltage. The fits of one of the measurement series is shown in fig. 9and all the values
of the fit parameters can be viewed in table 8 and table 9. In table 10 the times and
voltages calculated with the fits can be viewed.

The values of the sawtooth voltage at the time of the maxima and minima of the
diode signal were determined. The difference of the values results in the damped
half wave voltage, which can be seen in table 4.

The mean of these voltages was calculated:

Udamped, fit = (2.20± 0.05) V. (49)
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Figure 9: One example of the sine fit and linear fit applied to the data.

Figure 10: On the left a picture of the setting with positive voltage applied, at which
the diode signal had doubled the frequency. On the right the one with negative
voltage applied.

Ufit
damped/V

2.18± 0.13
2.18± 0.14
2.19± 0.15
2.22± 0.12

Ufit
damped/V

2.20± 0.13
2.19± 0.12
2.21± 0.12
2.20± 0.14

Table 4: The damped voltages determined by the fits.
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If the damping factor is multiplied to this voltage, the half wave voltage Uλ/2,fit =
(233± 5) V can be obtained. With eq. (41) and eq. (45) the value for the electro
optical coefficient can be calculated again:

rfit41 = (24.2± 0.5) pm
V . (50)

3.3.3 Sine modulated direct current voltage

The voltage at which the diode signal had doubled frequency of the sine signal
amounts for the positive direct current voltage:

U+ = (191.5± 2.0) V. (51)

While the negative voltage was applied, the corresponding voltage was measured as

U− = (−51.9± 3.0) V. (52)

The error on the negative voltage was estimated greater because we had more dif-
ficulty to determine the voltage where the frequency doubled. A picture of both
signals can be seen in fig. 10. The half wave voltage can be calculated as:

Uλ/2,DC = U+ − U− = 243.4 V. (53)

With Gaussian error propagation one arrives at an uncertainty of sUλ/2,DC = 4 V.
Like before, the electrooptical coefficient can be calculated using eq. (41) and eq. (45):

rDC
41 = (23.1± 0.3) pm

V . (54)

4 Discussion

4.1 Faraday Effect

Although the calculation of the magnetic field in order to compute the Verdet con-
stant isn’t as analytically plain as the one of an approximation (14), the use of the
latter results in a discrepancy of 20.8 % which is too high to be reasonably justifiable
and therefore lead us to use the more exact result.

By using a half-shade polarimeter and attempting to equally illuminate both
regions, the Verdet constant V of a heavy-flint rod was determined to be

V = (4.781± 0.019)× 10−2
′

Oe cm

and V = (8.3± 0.4)
′

Oe cm

(55)

by using intensity minima and maxima, respectively. Both values don’t seem to fit
together very well, the Verdet constant from the maxima lying within 196σ of the
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one from the minima and V from the minimum measurement lying within 8.8σ of the
maximum. As already described in section 2.2.2, the minimum measurement is to
be preferred due to the nature of the human eye. Furthermore, if one considers fig. 4
where both slopes corresponding to the Verdet constants listed above are delineated,
the error don’t seem to suggest inconsistent measurements1 as the slope obtained
from the minimum measurements intersects with the majority of data points. Even
by adapting a method where we tried to measure the “bounding angles” of equal
illumination instead of the angle itself, we could not seem to obtain a reasonable
result: As the method used to obtain the constant does not seem to be as reliable
and consistent as the other measurement and the error does not seem to diminish
this condition adequately, leading us to discard the Verdet constant of the intensity
maximum measurement.

However, the Verdet constant retained from the intensity minimum measurement
compares well with the manufacturer specification of 5× 10−2 ′

Oe cm . Admittedly, the
specification lies within a 12σ range within the minimum measurement, but, as the
manufacturer only specifies one significant digit without indication of an error, the
discrepancy is rather marginal2. This leads us to conclude that our measurement
(at least the one of the intensity minimum) corroborates with the manufacturer’s
specification.

It should be mentioned that we adjusted the sign of the Verdet constant in
accordance with the specification of the manufacturer. As the direction of current
directly influences the direction of the magnetic field which is responsible for the
sign, this condition can be explained by a simple polarity issue and should be of no
influence to the magnitude of our result.

Lastly, the polarimeter shift was determined to be

2ε = (12.2± 0.6)◦. (56)

The quality of the result is difficult to compare, as no reference value for the half-
shade polarimeter used in this experiment is known to us. It should be mentioned,
however, that the method of measurement can be quite prone to errors, as one has
to adjust one region of the half-shade polarimeter to be completely black. The fact
that – due to the nature of the polarimeter – it is not possible to obtain complete
darkness in both regions coupled with the nature of the human eye to compare
regions of darkness with one another leads us to note that the result may very well
be afflicted by a systematic error.

1At least not on the scale of 196σ
2In fact, if one where to round our value to one significant digit, it coincides exactly with the

specification.
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4.2 Pockels Effect

At first the damping factor was determined. Therefore the damped and undamped
sine signal was compared and the damping factor was calculated as

κ = (106.04± 0.12)

Next, the electro-optical coefficient was calculated. To do so, the half wave voltage
was determined using two different methods, once with a sawtooth voltage applied
to the Pockels cell and second with a direct current voltage modulated with a sine
voltage. With the first method, the half-wave voltage was obtained directly using
the graphical depiction by the computer, but also got determined by fitting the data.
The values for the electro-optical coefficient obtained with the different methods can
be viewed in table 5 alongside the manufacturer’s specification. Using the sawtooth

Method of Measurement r41/
pm
V

sawtooth, graphical 24 ± 3
sawtooth, fit 24.2± 0.5
modulated DC 23.1± 0.3

manufacturers declaration 23.4

Table 5: Results of the Pockels part.

method and the graphical determination of the half-wave voltage, the manufacturer’s
specification is in an 1σ environment of the measured value. Compared to the other
values, the relative error is quite large which may be due to the flattened extrema (cf.
figs. 11 and 12 for example) of the data which resulted in an imprecise identification
of the extrema. The manufacturer’s specification is just in an 2σ environment of
the value obtained by using the fits. This is on the one hand due to the quite small
relative error given by the fit; on the other hand it could also be due to the fact that
the diode signal does not behave like a perfect sine. Furthermore, the boundary effect
could have reduced the accuracy of the fit. For the modulated direct current voltage
method the manufacturer’s specification is in an 1σ environment of our result. The
error of the result comes through our approximation of how accurate the voltage
at which the frequency had doubled could be identified. This was approved not
just by checking the frequency of the diode signal, but also the amplitude; therefore
the amplitude is minimal when the frequency has doubled. It should also be said
that the electro-optical coefficient depends on the temperature of the crystal which
we were neither able to measure nor to control; the value of the manufacturer’s
specification refers to a crystal at the temperature of 21 ◦C. Therefore, a deviation
from the manufacturer’s specification – albeit minimal – could be reasoned by a
difference in temperature.
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A Appendix

A.1 Figures and Tables

I/A αmin
dunkel/

◦ αmax
dunkel/

◦ αdunkel/
◦ αmin

hell/
◦ αmax

hell /
◦ αhell/

◦

−5.0± 0.1 12.8 13.3 13.05± 0.25 91.5 115.0 103± 12
−4.5± 0.1 11.8 12.1 11.95± 0.15 91.5 113.7 103± 11
−4.0± 0.1 10.6 11.0 10.80± 0.20 89.6 111.4 100± 11
−3.5± 0.1 9.2 9.7 9.45± 0.25 88.1 107.3 98± 10
−3.0± 0.1 8.1 8.5 8.30± 0.20 86.3 105.5 96± 10
−2.5± 0.1 6.6 7.1 6.85± 0.25 88.2 109.1 99± 10
−2.0± 0.1 5.2 5.6 5.40± 0.20 84.3 104.6 94± 10
−1.5± 0.1 3.9 4.6 4.3 ± 0.4 70.4 104.5 87± 17
−1.0± 0.1 2.4 3.1 2.8 ± 0.4 87.6 107.5 98± 10
−0.5± 0.1 1.2 1.8 1.5 ± 0.3 80.5 97.9 89± 9

0.0± 0.1 0.5 1.0 0.75± 0.25 76.0 91.0 84± 8
0.5± 0.1 −1.0 −0.7 −0.85± 0.15 69.5 94.1 82± 12
1.0± 0.1 −2.1 −1.8 −1.95± 0.15 65.6 84.7 75± 10
1.5± 0.1 −3.5 −3.2 −3.35± 0.15 63.4 80.0 72± 8
2.0± 0.1 −4.8 −4.3 −4.55± 0.25 59.7 87.1 73± 14
2.5± 0.1 −6.1 −5.8 −5.95± 0.15 59.7 87.1 73± 14
3.0± 0.1 −7.6 −6.9 −7.3 ± 0.4 63.5 82.1 73± 9
3.5± 0.1 −9.1 −8.6 −8.85± 0.25 57.3 78.0 68± 10
4.0± 0.1 −9.9 −9.5 −9.70± 0.20 54.0 79.5 67± 13
4.5± 0.1 −11.5 −10.9 −11.2 ± 0.3 52.1 75.2 64± 12
5.0± 0.1 −12.5 −12.1 −12.30± 0.20 53.0 72.1 63± 10

Table 6: Measurements of angle bounds with calculated angles αdunkel, αhell of equal
illumination with respect to the coil current I.
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I/A β/◦ γ/◦ 2ε/◦

−5.0± 0.1 6.5± 2.0 18.6± 2.0 12± 3
−4.5± 0.1 5.5± 2.0 17.0± 2.0 12± 3
−4.0± 0.1 4.3± 2.0 16.1± 2.0 12± 3
−3.5± 0.1 2.9± 2.0 15.9± 2.0 13± 3
−3.0± 0.1 1.9± 2.0 14.6± 2.0 13± 3
−2.5± 0.1 0.2± 2.0 13.1± 2.0 13± 3
−2.0± 0.1 0.0± 2.0 12.0± 2.0 12± 3
−1.5± 0.1 −2.1± 2.0 11.6± 2.0 14± 3
−1.0± 0.1 −2.9± 2.0 8.8± 2.0 12± 3
−0.5± 0.1 −4.6± 2.0 7.1± 2.0 12± 3

0.0± 0.1 −5.7± 2.0 6.5± 2.0 12± 3
0.5± 0.1 −6.6± 2.0 5.0± 2.0 12± 3
1.0± 0.1 −7.0± 2.0 3.5± 2.0 10± 3
1.5± 0.1 −8.8± 2.0 2.4± 2.0 11± 3
2.0± 0.1 −11.1± 2.0 1.8± 2.0 13± 3
2.5± 0.1 −11.1± 2.0 1.8± 2.0 13± 3
3.0± 0.1 −13.1± 2.0 −1.0± 2.0 12± 3
3.5± 0.1 −15.6± 2.0 −3.1± 2.0 12± 3
4.0± 0.1 −16.5± 2.0 −3.1± 2.0 13± 3
4.5± 0.1 −18.2± 2.0 −6.9± 2.0 11± 3
5.0± 0.1 −19.5± 2.0 −8.0± 2.0 12± 3

Table 7: Measurements of the angles β and γ corresponding to the point where
the inner/outer region where completely dark with respect to the current I. The
difference between the two angles 2ε is also shown.

ℵ/V i/V 1/ג
s k

−0.751± 0.011 2.363± 0.010 516.0± 2.0 −1.91± 0.08
−0.771± 0.011 2.326± 0.011 515.0± 2.0 −1.88± 0.09
−0.764± 0.012 2.351± 0.011 513.0± 2.0 −1.80± 0.09
−0.511± 0.007 2.160± 0.008 491.0± 2.0 −3.60± 0.08
−0.479± 0.007 2.188± 0.009 493.0± 2.0 −3.66± 0.09
−0.493± 0.007 2.158± 0.008 495.0± 2.0 −3.78± 0.08
−0.498± 0.007 2.182± 0.008 490.0± 2.0 −3.56± 0.08
−0.504± 0.007 2.186± 0.008 493.0± 2.0 −9.99± 0.08

Table 8: Fit parameters of the sine fit for the eight different measurements
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ð/V z/V
s

−11.71 ± 0.04 357.8± 0.9
−11.66 ± 0.04 357.7± 0.9
−11.69 ± 0.04 357.8± 0.9
−14.267± 0.028 345.9± 0.6
−14.187± 0.029 344.7± 0.6
−14.25 ± 0.03 345.5± 0.7
−14.192± 0.027 344.2± 0.6
−14.211± 0.027 344.5± 0.6

Table 9: Fit parameters of the linear fit for the eight different measurements

tmin/s tmax/s Umin/V Umax/V

0.037 19± 0.000 23 0.043 27± 0.000 25 1.59± 0.09 3.77± 0.10
0.037 17± 0.000 24 0.043 26± 0.000 26 1.64± 0.09 3.82± 0.10
0.037 16± 0.000 25 0.043 28± 0.000 27 1.61± 0.10 3.80± 0.11
0.042 55± 0.000 23 0.048 96± 0.000 25 0.45± 0.08 2.67± 0.09
0.042 48± 0.000 24 0.048 85± 0.000 26 0.45± 0.09 2.65± 0.09
0.042 56± 0.000 23 0.048 91± 0.000 24 0.45± 0.08 2.65± 0.09
0.042 54± 0.000 22 0.048 95± 0.000 24 0.45± 0.08 2.66± 0.09
0.055 34± 0.000 26 0.061 71± 0.000 27 4.86± 0.09 7.05± 0.10

Table 10: The maxima and minima times and the associated sawtooth voltages.

Figure 11: Picture of first measurement of the sawtooth voltage.
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Figure 12: Picture of second measurement of the sawtooth voltage.

Figure 13: Picture of the third measurement of the sawtooth voltage.
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Figure 14: Picture of the fourth measurement of the sawtooth voltage.

Figure 15: Picture of the fith measurement of the sawtooth voltage.
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Figure 16: Picture of the sixth measurement of the sawtooth voltage.

Figure 17: Picture of the seventh measurement of the sawtooth voltage.
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Figure 18: Picture of the eighth measurement of the sawtooth voltage.
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A.2 Lab notes
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