
Contents

1 Experimental overview 2

2 Theoretical background 3
2.1 Hanle Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Semi-classical explanation . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Quantum mechanical explanation . . . . . . . . . . . . . . . . . 4

2.2 Line widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Heisenberg uncertainty . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Doppler effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Coherence narrowing . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Experimental setup 6

4 Execution of the experiment 7

5 Data analysis 8
5.1 Conversion of Time Into Magnetic Field . . . . . . . . . . . . . . . . . 8
5.2 Calculation of ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Correction of half life period . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Summary and Discussion of Results 16

7 Appendix 17
7.1 τ(T ) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Lorentz Curve Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2.1 0◦ Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2.2 90◦ Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.3 Dispersion Curve Fits to 45◦ Curves . . . . . . . . . . . . . . . . . . . 26
7.4 Lab Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



1 Experimental overview

In this experiment we make use of the Hanle Effect to determine the life time of the
3P1 state of the Mercury Atom.
The experiment is split into six tasks:

1. Calibration of the Helmholtz Coils to compensate the Earth’s magnetic field

2. Measure the width of the Hanle-Curve

(a) for the polarisation 90◦ at rising temperatures

(b) for the polarisation 0◦ at rising temperatures

(c) for the polarisation 45◦ at rising temperatures

by relating the Hanle-Signal to the applied B-field

3. Determine the life time of the 3P1 state of mercury by extrapolating a linear
fit to a pressure of 0 Pa

4. Determine the life time from the data obtained at polarisation 45◦
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2 Theoretical background

In this chapter, all the equations and pictures used, can be found in [1].

2.1 Hanle Effect

In this experiment, we examine the so called Hanle-Effect. What the Hanle Effect
is, can be read in the following pages, where the theoretical background shall be
explained. We will look at two different explanations. Firstly we will focus on the
semi-classical explanation and secondly on the quantum mechanical explanation.

2.1.1 Semi-classical explanation

Classically the electron can be seen as a damped harmonic oscillator, which can be
exited through linearly polarised light.

This excitation causes the outermost electron to vibrate. Firstly parallel to the
polarization direction of the light, until it finally will comes to rest. Now the ansatz
is made, that the electron can be seen as a oscillating dipole parallel to the direction
of polarization. This dipole has a radiation characteristic of:

I ∝ sin2 (φ), (1)

where φ is the angle between the dipole-axis and the direction of detection. here-
fore it must be, that at an angle of φ = 0◦ no radiation can be detected.

Due to a B-field orthogonal to the polarization direction, the electron is precess-
ing inside the B-field. The stronger the magnetic field, the higher is the angular
velocity of this precession, which results in a wider angular range before the electron
is relaxed. This phenomenon is shown in Figure 1 below.

a) weakly damped oscillator b) strongly damped oscillator

Figure 1: Precession movement of an oscillator in two diffrent cases
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The relaxation of a electron into its groundstate can be written as an exponential
decay like the following:

N(t) = N0e
− t
τ , (2)

where N(t) is the occupation number and τ is the mean lifetime of an exited state
and N0 = N(0). Having this relation in mind we can now integrate over the time to
calculate the intensity for the radiation of an atom.

I =C

∫ ∞
0

sin2 (φ) e−
t
τ dt (3)

Because φ can be written as the product of time and lamor frequency
(
ωL =

gjBµB
~

)
it follows, that:

I =C

∫ ∞
0

sin2 (ωLt) e
− t
τ dt (4)

If now the polarisation is 90◦ and therefore parallel to the detector when the
photon hits the atom, (t=0 and φ=0) the resulting intensity can be written as:

I = C τ
(2ωLτ)2

1 + (2ωLτ)2
, (5)

while with a polarisation of 0◦ where t=0 and φ = π
2 we get

I = C τ

(
1− (2ωLτ)2

1 + (2ωLτ)2

)
, (6)

those functions correspond to lorentzcurves which are not normalizable which results
in the need to use the FWHM1 to calculate τ .

τ =
~

gJµB BFWHM
(7)

2.1.2 Quantum mechanical explanation

Taking into account the fine structure (Zeeman-effect), it becomes clear that not
only the 3P1 but additionally 3P2 and 3P0 can be occupied. These two states relax
with the emission of left- or right-circularly polarized light into the ground state.
Without an external Magnetic B-field those are degenerate, causing a destructive
interference and thus a minimal intensity. Due to Zeeman, this degeneracy can be
reversed by applying an external field so that no interference is occurring because
every state has a different energy difference to the ground state, and so send out
photons with distinguishable wavelengths. So we can now calculate the mean lifetime
τ (cf. equation 7) of the 3P1 with the help of the Breit-formula (which can be found
in [2])

1full width at half maximum
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2.2 Line widening

Due to the following effects the spectral lines are widened.

2.2.1 Heisenberg uncertainty

The uncertainty of energy and time is known as:

∆E∆t ≥ ~ (8)

whereas in this case ∆t is replaced by τ . This means that the energy and the time of
a particle can only be determined at the same time to an accuracy of ~. Therefore
we get an uncertainty on the energy difference of:

∆E ≥ ~
τ

(9)

2.2.2 Doppler effect

Due to the high velocities of atoms in gas, we can not neglect the Doppler effect.
some Atoms are moving away and others towards the photomultiplier. which results
in red respectively blue shift and so in a widening of the frequency of the spectral
line.

∆ω =
ω0

c

√
kT

m
(10)

2.2.3 Coherence narrowing

This is an effect that makes the life span appear longer than it really is. Already
absorbed Photons that have been re-emitted can be re-absorbed. They retain phase,
Precession and spatial orientation of the previous atom and pass them on to the
next atom. The probability of this effect, which can also occur often, depends on
the vapour pressure of the mercury, which then depends on the temperature. To
eliminate this factor we measure at different temperatures (different pressures) and
extrapolate to p = 0Pa.

p =pc · e(
Tc
T )(a1Tr+a2T

1,89
r +a3T

2
r+a4T

8
r+a5T

8,5
r +a6T

9
r ) (11)

Where Tc is the critical temperature and pc the critical pressure, and:

Tr = 1− T

Tc
Tc = 1764 K

pc = 167 MPa

a1 = −4.57618368 a2 = −1.40726277 a3 = 2.36263541

a4 = −31.0889985 a5 = 58.0183959 a6 = −27.6304546
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3 Experimental setup

Figure 2: Experimental Setup [1]

The experimental setup (fig. 2) consists of the following elements:

• a mercury vapor lamp (QL) as a light source

• two lenses (L) to focus the optical path

• an interference filter (IF), transmitting only a a wavelenght of (255± 5) nm

• a polarisation filter (PF) which allows us to adjust the polarisation with a
degree scale

• a mercury vapor resonance cell (QZ) which consists of a quartz glass cylinder
with liquid mercury inside.

• the cooling system consists of four Peltier elements (PE) which are connected
to the resonance cell by a heat pipe (HP) and are cooled by a water pipe

• three pairs of Helmholtz coils to compensate the earth’s magnetic field and to
generate the Hanle signal by crossing the zero point where the Zeeman-splitting
vanishes.

• a photomultiplier (PM), which measures the fluorescence signal in the direction
orthogonal to the incoming beam.

Two of the Helmholtz Coil pairs (the ones in y- and z- direction) are used to anu-
late the magnetic field of the earth the one in x-direction to set the B-field for the
degenerate states.
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4 Execution of the experiment

At first the cooling for the PE has to be turned on to cool the Hg-atoms to -16 ◦C.
Secondly the power supplies for the Helmholtz coils and the photo multiplier. which
are then calibrated until a signal appears o the oscilloscope. For this we used the
following settings:

Iy = (−0.1111± 0.005)A

Iz = (−0.2739± 0.005)A

Ix = (−0.9913± 0.005)A

Uy = (−1.092± 0.01)V

Uz = (−2.427± 0.01)V

Ux = (−10.155± 0.01)V

For the Photo multiplier we set the Full scale to 10−6 A and the small scale to
1 A. After the temperature was cooled down, measurements of three polarisations
(90◦ 45◦ and 0◦) are measured for every temperature step of 1◦C.
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5 Data analysis

5.1 Conversion of Time Into Magnetic Field

The calculations described in this section have been performed with the software
pyROOT.

To convert the full width at half maximum ∆t which we obtain from the curve
fits to the measured data in section 5.2 into a magnetic field BFWHM, we first have
to calculate the slope a of the linearly ascending magnetic field. The Amplitude,
which is measured in V by the oscilloscope, can be considered as an electric current
according to [1], so we can write:

a =
dI

dt
(12)

The slope a is obtained by a linear fit to the magnetic field which is displayed in
figure 3. Because we did not change the slope during the experiment, we use the
result for the entire data analysis. We refrained from plotting the error bars in order
to improve the visibility of the data points.
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Figure 3: linearly ascending magnetic field

The linear fit yields:

a = (0.3222± 0.0003)
A

s
(13)

Now we can calcuate the magnetic field BFWHM which corresponds to ∆t by employ-
ing the conversion factor which is given in [1]:

C ≡ dB

dI
= 3.363 · 10−4 T

A
(14)

=⇒ BFWHM = C · a ·∆t (15)
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We can use BFWHM to calculate the life time τ according to equation 7:

τ =
~

gJµBBFWHM

The uncertainties on the quantities above are calculated according to the gaussian
error propagation as follows:

sBFWHM
= BFWHM

√
(
(sa
a

)2

+
(s∆t

∆t

)2

(16)

sτ = τ
sBFWHM

BFWHM
(17)
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5.2 Calculation of ∆t

Polarisation angle 0◦: To obtain the ∆t values for polarisation angle 0◦, we
plot the corresponding signal and fit a function which, according to equation 6, is a
Lorentz curve. Therefore we can use a fit function of the lorentzian form

f(t) = α+ β
1

1 + γ(t− t0)2
(18)

Where t0 is the location parameter, β the height parameter and α the amplitude
offset generated by background radiation. The fit parameter γ corresponds to the
FWHM ∆t according to the relation

∆t =
2
√
γ

(19)

The uncertainty on ∆t is obtained from the statistical uncertainty sγ as follows:

s∆t = γ−
3
2 sγ (20)

Exemplarily, we show one of the peaks with its corresponding Lorentz curve fit in fig-
ure 4. We refrain from plotting error bars to improve the visibility of the data points.

The peak corresponding to every measurement can be found in appendix 7.2.1.

Figure 4: Plot of data and Lorentz curve fit for polarisation 0◦ and temperature
+2◦C
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Polarisation angle 90◦: The calculation of ∆t for polarisation 90◦ is analogous
to 0◦, but with a minus sign to take into account that the signal is an inverted
Lorentz curve:

f(t) = α− β 1

1 + γ(t− t0)2
(21)

An example of the 90◦ Lorentz fits is displayed in fig. 5.

The (inverted) peak corresponding to every measurement can be found in appendix
7.2.2.

Figure 5: Plot of data and Lorentz curve fit for polarisation 90◦ and temperature
+5◦C
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Polarisation angle 45◦: Concerning the dispersion curves we measured at polar-
isation angle 45◦, we consider the thought process that, according to [1], the curve
is the derivative of a Lorentz function (equation 18):

f ′(t) = α− 2βγ(t− t0)

(1 + γ(t− t0)2)2
(22)

Where we still expect equation 19 to hold.

An example of the 45◦ dispersion curve fits is displayed in fig. 6.

The dispersion curve corresponding to every measurement can be found in appendix
7.3.

Figure 6: Plot of data and dispersion curve fit for polarisation 45◦ and temperature
-10◦C

All the τ values obtained are displayed in appendix 7.1.
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5.3 Correction of half life period

Because of coherence narrowing (cf. section 2.2.3), we have to correct the half life
periods obtained in section 5.2. This is done by extrapolating the function τ(p) to
p = 0Pa. The pressure p in the mercury cell can be calculated from the measured
temperatures according to equation 11:

p = pc · e(
Tc
T )(a1Tr+a2T

1,89
r +a3T

2
r+a4T

8
r+a5T

8,5
r +a6T

9
r )

Where Tr = 1− T
Tc

and the constants pc, Tc and {ai}6i=1 can be considered as exact
values [1]. Gaussian error propagation yields:

sp =

√∣∣∣∣ ∂p∂T
∣∣∣∣2 s2

T = p ·
∣∣∣∣ ∂ξ∂T

∣∣∣∣ · sT (23)

where ξ ≡
(
Tc
T

)(
a1Tr + a2T

1,89
r + a3T

2
r + a4T

8
r + a5T

8,5
r + a6T

9
r ) (24)

and
∂ξ

∂T
=− Tc

T 2

(
a1Tr + a2T

1,89
r + a3T

2
r + a4T

8
r + a5T

8,5
r + a6T

9
r )

+
1

T

(
a1 + 1.89a2T

0.89
r + 2a3Tr + 8a4T

7
r + 8.5a5T

7.5
r + 9a6T

8
r ) (25)

To get the true half life period τ0, we plot τ as a function of p and extrapolate a
linear fit to τ0 = τ(p = 0Pa). The linear fit has the form

τ(p) = mp+ τ0 (26)

This yields the following values:

polarisation angle [◦] τ0 [ns]

0 91.17 ± 1.5
90 125 ± 4
45 33.7 ± 0.4

The τ values and the linear fit corresponding to each polarisation angle are dis-
played in figures 7, 8 and 9.
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Figure 7: τ (p) data points and linear fit for polarisation angle 0◦

Figure 8: τ (p) data points and linear fit for polarisation angle 90◦
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Figure 9: τ (p) data points and linear fit for polarisation angle 45◦
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6 Summary and Discussion of Results

By measuring the emission of excited mercury atoms at different polarisation angles
(with respect to the angle of detection) of the light which excites the atoms, we were
able to determine the life time τ0 of the 3P1 state of mercury to the following values:

polarisation angle [◦] τ0 [ns]

0 91.17 ± 1.5
90 125 ± 4
45 33.7 ± 0.4

The value for the polarisation angle 90◦ coincides within 2σ with the reference
value τ ≈ 19ns [1]. This is a rather good confirmation of the theory. However,
the values for the polarisation angles 0◦ and 45◦ are far off the reference value.
Particularly so, the bad τ0 value for 45◦ comes from the systematically too large fit
parameter γ which seems to be caused by an asymmetrically distorted signal. As can
be observed in appendix 7.3, the fit function does not match the 45◦ data very well.
The distorted signal, as well as the bad τ0 value for 90◦, could be explained by an
imperfect calibration of the Helmholtz Coils which are meant to level out the earth’s
magnetic field at the location of the mercury cell. Besides, the determination of the
offset of the polarisation angle might have not been accurate enough. Also, during
the measurements there might have been disruptive magnetic fields caused by the
electronic devices in the experimental setup and the neighbouring experiments.
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7 Appendix

7.1 τ(T ) values

τ [ns]
T [◦C] polarisation 0◦ polarisation 90◦ polarisation 45◦

-15 91 ± 4 127 ± 9
-14 91 ± 4 129 ± 10 35.1 ± 1.3
-13 94 ± 4 126 ± 9 33.7 ± 1.3
-12 93 ± 4 129 ± 9 33.6 ± 1.2
-11 86 ± 4 128 ± 9 33.8 ± 1.2
-10 92 ± 4 122 ± 9 33.2 ± 1.4
-9 94 ± 4 128 ± 8 35.6 ± 1.3
-8 94 ± 4 133 ± 10 34.5 ± 1.3
-7 98 ± 4 137 ± 9 33.9 ± 1.1
-6 92 ± 3 134 ± 9 33.8 ± 1.2
-5 92 ± 3 134 ± 9 35.0 ± 1.2
-4 92 ± 3 132 ± 9 37.4 ± 1.3
-3 92 ± 3 138 ± 8 36.5 ± 1.2
-2 94 ± 3 136 ± 10 34.0 ± 1.4
-1 92 ± 3 142 ± 9
0 93 ± 3 138 ± 10 35.2 ± 1.4
1 99 ± 4 141 ± 10 35.9 ± 1.4
2 93 ± 4 149 ± 11 36.3 ± 1.4
3 97 ± 4 146 ± 12 38.9 ± 1.5
4 95 ± 4 146 ± 12 37.0 ± 1.4
5 96 ± 4 147 ± 12
6 94 ± 4 147 ± 12
7 95 ± 4 143 ± 12 35.9 ± 1.5

Table 1: τ(T ) values for the different polarisation angles. At 45◦, some measurements
were not performed.

7.2 Lorentz Curve Fits

7.2.1 0◦ Peaks

In this section, the measured peaks and the respective Lorentz curve fits are dis-
played for polarisation angle 0◦.

Figure 10: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +1.0◦C

Figure 11: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +2.0◦C
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Figure 12: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +3◦C

Figure 13: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +4◦C

Figure 14: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +5◦C

Figure 15: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +6◦C

Figure 16: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature +7◦C

Figure 17: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature 0◦C
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Figure 18: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -1◦C

Figure 19: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -2◦C

Figure 20: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -3◦C

Figure 21: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -4◦C

Figure 22: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -5◦C

Figure 23: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -6◦C
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Figure 24: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -7◦C

Figure 25: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -8◦C

Figure 26: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -9◦C

Figure 27: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -10◦C

Figure 28: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -11◦C

Figure 29: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -12◦C
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Figure 30: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -13◦C

Figure 31: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -14◦C

Figure 32: Plot of Data and Lorentz
Curve Fit for polarisation 0◦ and tem-
perature -15◦C

7.2.2 90◦ Peaks

In this section, the measured peaks and the respective Lorentz curve fits are dis-
played for polarisation angle 90◦.

Figure 33: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +1.0◦C

Figure 34: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +2.0◦C
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Figure 35: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +3◦C

Figure 36: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +4◦C

Figure 37: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +5◦C

Figure 38: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +6◦C

Figure 39: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature +7◦C

Figure 40: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature 0◦C
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Figure 41: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -1◦C

Figure 42: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -2◦C

Figure 43: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -3◦C

Figure 44: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -4◦C

Figure 45: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -5◦C

Figure 46: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -6◦C
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Figure 47: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -7◦C

Figure 48: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -8◦C

Figure 49: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -9◦C

Figure 50: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -10◦C

Figure 51: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -11◦C

Figure 52: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -12◦C
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Figure 53: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -13◦C

Figure 54: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -14◦C

Figure 55: Plot of Data and Lorentz
Curve Fit for polarisation 90◦ and
temperature -15◦C
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7.3 Dispersion Curve Fits to 45◦ Curves

In this section, the measured peaks and the dispersion curve fits are displayed for
polarisation angle 45◦.

Figure 56: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature +1.0◦C

Figure 57: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature +2.0◦C

Figure 58: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature +3◦C

Figure 59: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature +4◦C

Figure 60: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature +7◦C

Figure 61: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature 0◦C

26



Figure 62: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -2◦C

Figure 63: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -3◦C

Figure 64: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -4◦C

Figure 65: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -5◦C

Figure 66: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -6◦C

Figure 67: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -7◦C
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Figure 68: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -8◦C

Figure 69: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -9◦C

Figure 70: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -10◦C

Figure 71: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -11◦C

Figure 72: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -12◦C

Figure 73: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -13◦C

28



Figure 74: Plot of Data and Lorentz
Curve Fit for polarisation 45◦ and
temperature -14◦C
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7.4 Lab Notes

30



References

[1] KOEHLI, M. / Gessner, M. / Fischer, S. Versuchsanleitung, Fortgeschrittenen
Praktikum Teil 1, Der Hanle Effekt, Universität Freiburg, August 2010.

[2] Breit, G.: Quantum Theory of Dispersion: Parts VI and VII , Reviews of Modern
Physics, 05.02.1933

31


