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Abstract

In the Faraday-Pockels-experiment, two major optical effects are evaluated. The Pockels-effects
as a linear electro-optical effect and the Faraday-effect as a magneto-optical effect. In the
first part the Pockels-effect is used to find the half-wave-voltage of the used ADP-crystal by
applying two different measuring techniques. From the half-wave-voltage then the electro-optical
coefficient can be calculated. The second part focuses on the Faraday-effect. Its main goal is to
find the Verdet-constant of the used flint glass. In addition the characteristic angle of the half
shade polarimeter 2ϵ is measured.

In the part about the Pockels-effect, with both methods an electro-optical coefficient could be
determined, with r41 = (2.334 ± 0.014) × 10−11 m V−1 being very close to the actual value
and r41 = (2.246 ± 0.003) × 10−11 m V−1 showing a high incompatibility. For the second part
both measurements could be conducted successfully with a Verdet-constant of V = (1.023 ±
0.014) × 10−3 ◦ A−1 being extremely close to the value provided by the manufacturer. For the
characteristic angle, 2ϵ = (13.6 ± 0.4)◦ is determined.
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1 Introduction
The Faraday-Pockels-experiment investigates two major optical effects with high relevance in
research. It is splitted into two parts with the first part focusing on the linear electro-optical
Pockels-effect and the second part covering the magneto-optical Faraday-effect. For the first
part a Pockels-cell containing four ADP-crystals is used. The main goal is to find the half-
wave-voltage and thereby the electro-optical coefficient of the crystal. Therefore two different
methods explained in the theory part are applied. In the second part a flint glass in a coil is
used to perform measurements of the Faraday-effect. After determining the magnetic field inside
the coil, the Verdet-constant and the characteristic angle for the half shade polarimeter can be
found.

Both Pockels- and Faraday-effect are extremely important in optical physics. Whereas the
Faraday-effect is mainly used to produce optical isolators, an application of the Pockels-effect is
the Pockels-cell used to create controlled phase shifts.

2 Theory
The following sections introducing the theory and methodology necessary for the experiment
are mainly based on the experiment description, which is provided by the advanced physics lab
team [1] and the diploma thesis by Bernd Herrmann [2]. In the appendix, all the variables and
symbols used in this protocol and especially in the theory part are assembled in Table 2.

2.1 Basic theory for electro- and magneto-optics

An important characteristic of light is its polarisation. Generally three different kinds of polar-
isation are distinguished. If the electric field, which is always perpendicular to the direction of
propagation, only oscillates in one direction, its polarisation is linear. Light is called circular-
polarised if the electric field in x- and y-direction oscillate with a phase shift of π/2 and the same
amplitude. All other cases of polarised light are called elliptically polarised. In the experiment, a
polarisation filter is used to get linear-polarised light that can be used to observe several optical
effects [2].

An important effect that has to be considered in the experiment is the birefringence. In
anisotropic materials the refractive index and therefore the velocity of light changes depending
on direction and polarisation of the used light. Therefore the beam can split into an ordinary
and an extraordinary beam. An important tool to describe the dependence of refractive indices
of the direction and the polarisation of light is the index ellipsoid [2]:

x2
1

n2
1

+ x2
2

n2
2

+ x2
3

n2
3

= 1. (1)

xi describes the axis of the coordinate system and ni the respective refractive index.

2.2 Pockels-Effect

2.2.1 Basics about the Pockels-Effect

The Pockels-effect is a linear electro-optical effect. That means, when applying an electric
field to a specific material, its optical behaviour is changed due to variations in the refractive
indices. The Pockels-effect is based on the fact, that the dielectric constant ϵ = ∂D

∂E shows a
small dependence on the electric field [2]. By only considering the first term of the Taylor-
approximation, the refractive index n changes linearly with the applied electric field.
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The index ellipsoid for the material gets deformed by considering the Pockels-effect. In the
given case of only applying an electric field in one of the directions, one can get the following
description of the ellipsoid [1]:

x2
1

n2
1

+ 2r41x2E1x3 + x2
2

n2
2

+ x2
3

n2
3

= 1. (2)

For the used crystal, which is cut in a 45◦-Y-angle, we can perform a coordinate transformation
by rotating by 45◦ around the x1-axis and afterwards introducing a new refractive index [1]:

x2 = x′
2 + x′

3√
2

, (3)

x3 = x′
2 − x′

3√
2

, (4)

1
n2

x

= 1
2

( 1
n2

1
+ 1

n2
3

)
. (5)

Plugging the transformations into the index ellipsoid one can get two expressions for the refrac-
tive indices for light travelling along the x′

2- or x′
3-axis [1]. The two expressions then can be

simplified with a Taylor-approximation:

nx′
2

= nx√
1 + r41En2

x

≈ nx + 1
2r41E1n3

x, (6)

nx′
3

= nx√
1 − r41En2

x

≈ nx − 1
2r41E1n3

x. (7)

For a crystal of length l one can therefore get the following phase shift ωt between two beams
of different polarisation with the wavelength λ:

ωt =
2π(n1 − nx′

2
)l

λ
. (8)

2.2.2 Realisation of a Pockels Cell in the given setup

To correct the birefringence caused by the 45◦-Y-Cut, after the first ADP-crystal another crystal
with reversed polarity of the electric field is added. The second crystal recombines the beams
which have been splitted into ordinary and extraordinary beam by the first crystal. In addition
the natural birefringence also has to be compensated by two extra crystals [1]. The complete
arrangement of the crystals can be found in Figure 1:

Fig. 1: The graphic portrays the arrangement of the four ADP-crystals
in the Pockels-cell. In addition the polarity of the electric field is shown
and the optical path of the light is plotted. The graphic is taken from [1],
p. 3.
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Taking into account the path of the beam through all four of the crystals one can get the
following expression for the phase shift [1]:

ωt = 4π

λ
r41E1n3

xl, (9)

r41 = λd

4lUλ/2

√
1
2

( 1
n2

1
+ 1

n2
3

)3

, (10)

with r41 being the electro-optical coefficient, E the electric field, λ the wavelength, d the thickness
and l the length of one of the crystals. The half-wave-voltage Uλ/2 can later be determined in
the experiment.

2.2.3 First Method to find the half-wave-voltage

In a first step a sawtooth voltage is applied to the Pockels-cell to find its half-wave-voltage Uλ/2.
By using the sawtooth, the voltage and therefore the electric field also passes the point with
maximal amplification and maximal erasure of the light. Therefore the resulting signal measured
by a photo-diode has a sine-wave-form with one period. The difference in the voltages between
the minimal point and the maximal point thereby is the half-wave-voltage Uλ/2 [2].

2.2.4 Second Method to find the half-wave-voltage

As a second method to find the half-wave-voltage Uλ/2, a sine-voltage is used that is added to
a constant voltage that can be modified. The half-wave-voltage can be found by adjusting this
constant current until a sine-wave with doubled frequency can be observed. Because this effect
only happens for the voltage of minimal and maximal intensity, those two voltages can be found
easily and then be converted into a half-wave-voltage.

The effect of frequency doubling can be explained with the following Figure 2 taken from [2]:

Fig. 2: As an explanatory graphic for the frequency doubling, that only
occurs for the minimum and the maximum voltage, this graphic is taken
from [2], p. 39. On the y-axis the intensity is plotted against the voltage
U on the x-axis. In addition the applied sine-voltage and the resulting
intensity detected by the diode are portrayed for three different places in
the graphic.
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For a voltage between the voltage for the minimum and the maximum intensity, a sine-modulation
also results in the intensity signal increasing and decreasing with the modulation signal. In Fig-
ure 2 this is portrayed by the central plot. If we now look at the voltage for minimal intensity for
example, the situation is completely different: because the intensity increases with higher and
lower voltage, a modulation leads to hills in the intensity signal for minima as well as maxima
of the modulation. This leads to a signal with doubled frequency as shown in the left plot of
Figure 2. Analogously we can find the doubling of the frequency for the voltage of maximal
intensity.

2.3 Faraday-Effect

2.3.1 Basics about the Faraday-Effect

In contrast to the Pockels-effect, the Faraday effect is a magneto-optical effect. This means
that it occurs when applying a magnetic field to a medium. When linear polarised light travels
through a Faraday-cell the polarisation-plane rotates. The angle of rotation α depends on the
magnetic field H, the length of the cell l and the Verdet-constant V which depends on the
material [2]:

α = lHV. (11)

The Faraday-effect can be explained with a semi-classical description. Linear polarised light can
also be seen as a combination of two circular polarised beams that rotate in different directions.
When light travels through a medium, its electrons are affected by the electric field of the light
beam. With an outer magnetic field added to the system, the electrons additionally feel a
Lorentz-force that either slows them down or speeds them up. Therefore one of the circular
polarised beams has a higher velocity than the other one which leads to a phase shift between
the beams. When recombining the two beams, the polarisation plane is rotated in comparison
to the original plane.

2.3.2 Finding the Magnetic field inside the coil

To find the Verdet-constant V , the current I and the angle α are measured and then Equation 11
is used. To get a formula depending on I and α, another expression for the product of magnetic
field H and length l can be found by first finding an expression for H(z) in the middle of the
coil using the Biot-Savart-Law and then integrating over the length of the medium inside the
coil. The expression for H(z) can also be found in [2]:

dH = dI

2
x2

(r2 + l2)3/2 , (12)

⇒ H(z) = NI

2L(r2 − r1)

(L − z) ln

r2 +
√

(L − z)2 + r2
2

r1 +
√

(L − z)2 + r2
1

 + z ln

r2 +
√

z2 + r2
2

r1 +
√

z2 + r2
1

 . (13)

N is the number of windings, I the applied current, L the length of the coil and r2 and r1 the
outer and inner radius of the coil. For l · H one can get [2]:

lH =
∫ L+l

2

L−l
2

H(z)dz. (14)

By later solving this integral, a relation between Verdet-constant V , the current I and the angle
α can be found.
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3 Setup and measurements

3.1 Pockels-Effect

For the first part of the experiment, a HeNe-laser with wavelength λ = 632.8 nm sends out light
which is then polarised by a fixed polariser. After passing the Pockels-cell containing the four
ADP-crystals as described before, a fixed analyser is used to get a shift in the intensity of the
signal for different phase differences. The light then hits a photo diode that sends a signal to an
amplifier and afterwards to an oscilloscope. Before performing the measurements, it is checked
whether the beam hits all the components in the centre.

Three generators produce different signals (sawtooth, sine and constant voltage) and with a
switch the signal can be changed between the sawtooth signal and the added sine and constant
signal. The signal then is applied to the Pockels-cell and can also be observed on the oscilloscope.
In a block diagram all the different electronics and the optical path of the light are portrayed
in Figure 3.

Fig. 3: Block diagram of the optical path and the used electronics for the
measurements performed with the Pockels-cell. The HeNe-Laser sends
light through a polariser, the Pockels-cell and an analyser before hitting
the photo diode. On the bottom the three generators and the switch are
portrayed. The graphic is taken from [1].

In the first part three measurements are performed. First the damping factor of the electronics
is found by comparing the amplitude of the signal produced by the sine-generator with the
amplitude of the same signal after passing the electronics. In a second measurement the first
method to find the half-wave-voltage described in subsubsection 2.2.3 is performed. Therefore
the sawtooth generator is connected to the Pockels-cell and ten different measurements are taken.
The last measurement of this part is using the second method described in subsubsection 2.2.4.
Hence a sine-voltage is added to a constant voltage which is varied until a frequency doubling
can be observed. Again ten measurements are taken to get more precise measurements.

3.2 Faraday-Effect

For the second part of the experiment, a Na-vapor-lamp is used, because the observation is done
with the eyes. The light then travels through a half shade polarimeter which has the property
of producing slightly different polarisations for two areas – one in the middle and one at the
sides. With an analyser behind the Faraday-cell, this can be used to get a good measurement of
the angle of polarisation, because for the eye it is easier to find the angles where two areas have
the same brightness then finding the angle with the darkest or brightest light. The Faraday-cell
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is made of a coil, that provides the magnetic field when a current is applied, surrounding a rod
made of flint glass. The cell is cooled by a water supply to minimise the effects of temperature
changes. The light can be observed by a telescope.

Fig. 4: Setup for the measurements of the Faraday-effect. A Na-vapor-
lamp sends light through a half shade polarimeter into the coil with the
flint glass. Afterwards it passes an analysor and can be observed with a
telescope. The graphic is taken from [2].

For this part of the experiment two measurements are taken. In the first measurement, for
different currents applied to the coil, the angle is taken for which the two areas of the half shade
polarimeter have the same brightness. The angles then can be used to find the Verdet-constant
for the flint glass. In a second step the characteristic angle 2ϵ for the half shade polarimeter is
measured by recording the angles for which the inner and outer area are darkest.
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4 Data analysis and discussion of uncertainties

4.1 Pockels-Effect

4.1.1 Finding the Damping-factor of the electronics

As a preparation for the actual measurements, the damping-factor D of the electronics has to
be determined, so the following measurements can be corrected. The signal is generated by a
sine generator with a frequency of f = 999 Hz. In Figure 5 the damped and non-damped signal
are both displayed.

0.000 0.001 0.002 0.003 0.004 0.005
Time t [s]

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 U

 [V
]

Damping - Measurement 1
Signal with damping
Signal

Fig. 5: In this graphic the first measurement of the damping is visible.
The damped signal is portrayed in blue and the non-damped signal in
grey.

To find the damping-factor the following formula can be used and its uncertainty can be found
with Gaussian propagation of uncertainty [3]:

D = A1
A2

, (15)

∆D =

√(∆A1
A2

)2
+

(
−A1∆A2

A2
2

)2
, (16)

with A1 and A2 being the amplitudes of the damped and non-damped signal. To find the
respective amplitude of both signals, a data fit with scipy.optimize.curve_fit is performed
with Equation 17:

f(x) = A1/2 sin(ω(x + b)) + c. (17)

The data fit for the non-damped signal can be found in Figure 6a and the one for the damped
signal is visualised in Figure 6b.
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(a) Curve fit of the signal
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(b) Curve fit of the damped signal

Fig. 6: In the first graphic one can see the curve fit in red of the non-
damped signal in grey. In the second plot the curve fit in red of the
damped signal in blue is displayed.

The resulting fit-parameters A1/2 for the amplitudes are:

A1 = (8.57 ± 0.04) V,

A2 = (0.0827 ± 0.0003) V.

The other fit parameters can be ignored due to not being relevant for the damping factor. By
plugging in those values in Equation 15 and Equation 16 the resulting damping-factor is:

D1 = 103.6 ± 0.6.

To receive more precise knowledge of the damping-factor, four additional measurements were
taken and analysed analogously. The plots of the other measurements can be found in the
appendix in Figure 12 to Figure 23. Their fit parameters for the amplitude and their resulting
damping factors can be found in Table 3 in the appendix. As a final value for the damping-factor
the mean of the measurements with the standard deviation of the mean as its uncertainty [3] is
calculated:

D = 103.72 ± 0.09.
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4.1.2 Method 1: using a sawtooth-voltage

The first method to find the half-wave voltage of the Pockels-cell, which is later used to calculate
the electro-optical coefficient r41, is by applying a sawtooth-voltage. In this case the ratio
between the rising voltage U of the sawtooth and the rising time T is equal to the ratio of the
half-wave voltage Uλ/2 and the time τ between the minimum and maximum of the measured
sine-signal:

Uλ/2
τ

= U

T
. (18)

Due to the damping of the electronics, the voltage U has to be multiplied with the damping-
factor D which leads to:

Uλ/2 = τ

T
UD, (19)

∆Uλ/2 =

√(∆τ

T
UD

)2
+

(
−τ∆T

T 2 UD

)2
+

(
τ

T
D∆U

)2
+

(
τ

T
U∆D

)2
. (20)

The values for the rising voltage U and the rising time T can be directly found with the given soft-
ware, which is exemplary shown in Figure 7. The uncertainties are approximated by analysing
the effect of changing the values slightly by hand.

Fig. 7: In this graphic the sawtooth-voltage in blue and the sine-signal in
green are both displayed in the reading software. With the purple cursor
the beginning of the sawtooth and with the green cursor the end of the
sawtooth is marked. In this case the sawtooth-voltage is measured in
Channel 2 (CH2) and the voltages can be found on the right hand side
for both cursors. The rising time is displayed as dt and can also be found
on the right side.

For the first measurement the following values for T and U can be found:

U = (8.57 ± 0.04) V,

T = (14.3 ± 0.3) ms.
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All the other values for T and U with the respective uncertainties can be found in Table 4 in
the appendix.

To find the time τ between the minimum and maximum of the measured sine-signal, a data
fit is again performed with scipy.optimize.curve_fit. The formula which is fitted to the
sine-signal is given as:

f(x) = a sin
(

π
x + b

τ

)
+ c. (21)

The π inside of the sine is needed, because only half a period – from minimum to maximum
– of the sine-wave is needed to find the half-wave voltage. A plot of the sawtooth-voltage, the
sine-signal, its fit and the limits for the used fit values can be found in Figure 8.
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Fig. 8: In this plot the sawtooth-voltage in grey, the sine-signal in blue
and its data fit in red are displayed for the first measurement. There are
also two vertical lines to show the limits of the used values for the data
fit.

The fit parameter τ is given as:

τ = (6.81 ± 0.02) ms.

Again all the other fit-parameters are irrelevant for this measurement and thus can be ignored.
With Equation 19 and Equation 20 for the half-wave voltage one gets:

Uλ/2 = (247 ± 15) V.

Again this measurement has been taken multiple times and the plots with the data fits can be
found in the appendix in Figure 24 to Figure 32 and the fit parameter τ , the measurements for
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U and T and the respective half-wave voltage for each measurement can also be found in the
appendix in Table 4.
Once again, the mean and the standard deviation of the mean [3] are determined considering
all measurements. The resulting value for the half-wave voltage is:

Uλ/2 = (241.5 ± 1.5) V.

Finally, the electro-optical coefficient r41 can be calculated with the following formula, which is
introduced in the theory part:

r41 = λd

4lUλ/2

√
1
2

( 1
n2

1
+ 1

n2
3

)3

, (22)

∆r41 = r41
∆Uλ/2
Uλ/2

. (23)

The needed constants for the formula are [1]:

n1 = 1.522,

n3 = 1.477,

d ≈ 2.4 mm,

l ≈ 20 mm,

λ = 632.8 nm.

The resulting value for the electro-optical coefficient r41 is:

r41 = (2.334 ± 0.014) × 10−11 m V−1.

This value will be compared to the value in literature in the discussion part.

4.1.3 Method 2: using a sine-voltage

Similarly to the sawtooth-method, with the sine-method the half-wave voltage Uλ/2 must be
found before calculating the electro-optical coefficient r41. In this case the half-wave voltage
is determined by finding the difference in the voltages at which the measured sine-signal has a
doubled frequency which corresponds with a maximum or minimum in intensity:

Uλ/2 = Umax − Umin, (24)

∆Uλ/2 =
√

(∆Umax)2 + (−∆Umin)2. (25)

An exemplary measurement of the maximum can be found in Figure 9 and a measurement of
the minimum can be found in Figure 10.
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Fig. 9: In this plot the modulated sine-voltage in blue and the maximum
of the sine-signal with doubled frequency in orange are displayed for the
first measurement.
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Fig. 10: In this plot the modulated sine-voltage in blue and the minimum
of the sine-signal with doubled frequency in orange are displayed for the
first measurement.

Again this measurement has been taken multiple times in order to achieve more precise mea-
surements. The plots can be found in the appendix in Figure 33 to Figure 50.
The resulting voltages for the maximum and minimum for each measurement and the calculated
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half-wave voltage are listed in Table 1. The uncertainty for the voltage is approximated by testing
the range of the voltage in which a doubled frequency can be observed on the oscilloscope.

Tab. 1: In this table the voltage Umin of the minimal signal with doubled
frequency, the voltage Umax of the maximal signal with doubled frequency
and the resulting half-wave voltage Uλ/2 are listed for each measurement
with the second method.

Measurement Voltage Umin Voltage Umax Half-wave voltage Uλ/2

1 (−114 ± 4) V (138 ± 2) V (252 ± 4) V
2 (−115 ± 4) V (138 ± 2) V (254 ± 4) V
3 (−113 ± 4) V (137 ± 2) V (250 ± 4) V
4 (−116 ± 4) V (136 ± 2) V (252 ± 4) V
5 (−115 ± 4) V (135 ± 2) V (250 ± 4) V
6 (−116 ± 4) V (135 ± 2) V (251 ± 4) V
7 (−115 ± 4) V (135 ± 2) V (251 ± 4) V
8 (−115 ± 4) V (135 ± 2) V (250 ± 4) V
9 (−116 ± 4) V (135 ± 2) V (251 ± 4) V
10 (−115 ± 4) V (135 ± 2) V (250 ± 4) V

As mentioned in the other parts of the analysis, the mean of the half-wave voltage Uλ/2 is
calculated:

Uλ/2 = (251.0 ± 0.4) V.

Analogously to the previous part, the electro-optical coefficient r41 is calculated with Equation 22
and Equation 23:

r41 = (2.246 ± 0.003) × 10−11 m V−1.

This value will later be compared with the value in literature.

4.2 Faraday-Effect

4.2.1 Calculating the magnetic field

As a first step the magnetic field inside the coil should be calculated to get a relation between
current I, angle α and Verdet-constant V . Therefore the following integral, which has been
introduced in the theory part, must be solved:

lH =
∫ L+l

2

L−l
2

H(z)dz. (26)

This integral can be solved using Wolfram Mathematica. With l = 15.0 cm, L = 17.5 cm,
r1 = 1.0 cm, r2 = 7.5 cm and N = 3600 we get:

lH = 2554.848I, (27)
⇒ α = 2554.848V I. (28)

By using an idealised coil with a constant magnetic field the equation provides a different value:

Hid = NI

L
, (29)

⇒ lHid = lNI

L
= 3085.714I. (30)

Both values are used to find the Verdet-constant and both resulting values will later be compared.
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4.2.2 Finding the Verdet-Constant

Before taking measurements for the Faraday effect, the thesis that darker colours are easier to
separate for the eye is verified. With the half shade polarimeter there are two different angles
for which the areas are equally bright. For the brighter one no difference between the two areas
can be measured by eye in a range of approximately 40◦. In contrast, for the darker one, a
difference of 0.5◦ can already lead to two areas being separable. Hence a measurement with the
darker spot used to find the correct angle seams to be more sensible.

To find the Verdet constant V , Equation 28 is used by measuring the angle α for different
currents I and then performing a linear regression:

α = 2554.848V I, (31)
⇒ α = aI + b with a = 2554.848V and b = 0. (32)

The angle is thereby measured by taking the angle where both of the areas of the half shade po-
larimeter are equally dark. The linear regression is performed with scipy.optimize.curve_fit
and can be found in Figure 11.
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Fig. 11: In this plot the measured angle in ◦ is plotted against the applied
current I in A. Additionally a linear regression with a confidence band is
displayed.

For the slope a and the intercept b we get the following values with scipy.optimize.curve_fit:

a = (−2.61 ± 0.04) ◦ A−1,

b = (0.67 ± 0.11)◦.

The intercept b only depends on the initial setting of the angles and thus can be ignored.
From the slope a we can get the Verdet-constant. The uncertainty is calculated by Gaussian
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propagation of uncertainties [3]:

V = − a

2554.848 , (33)

∆V = ∆a

2554.848 . (34)

The minus comes from the fact, that the Verdet-constant is defined positive, but our slope is
negative. By plugging in the values we get the following Verdet-constant:

V = (1.023 ± 0.014) × 10−3 ◦ A−1.

Using the factor 3085.714 instead of 2554.848 that is derived from the simplified calculation of
the magnetic field, one gets the following Verdet-constant:

V = (0.847 ± 0.011) × 10−3 ◦ A−1.

Both values will be compared to the value presented by the manufacturer of the flint glass in
the discussion part.

4.2.3 Finding the characteristic angle of the half shade polarimeter

In a last step the characteristic angle 2ϵ of the half shade polarimeter can be measured. Therefore
two measurements are taken: In the first one, the angle is found where the inner area is darkest
and in the second one the angle for the outer area being the darkest is found. The difference
between the two angles leads to the characteristic angle 2ϵ. To improve the measurement five
different measurements are taken and afterwards averaged. All the measurements can be found
in Table 5 in the appendix. As an uncertainty, the standard deviation of the mean is taken [3]:

2ϵ = (13.6 ± 0.4)◦.
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5 Summary and discussion of the results

5.1 Comparison with expectation

A comparison between the measured data and the values in literature can be done by using a
t-value. The t-value is calculated by dividing the difference between measured and real value
with the uncertainty of the measured value. A t-value smaller than two corresponds with a good
measurement.
The value in literature for the electro-optical coefficient r41,Lit is taken from the experiment
description provided by the advanced physics lab team [1]:

r41 = 23.4 pm V−1.

One should also consider, that this value is given for a temperature of 21 ◦C due to the electro-
optical coefficient being dependent on the temperature [4]. For the measurement of r41 with the
sawtooth-method, which has a relative error of 0.6%, we get the following t-value:

t = 0.40.

This shows a good compatibility between the measurement and the value in literature.
For the r41 measurement with the sine-method, which has a relative error of 0.15%, we get a
t-value of:

t = 28.93.

Reasons for the big discrepancy between the measurement and the value in literature will later
be discussed.
The calculated value for the Verdet-constant V from the Faraday-effect can also be compared
by using a t-value. For the Verdet-constant of the flint glass only a manufacturers specification
is known [1]:

Vmanu = 1.047 × 10−3 ◦ A−1.

The resulting t-value for the Verdet-constant with the properly calculated magnetic field is

t = 1.68,

whereas the t-value for the Verdet-constant with the idealised magnetic field is given as:

t = 17.11.

The deviation from the manufacturers specification is much higher when using the idealised
magnetic field for the calculations, which will later be discussed.

5.2 Summary of the results

For the Pockels-effect the first step was to calculate the damping factor of the used electronics.
The following factor could be found by comparing the amplitudes of a sine-voltage before and
after the damping:

D = 103.72 ± 0.09.

Afterwards by using the sawtooth voltage a first value for the half-wave-voltage and therefore
for the electro-optical coefficient could be found:

Uλ/2 = (241.5 ± 1.5) V,

r41 = (2.334 ± 0.014) × 10−11 m V−1.
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With a t-value of t = 0.40 and a relative error of 0.6% this measurement was very successful. In
comparison, with the other method the following values could be taken:

Uλ/2 = (251.0 ± 0.4) V,

r41 = (2.246 ± 0.003) × 10−11 m V−1.

In this case a t-value of 28.93 shows a very high incompatibility in comparison with the literature.
With a even smaller relative error of 0.15% the uncertainty is definitely too small.

In the second part the Verdet-constant for the flint class could be found with the following values
being calculated:

V = (1.023 ± 0.014) × 10−3 ◦ A−1,

V = (0.847 ± 0.011) × 10−3 ◦ A−1.

The first value, which was calculated using the integral to get the right magnetic field inside the
coil has a good compatibility (t = 1.68) with the value given by the manufacturer. As expected,
the second value which only uses an approximation for the magnetic field has a much higher
t-value of 17.11. For the characteristic angle of the half shade polarimeter the following value
was found:

2ϵ = (13.6 ± 0.4)◦.

5.3 Discussion of results and uncertainties

A first discussion point is the fact, that the signal for negative constant currents during the
performance of the Pockels-measurements was much more unstable than the signal for positive
constant currents. This can have two main reasons. The first one can come from the electronics
that have a problem dealing with negative voltages. It could be possible that the oscilloscope
or other parts of the electronic somehow have higher fluctuation when negative voltages are
applied. A second more reasonable cause of the fluctuation comes from an anisotropy in the
crystals. Theoretically the stability of the signal should not depend on the polarity of the electric
field. It still is possible that during production or later when doing the experiment somehow
pollution and imperfections in the crystal occur. These imperfections would lead to different
behaviour for different polarities and could explain the effect of higher fluctuations for negative
voltage.

The most important discussion point regarding the Pockels-effect is the high incompatibility
of the second electro-optical coefficient, measured by adjusting the voltage until a doubling in
frequency could be detected. With a t-value of t = 28.93 the value is not close enough to the
theoretical value and its uncertainty is underestimated too. In the following, the main factors
for the high t-value are discussed.

A first important point is the uncertainty only being derived by the standard deviation of the
mean. Therefore statistical uncertainties should cancel out, but systematic uncertainties still
can affect the measurement. It would have been sensible to also taking into account the high
uncertainty of 2 − 4 V by finding the right voltage for frequency-doubling. Because of high
fluctuation this effect has a deep impact on the uncertainty of the measurement. By also taking
into account this uncertainty, the t-value could be reduced to a value of t = 5.94 which is much
better. Still this uncertainty could be underestimated, especially for the measurements with the
negative voltage, where extremely high fluctuations were visible.

Because an underestimation of the uncertainty still does not solve the problem of the value
being too far away from the theoretical value, another factor could be the electronics that did
not show the exact value of the voltage. Also for completely closing the rotary button for the
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voltage, a voltage unequal to zero was shown. Therefore it could be possible that the used
voltage for the analysis could be off from the real value. Another even more important point is
the dependence of the electro-optical coefficient of the temperature. It can not be guarantied
that the temperature was always constant at 21 ◦C which is the temperature for which the
theoretical value was taken. As described in [4], the electro-optical coefficient can vary with the
temperature. Since no measurements of the temperature were performed, this fact could not be
included in the analysis of the experiment.

A general disturbance in the measurement was, that the first oscilloscope broke in the middle of
the sine-voltage-measurement. This also might have lead to a falsification of a few data points.

The first discussion point for the measurement of the Faraday-effect is the fact, that the measured
angle is set by eye. Estimating by eye when both areas have roughly the same intensity in order
to set the angle, leads to great uncertainties in the measuring process. This argument can be
emphasised by the observation, that depending on the person who measured the position of the
two areas being equally dark, different angles where measured. An alternative and more precise
approach to find the angle is to use photo-diodes to measure the actual intensity in both areas
and then setting the angle for which the photo-diodes show the same intensity.

Another interesting discussion point is the comparison of the values for the Verdet-constant.
One of the values was calculated by solving the integral for the magnetic field whereas the other
one was found by only using an approximation. As expected, only the value calculated by using
the integral shows a good agreeableness with the theoretical value by having a t-value smaller
than two. The other value in comparison is not compatible at all, which shows that only taking
an approximation for the magnetic field is not suitable for more complex coils.
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7 Attachment

7.1 Tables and graphics

7.1.1 Table with the used symbols in the protocol

Tab. 2: Table of the used symbols for the parameters used in the protocol.

Symbol Parameter

xi coordinate axis
ni refractive index
E electrical field
D electric displacement field
ϵ dielectric constant

r41 electro-optical coefficient
l crytal/cell length
d crystal thickness
ωt phase shift
λ wavelength of light

Uλ/2 half-wave voltage

α angle of rotation
H magnetic field
V Verdet-constant
L coil length

r1, r2 inner/outer coil radius
I current

7.1.2 Tables with measured data

Tab. 3: In this table the amplitude A1 of the signal, the damped ampli-
tude A2 of the signal and the resulting damping-factor D are listed for
each measurement of the damping.

Measurement Signal amplitude A1 Damped amplitude A2 Damping-factor D

1 (8.57 ± 0.04) V (0.0827 ± 0.0003) V 103.6 ± 0.6
2 (8.55 ± 0.04) V (0.0824 ± 0.0003) V 103.8 ± 0.6
3 (8.55 ± 0.04) V (0.0823 ± 0.0003) V 103.9 ± 0.6
4 (8.54 ± 0.04) V (0.0822 ± 0.0003) V 103.9 ± 0.6
5 (8.53 ± 0.04) V (0.0824 ± 0.0003) V 103.4 ± 0.6
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Tab. 4: In this table the rising voltage U and the rising time T of the
sawtooth-voltage, the fit parameter τ for the time between the minimum
and maximum of the sine-signal and the resulting half-wave voltage Uλ/2
are listed for each measurement with the sawtooth-voltage.

Measurement Rising voltage U Rising time T τ Uλ/2

1 (8.57 ± 0.04) V (14.3 ± 0.3) ms (6.81 ± 0.02) ms (247 ± 15) V
2 (8.57 ± 0.04) V (14.1 ± 0.3) ms (6.80 ± 0.02) ms (242 ± 15) V
3 (8.57 ± 0.04) V (14.3 ± 0.3) ms (6.81 ± 0.02) ms (239 ± 15) V
4 (8.57 ± 0.04) V (14.5 ± 0.3) ms (6.79 ± 0.02) ms (236 ± 15) V
5 (8.57 ± 0.04) V (14.3 ± 0.3) ms (6.81 ± 0.02) ms (240 ± 15) V
6 (8.57 ± 0.04) V (14.2 ± 0.3) ms (6.80 ± 0.02) ms (246 ± 15) V
7 (8.57 ± 0.04) V (14.4 ± 0.3) ms (6.79 ± 0.02) ms (245 ± 15) V
8 (8.57 ± 0.04) V (14.4 ± 0.3) ms (6.79 ± 0.02) ms (245 ± 15) V
9 (8.57 ± 0.04) V (14.2 ± 0.3) ms (6.79 ± 0.02) ms (244 ± 15) V
10 (8.57 ± 0.04) V (14.2 ± 0.3) ms (6.78 ± 0.02) ms (232 ± 15) V

Tab. 5: Conclusion of all the measurements performed to find the charac-
teristic angle 2ϵ of the half shade polarimeter. In addition to the number
of the measurement and the angle 2ϵ, the current used for the measure-
ment is presented. For all the angles the uncertainty is ∆2ϵ = 1.4◦.

Measurement Current I Angle 2ϵ

1 −5.0 A 12.0◦

2 −2.5 A 14.4◦

3 0.0 A 13.4◦

4 2.5 A 14.3◦

5 5.0 A 13.9◦
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7.1.3 Measurements of the damping-factor
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Fig. 12: Second measure-
ment of the damping factor.
Damped signal in blue, normal
signal in grey.
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Fig. 13: A data fit of a
sine wave in red for the non-
damped signal in grey from the
second measurement.
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Fig. 14: A data fit of a sine
wave in red for the damped
signal in blue from the second
measurement.
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Fig. 15: Third measurement of
the damping factor. Damped
signal in blue, normal signal in
grey.
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Fig. 16: A data fit of a
sine wave in red for the non-
damped signal in grey from the
third measurement.
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Fig. 17: A data fit of a sine
wave in red for the damped sig-
nal in blue from the third mea-
surement.
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Fig. 18: Fourth measure-
ment of the damping factor.
Damped signal in blue, normal
signal in grey.
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Fig. 19: A data fit of a
sine wave in red for the non-
damped signal in grey from the
fourth measurement.
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Curve fit of the damped signal  - Measurement 4
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Fig. 20: A data fit of a sine
wave in red for the damped
signal in blue from the fourth
measurement.
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Damping - Measurement 5
Signal with damping
Signal

Fig. 21: Fifth measurement of
the damping factor. Damped
signal in blue, normal signal in
grey.
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Fig. 22: A data fit of a
sine wave in red for the non-
damped signal in grey from the
fifth measurement.
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Fig. 23: A data fit of a sine
wave in red for the damped sig-
nal in blue from the fifth mea-
surement.
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7.1.4 Measurement of the Pockels-effect with the sawtooth-method

0.0200 0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400
Time t [s]

-3

-2

-1

0

1

2

3

4

Vo
lta

ge
 U

 [V
]

Curve fit of the signal - Measurement 2

Signal
Sawtooth voltage
Data fit of the damped signal
Limits for the used fit values

Fig. 24: Signal with a data fit
of the second sawtooth mea-
surement. Signal in blue, data
fit in red.
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Fig. 25: Signal with a data fit
of the third sawtooth measure-
ment. Signal in blue, data fit
in red.
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Fig. 26: Signal with a data
fit of the fourth sawtooth mea-
surement. Signal in blue, data
fit in red.
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Fig. 27: Signal with a data fit
of the fifth sawtooth measure-
ment. Signal in blue, data fit
in red.
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Fig. 28: Signal with a data fit
of the sixth sawtooth measure-
ment. Signal in blue, data fit
in red.
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Fig. 29: Signal with a data fit
of the seventh sawtooth mea-
surement. Signal in blue, data
fit in red.
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Curve fit of the signal - Measurement 8
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Fig. 30: Signal with a data fit
of the eigth sawtooth measure-
ment. Signal in blue, data fit
in red.
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Fig. 31: Signal with a data fit
of the ninth sawtooth measure-
ment. Signal in blue, data fit in
red.
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Fig. 32: Signal with a data fit
of the tenth sawtooth measure-
ment. Signal in blue, data fit in
red.
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7.1.5 Measurement of the Pockels-effect with the sine-method
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Fig. 33: Maximum of the sine-
signal with doubled frequency
in measurement 2. Signal in or-
ange, sine-voltage in blue.
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Fig. 34: Minimum of the sine-
signal with doubled frequency
in measurement 2. Signal in or-
ange, sine-voltage in blue.
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Fig. 35: Maximum of the sine-
signal with doubled frequency
in measurement 3. Signal in or-
ange, sine-voltage in blue.
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Fig. 36: Minimum of the sine-
signal with doubled frequency
in measurement 3. Signal in or-
ange, sine-voltage in blue.
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Fig. 37: Maximum of the sine-
signal with doubled frequency
in measurement 4. Signal in or-
ange, sine-voltage in blue.
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Fig. 38: Minimum of the sine-
signal with doubled frequency
in measurement 4. Signal in or-
ange, sine-voltage in blue.
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Maximum of the sine-signal with doubled frequency - Measurement 5
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Fig. 39: Maximum of the sine-
signal with doubled frequency
in measurement 5. Signal in or-
ange, sine-voltage in blue.
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Fig. 40: Minimum of the sine-
signal with doubled frequency
in measurement 5. Signal in or-
ange, sine-voltage in blue.
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Fig. 41: Maximum of the sine-
signal with doubled frequency
in measurement 6. Signal in or-
ange, sine-voltage in blue.
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Fig. 42: Minimum of the sine-
signal with doubled frequency
in measurement 6. Signal in or-
ange, sine-voltage in blue.
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Modulated sine-voltage
Measured maximum

Fig. 43: Maximum of the sine-
signal with doubled frequency
in measurement 7. Signal in or-
ange, sine-voltage in blue.
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Fig. 44: Minimum of the sine-
signal with doubled frequency
in measurement 7. Signal in or-
ange, sine-voltage in blue.
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Maximum of the sine-signal with doubled frequency - Measurement 8
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Fig. 45: Maximum of the sine-
signal with doubled frequency
in measurement 8. Signal in or-
ange, sine-voltage in blue.
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Fig. 46: Minimum of the sine-
signal with doubled frequency
in measurement 8. Signal in or-
ange, sine-voltage in blue.
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Fig. 47: Maximum of the sine-
signal with doubled frequency
in measurement 9. Signal in or-
ange, sine-voltage in blue.
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Fig. 48: Minimum of the sine-
signal with doubled frequency
in measurement 9. Signal in or-
ange, sine-voltage in blue.

0.000 0.001 0.002 0.003 0.004 0.005
Time t [s]

-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

Vo
lta

ge
 U

 [V
]

Maximum of the sine-signal with doubled frequency - Measurement 10
Modulated sine-voltage
Measured maximum

Fig. 49: Maximum of the sine-
signal with doubled frequency
in measurement 10. Signal in
orange, sine-voltage in blue.
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Fig. 50: Minimum of the sine-
signal with doubled frequency
in measurement 10. Signal in
orange, sine-voltage in blue.
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7.2 Lab notes
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7.3 Python-Code

FarPock

September 23, 2022

[ ]: import numpy as np
import matplotlib.pyplot as m
import glob as glob
from scipy.optimize import curve_fit
from scipy.optimize import fsolve
from scipy.signal import peak_widths
from scipy.special import wofz
from scipy.special import jv
from sklearn.utils import resample
import matplotlib.ticker as ticker
SMALL_SIZE = 16
MEDIUM_SIZE = 20
BIGGER_SIZE = 20
m.rc('font', size=SMALL_SIZE) # controls default text sizes
m.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
m.rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels
m.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
m.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
m.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
m.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
import matplotlib as mpl
import matplotlib.font_manager as font_manager
mpl.rcParams['font.family']='serif'
cmfont = font_manager.FontProperties(fname=mpl.get_data_path() + '/fonts/ttf/
↪→,→cmr10.ttf')

#mpl.rcParams['font.serif']=cmfont.get_name()
mpl.rcParams['mathtext.fontset']='cm'
mpl.rcParams['axes.unicode_minus']=False

import matplotlib.pyplot as plt
import numpy as np

def mittel(l: list) -> float:
return sum(l)/len(l)

def staw(daten: list) -> float:
mittelw = mittel(daten)

1

Fig. 53: Python-Code, Page 1
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standard = 0
for mess in daten:

standard += (mess-mittelw)**2
standard = standard/(len(daten)-1)
standard = standard**(1/2)
return standard

def stawm(daten: list) -> float:
return staw(daten)/(len(daten)**(1/2))

def f1(x):
return x

def f2(x):
return 1################

def linregnice(x, y, dely, ohne=False):
if ohne:

Vyo = np.identity(len(y))
Mo = []
for i in x:

l1o = [f1(i), f2(i)]################
Mo.append(l1o)

Mo = np.array(Mo)
Vpo = np.linalg.inv(np.matmul(np.transpose(Mo), np.matmul(np.linalg.

↪→inv(Vyo),Mo)))
po = np.matmul(Vpo,np.matmul(np.transpose(Mo), np.matmul(np.linalg.

↪→inv(Vyo),y)))
s2 = 1/(len(y)-len(po))*np.sum([(i-po[0]*f1(j)-po[1]*f2(j))**2 for i,j␣

↪→in zip(y,x)])###############
Vy = np.diag(len(y)*[s2])

M = []
for i in x:

l1 = [f1(i), f2(i)]################
M.append(l1)

M = np.array(M)
if ohne==False:

dely2 = [i**2 for i in dely]
Vy = np.diag(dely2)

Vp = np.linalg.inv(np.matmul(np.transpose(M), np.matmul(np.linalg.
↪→inv(Vy),M)))

p = np.matmul(Vp,np.matmul(np.transpose(M), np.matmul(np.linalg.inv(Vy),y)))
return [p,Vp]

def Modell(xbereich, p):
return [p[0]*f1(i)+p[1]*f2(i) for i in xbereich]

def Konfidenz(xbereich, p, Vp):

2

Fig. 54: Python-Code, Page 2
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des = [np.sqrt(np.matmul(np.transpose(np.array([f1(i), f2(i)])),np.
↪→matmul(Vp,np.array([f1(i), f2(i)])))) for i in xbereich]

return [[p[0]*f1(i)+p[1]*f2(i)+des[j] for i,j in␣
↪→zip(xbereich,range(len(xbereich)))],[p[0]*f1(i)+p[1]*f2(i)-des[j] for i,j in␣
↪→zip(xbereich,range(len(xbereich)))]]

def amittel(x, del_x):
w = [1/i**2 for i in del_x]
return sum([i*j for i,j in zip(w,x)])/sum(w)

def astawm(del_x):
w = [1/i**2 for i in del_x]
return 1/np.sqrt(sum(w))

def empkor(x,y):
sx = staw(x)
sy = staw(y)
sxy = 1/(len(x)-1)*sum([(i-mittel(x))*(j-mittel(y)) for i,j in zip(x,y)])
return sxy/(sx*sy)

def chiq(x,y,dely):
return sum([(j-h(i))**2/delj**2 for i,j,delj in zip(x,y,dely)])

hquer=6.62607015e-34/(2*np.pi) #Js

[ ]: #fitfunktion
def f(x,a,b,c):

return a*np.sin(2*np.pi*999*(x+b))+c

Dämpfung

[ ]: def auslesen(Datei,i,Plot=True):
with open(Datei, "r") as doc:

string = doc.read()
Zeilen = string.split("\n")
Zeilen.pop(0)
Zeilen.pop(-1)
Zeit = []
ChannelA = []
ChannelB = []
for z in Zeilen:

eintrag = z.split(",")
Zeit.append(float(eintrag[0]))
ChannelA.append(float(eintrag[1]))
ChannelB.append(float(eintrag[2]))

p1 = curve_fit(f,Zeit,ChannelA)[0]

3

Fig. 55: Python-Code, Page 3
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Vp1 = curve_fit(f,Zeit,ChannelA)[1]

p2 = curve_fit(f,Zeit,ChannelB)[0]
Vp2 = curve_fit(f,Zeit,ChannelB)[1]

De=p2[0]/p1[0]
delDe= np.sqrt(Vp2[0][0]/p1[0]**2+p2[0]**2*Vp1[0][0]/p1[0]**4)

if Plot==True:

plt.subplots(figsize=(16,9))

plt.plot(Zeit,ChannelA,label='Signal with damping', color='blue')␣
↪→#Channal A ist gedämpft

plt.plot(Zeit,ChannelB,label='Signal', color='grey')
plt.legend()
plt.xlim(0,0.005)
plt.grid()
plt.title("Damping - Measurement "+str(i)+"")
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("MessungD"+str(i)+".pdf")
plt.show()

plt.subplots(figsize=(16,9))

x = np.linspace(-0.005,0.01,5000)

plt.plot(Zeit,ChannelB,label='Signal', color='grey')

plt.plot(x, [f(i,p2[0],p2[1],p2[2]) for i in x], label="Data fitn of␣
↪→the signal", color='red')

plt.legend()
plt.grid()
plt.xlim(0,0.005)
plt.title("Curve fit of the signal - Measurement "+str(i)+"")
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("linregSig"+str(i)+".pdf")
plt.show()

plt.subplots(figsize=(16,9))

x = np.linspace(-0.005,0.01,5000)

4

Fig. 56: Python-Code, Page 4
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plt.plot(Zeit,ChannelA,label='Signal with damping', color='blue')␣
↪→#Channal A ist gedämpft

plt.plot(x, [f(i,p1[0],p1[1],p1[2]) for i in x], label="Data fit of the␣
↪→damped signal", color = 'red')

plt.legend()
plt.grid()
plt.xlim(0,0.005)
plt.title("Curve fit of the damped signal - Measurement "+str(i)+"")
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("linregDamp"+str(i)+".pdf")
plt.show()

print(De,delDe,p2[0],np.sqrt(Vp2[0][0]),p1[0],np.sqrt(Vp1[0][0]))

return De,delDe

[ ]: for i in range(1,6):
auslesen('Damping '+str(i)+'_HM1508.csv',i)

[ ]: D=[]
delD=[]

for i in range(1,6):
D.append(auslesen('Damping '+str(i)+'_HM1508.csv',i,False)[0])
delD.append(auslesen('Damping '+str(i)+'_HM1508.csv',i,False)[1])

Dmittel=mittel(D)
delDmittel=stawm(D)
Dmittel,delDmittel

Sägezahn

[ ]: def Sägezahn(Datei,i,Plot=True):
with open(Datei, "r") as doc:

string = doc.read()
Zeilen = string.split("\n")
Zeilen.pop(0)
Zeilen.pop(-1)
Zeit = []
ChannelA = []
ChannelB = []
for z in Zeilen:

eintrag = z.split(",")
Zeit.append(float(eintrag[0]))

5
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ChannelA.append(float(eintrag[1]))
ChannelB.append(float(eintrag[2]))

def f(x,a,b,c,tau):
return a*np.sin(np.pi*(x+b)/tau)+c

p1 = curve_fit(f,Zeit[830:1390],ChannelA[830:1390])[0]
Vp1 = curve_fit(f,Zeit[830:1390],ChannelA[830:1390])[1]

if Plot==True:
plt.subplots(figsize=(16,9))

x = np.linspace(0,0.05,5000)

plt.plot(Zeit,ChannelA,label='Signal', color='blue') #Channel A ist␣
↪→Sinus

plt.plot(Zeit,ChannelB,label='Sawtooth voltage', color='grey')

plt.plot(x, [f(i,p1[0],p1[1],p1[2],p1[3]) for i in x], label="Data␣
↪→fit of the damped signal", color = 'red')

plt.axvline(Zeit[830],0,1,label='Limits for the used fit values')
plt.axvline(Zeit[1390],0,1)

plt.legend()
plt.grid()
plt.xlim(0.02,0.04)
plt.title('Curve fit of the signal - Measurement '+str(i)+'')
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("Sägezahn"+str(i)+".pdf")
plt.show()

print(p1,Vp1)

return p1[3],np.sqrt(Vp1[3][3])

[ ]: for i in range(1,11):
Sägezahn('Mes '+str(i)+'_HM1508.csv',i)

[ ]: tau=[]
deltau=[]

for i in range(1,11):
tau.append(Sägezahn('Mes '+str(i)+'_HM1508.csv',i,False)[0])
deltau.append(Sägezahn('Mes '+str(i)+'_HM1508.csv',i,False)[1])

tau,deltau #in s

6
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[ ]: Umin =[1.163,1.003,1.043,1.003,1.003,1.163,1.163,1.163,1.123,1.003]
Umax =[3.837,3.837,3.797,3.837,3.837,3.797,3.837,3.837,3.797,3.677]
DeltaU=[i+j for i,j in zip(Umin,Umax)]
delDeltaU=[np.sqrt(2)*0.2]*len(DeltaU)
DeltaT=[i*10**(-3) for i in[14.325,14.1,14.312,14.462,14.25,14.237,14.387,14.
↪→387,14.237,14.175]]

delDeltaT=[0.0003]*len(DeltaT)

[ ]: U=[i/j*k*Dmittel for i,j,k in zip(tau,DeltaT,DeltaU)]
delU=[np.sqrt((deli/j*k*Dmittel)**2+(delj*i/j**2*k*Dmittel)**2+(i/
↪→j*delk*Dmittel)**2+(i/j*k*delDmittel)**2) for i,j,k,deli,delj,delk in␣
↪→zip(tau,DeltaT,DeltaU,deltau,delDeltaT,delDeltaU)]

U,delU

[ ]: mittelU=mittel(U)
delmittelU=stawm(U)
delmittelUsyst=np.sqrt(sum([i**2 for i in delU]))/len(delU)
mittelU,delmittelU,delmittelUsyst

[ ]: rlit=23.4e-12 #m/V
n1=1.522
n3=1.477
lam=632.8e-9 #nm
d=2.4e-3 #mm
l=20e-3 #mm

r=lam*d/(mittelU*l*4)*np.sqrt(0.5*(1/n1**2+1/n3**2))**3
delr=r*delmittelU/mittelU
delrsyst=r*delmittelUsyst/mittelU
rrel=delr/r

r,delr,delrsyst,rrel

[ ]: tr=(rlit-r)/delr
trsyst=(rlit-r)/(delr+delrsyst)
tr,trsyst

Modulierter Sinus

[ ]: def Sinusmoda(Datei,i):
with open(Datei, "r") as doc:

string = doc.read()
Zeilen = string.split("\n")
Zeilen.pop(0)
Zeilen.pop(-1)
Zeit = []
ChannelA = []
ChannelB = []

7

Fig. 59: Python-Code, Page 7

41



x x

for z in Zeilen:
eintrag = z.split(",")
Zeit.append(float(eintrag[0]))
ChannelA.append(float(eintrag[1]))
ChannelB.append(float(eintrag[2]))

plt.subplots(figsize=(16,9))

plt.plot(Zeit,ChannelA,label='Modulated sine-voltage') #Channel A ist␣
↪→Sinus

plt.plot(Zeit,ChannelB,label='Measured minimum')

plt.legend()
plt.grid()
plt.xlim(0,0.005)
plt.title('Minimum of the sine-signal with doubled frequency -␣

↪→Measurement '+str(i)+'')
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("Minimum"+str(i)+".pdf")
plt.show()

[ ]: for i in range(1,11):
Sinusmoda('u'+str(i)+'a_HM1508.csv',i)

[ ]: def Sinusmodb(Datei,i):
with open(Datei, "r") as doc:

string = doc.read()
Zeilen = string.split("\n")
Zeilen.pop(0)
Zeilen.pop(-1)
Zeit = []
ChannelA = []
ChannelB = []
for z in Zeilen:

eintrag = z.split(",")
Zeit.append(float(eintrag[0]))
ChannelA.append(float(eintrag[1]))
ChannelB.append(float(eintrag[2]))

plt.subplots(figsize=(16,9))

plt.plot(Zeit,ChannelA,label='Modulated sine-voltage') #Channel A ist␣
↪→Sinus

plt.plot(Zeit,ChannelB,label='Measured maximum')

plt.legend()

8
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plt.grid()
plt.xlim(0,0.005)
plt.title('Maximum of the sine-signal with doubled frequency -␣

↪→Measurement '+str(i)+'')
plt.xlabel("Time $t$ [s]")
plt.ylabel("Voltage $U$ [V]")
plt.savefig("Maximum"+str(i)+".pdf")
plt.show()

[ ]: for i in range(1,11):
Sinusmodb('u'+str(i)+'b_HM1508.csv',i)

[ ]: Umin2 =[114.2,115.4,113.3,115.7,115.0,116.0,115.4,115.1,115.5,115.3]
Umax2 =[137.6,138.2,136.9,136.2,134.8,135.1,135.3,135.0,135.1,134.9]
DeltaU2=[i+j for i,j in zip(Umin2,Umax2)]
delDeltaU2=[np.sqrt(4**2+2**2)]*len(DeltaU2)

DeltaU2,delDeltaU2

[ ]: mittelU2=mittel(DeltaU2)
delmittelU2=stawm(DeltaU2)
delmittelU2syst=np.sqrt(sum([i**2 for i in delDeltaU2]))/len(delDeltaU2)
mittelU2,delmittelU2,delmittelU2syst

[ ]: r2=lam*d/(mittelU2*l*4)*np.sqrt(0.5*(1/n1**2+1/n3**2))**3
delr2=r2*delmittelU2/mittelU2
delr2syst=r2*delmittelU2syst/mittelU2

r2rel=delr2/r2

r2,delr2,r2rel

[ ]: tr2=(rlit-r2)/delr2
tr2syst=(rlit-r2)/(delr2+delr2syst)
tr2,tr2syst

Faraday

[ ]: current = [-5,-4.5,-4,-3.5,-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5,3,3.5,4,4.
↪→5,5]

delcurrent=[0.03]*len(current)
angle = [14,12.3,11.3,10.1,8.5,7.0,5.9,4.3,2.9,1.9,0.8,-0.6,-2.2,-3.1,-4.6,-5.
↪→8,-7.1,-8.3,-9.9,-10.9,-12.5]

delangle= [0.5]*len(angle)

[ ]: def f(x,a,b):
return a*x+b

9
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p1 = curve_fit(f,current,angle,sigma=delangle,absolute_sigma=True)[0]
Vp1 = curve_fit(f,current,angle,sigma=delangle,absolute_sigma=True)[1]

plt.subplots(figsize=(16,9))

x = np.linspace(-10,18.3,5000)
mod1 = Modell(x,p1)
konf1 = Konfidenz(x,p1,Vp1)

plt.plot(x, mod1, label="Linear regression", color="darkolivegreen")
plt.plot(x, konf1[0],linestyle="dashed", color="grey", label="Confidence band")
plt.plot(x, konf1[1],linestyle="dashed", color="grey")
plt.fill_between(x,konf1[0],konf1[1],color="whitesmoke")

plt.errorbar(current,angle, xerr=delcurrent ,yerr=delangle, ecolor="black",␣
↪→marker="x", ls="", color="blue", markersize=10, capsize=5, label="Measured␣
↪→data")

plt.legend()
plt.grid()
plt.xlim(-5.2,5.2)
plt.ylim(-20,20)
plt.title("Linear regression for the Faraday-effect")
plt.xlabel("Current $I$ [A]")
plt.ylabel("Angle [°]")
plt.savefig("linregFaraday.pdf")
plt.show()

Steig=p1[0]
delSteig=np.sqrt(Vp1[0][0])

chiq=sum([(j-(p1[0]*i+p1[1]))**2/delj**2 for i,j,delj in␣
↪→zip(current,angle,delangle)])

p1, Vp1, chiq

Verdet mit richtigem Integral

[ ]: Hl=2554.848

Verdet=-Steig/Hl
delVerdet=delSteig/Hl

Verdet,delVerdet #in degree per Ampere

10
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[ ]: umoersted=79.5775 #von A zu Oe
umwinkel=60 #von deg zu min

Verdetlit=0.05/umoersted*100/umwinkel #in degree per Ampere
Verdetlit

[ ]: tVerdet=(Verdetlit-Verdet)/delVerdet
tVerdet

Verdet mit idealisierter Spule

[ ]: Hlideal=3085.714

Verdetideal=-Steig/Hlideal
delVerdetideal=delSteig/Hlideal

Verdetideal,delVerdetideal #in degree per Ampere

[ ]: tVerdet=(Verdetlit-Verdetideal)/delVerdetideal
tVerdet

2 ϵ-Messung

[ ]: a1=[-19.5,-6.5,7.6,-13.7,-0.6]
a2=[-5.6,6.9,19.6,0.6,13.8]

epsi=[abs(i-j) for i,j in zip(a1,a2)]
delepsi=[np.sqrt(2)]*len(epsi)
mittelepsi=mittel(epsi)
delmittelepsi=stawm(epsi)

epsi,delepsi,mittelepsi,delmittelepsi

11
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