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1 Abstract
In the experiment, the dissociation energyDe = (405±14)1/mm and Ediss =
(1963±4)1/mm of a iodine molecule are calculated based on the absorption
spectrum using Birges-Sponer plot. Furthermore the Morse potential for
the excited state is calculated. A measurement of the emission spectrum
did not provide useful information.

2 Theory
If a iodine molecule absorbs a photon, the energy gets absorbed. The energy
of the molecule can be increased by

• a higher excited state of the electrons

• a higher vibration mode of the atom cores

• an increased rotation level.

For our experiment rotations are not relevant. As the cores are much heavier
than the electrons around it, they react significantly slower to changes in the
molecule. Therefore we can assume, that in short time scales, the electrons
are the only part of the molecule that absorb energy.
The principle of slow cores and fast electrons are the reason we can make
the Born-Oppenheimer approximation.

2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation says that the wave function of the
cores and the electrons can be split up for this reason

ψ(ri,Rj) = ψvib ·ψ0
k(ri,Rj) (1)

From the perspective of the electrons, the cores stand still and for the cores,
the electron configuration stays a constant parameter.

2.2 Transitions in the experiment

In the experiment, the following transition of an iodine molecule should be
observed

X1Σ+
0,g↔B3Π+

0,u (2)

This means, that during the transition the projection of the total spin
changes from 0 to 1. Usually this is a forbidden transition, because it hurts
the selection rule ∆S = 0. Due to strong spin-orbit interactions this rule
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gets softened and the transition is possible.
Other transitions have only low intensities. That’s why iodine is a useful
molecule for this experiment.

2.3 Franck-Condon-principle

By increasing the excitement of the electrons, the potential of the molecule
changes. Franck-Condon-principle gives information about how likely it is,
that the vibration of cores transitions into a certain state. Using the Born-
Oppenheimer approximation, the probability of a transition from one state
to another is in bra ket notation

P =〈ψvibψel|µ|ψ′vibψ′el〉 (3)
≈〈ψvib|ψ′vib〉 · 〈ψel|µel|ψ′el〉 (4)

µ is the dipole operator and µel the dipole operator of the electrons wave
function.
The second scalar product shows if the transition is allowed or not. The
first shows the overlap of vibration wave functions. This means, the more a
vibration wave function in the excited state overlaps with the wave function
the transition started from, the more likely it is to transit to this state.
This factor is also called Franck-Condon factor. The intensity of a transition
is the square of P .
Each transition has a different energy difference between ground and excited
state, which means that the wavelength of the emitted or absorbed light dur-
ing the transition gives information about which transition happened.
Figure 1 shows the potential of different vibration modes at two different

states of excitement for the electrons. On the x-axis is the distance between
the cores and on the y-axis the energy.

2.4 Morse potential

The shape of the potential curve in figure 1 can be described with the ap-
proximation of a Morse potential. The Morse potential is given as

Epot(R) = ED ·
(
1−e−a(R−Re)

)2
(5)

and is shown in figure 2.
ED is the dissociation energy which also is the asymptote in positive R di-
rection. a is a constant that gives information about the stiffness of the core
connection. R0 is the distance between cores where their potential energy
becomes minimal. For distances around Re, the potential can be approx-
imated with a parabola as well. The approximation gets worse for higher
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Figure 1: Energy levels of different molecule configurations

distances in both directions.
For high core distances the Morse potential is a better approximation. How-
ever for R→ 0, the Morse potential can become negative, whereas the real
potential has a pole.
Using the morse potential, we can find an analytic solution for both the
eigenfunction and the eigenvalue of the Schrödinger equation to our vibra-
tional states. It is given as

Evib(v) = h̄ωe(v+ 1
2)− h̄ωexe(v+ 1

2)2 (6)

This is just the equation for an harmonic oscillator that got expanded by
one more order.

2.5 Birge-Sponer plot

The energy of a photon is proportional to its frequency and therefore anti-
proportional to its wavelength. To be able to ignore proportionality con-
stants like c or h̄, G is used as a quantity of energy. It has the unit 1/m.
Using pertubation theory, we get

G(ν) = ωe

(
ν+ 1

2

)
−ωexe

(
ν+ 1

2

)2
+ ... (7)

Higher orders can be ignored for our experiment. The lowest possible energy
while ignoring higher orders is the energy where ν = 0. The so called zero-
point-energy is

G(0) = 1
2ωe−

1
4ωexe (8)
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Figure 2: Parabola-, Morse- and real potential

The energy difference between two vibrational levels is then given as

∆G(ν+ 1
2) :=G(ν+ 1)−G(ν) = ωe−2ωexe(ν+ 1) (9)

Since ν is discreet and there is a finite amount of different energy levels, we
expect there to be a highest possible value for ν called νdiss. At this value,
∆G(ν+ 0,5) = 0 since all states with higher energy are in the continuum.
The energy needed to bring the molecule from ν = 0 to νdiss is called the
dissociation energy D0.

D0 =
νdiss∑
i=0

∆G(νi+
1
2) (10)

De =G(0) +D0 (11)

At the Birge-Sponer plot, ∆G(ν+ 1/2) is visualized over ν+ 1/2.
The cross section with the x-axis shows νdiss. As shown in formular 9, the
inclination is a=−2ωexe.
The y-intercept is y0 = ωe−ωexe
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Using the morse potential, the dissociation energy can be calculated directly
as well. Therefore we calculate the minimum of G(ν) and set the derivation
to zero. With the ν of the minimum, we get

De = ω2
e

4ωexe
(12)
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Figure 3: Experimental Setup
1

3 Exeperimental Setup
For our iodine molecule, both the absorption and the emission spectrum
should be detected.
For the absorption measurement a halogen lamp was used. With a lens
the beam path was made parallel and send through a iodine tube. A second
lense focused the light onto a spectrometer so that the filament was projected
sharp in the detector.
To make more iodine molecules gaseous, the tube was heated with both a
build in heater and an external advanced heating device.
For the emission measurement a He-Ne-Laser was used to bring iodine to
an excited state. The emitted light was focused on a monochromator.
To calibrate the monochromator, a mercury vapour lamp was used.
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4 Analysis

4.1 Detected Spectrum

The first measured absorption spectrum is shown in figure 4. To reduce the
influence of statistical errors, the spectrum is the average of 27 measure-
ments.

Figure 4: Spectrum of the first absorption measurement

For a wavelength of 500 nm or higher, the spectrum looks like it is
expected. For lower wavelengths, there appeared an unexpected peak. Due
to this peak, the beam path was refocused on the spectrometer and a second
spectrum was measured. This spectrum is shown in figure 5. As one can see,
the measured intensities are a lot higher and the peaks are sharper. This
shows, that the beam is better focused now. However, for low wavelengths,
there is still an unexpected peak and a minimum.
Minima in the spectrum stand for energy that got absorbed by the iodine
molecule. To see if the shape of the spectrum for wavelengths smaller than
500 nm is created by the iodine molecule, the spectrum of the halogen lamp
without the iodine tube was measured as well. It is shown in figure 6. The
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total intensities are lower because of a different beam path. Still, it shows,
that the peak and the minimum are created by the iodine tube.
For the further analysis, the second absorbtion measurement is the one, that
is worked with.

Figure 5: Spectrum of the second absorption measurement

In the instruction paper was a hint, that the absorption line of the tran-
sition ν ′′ = 0→ ν ′ = 25 as at a wavelength of 545,8 nm. This absorption line
was identified at λ = 545,4 nm. To have a closer look at the minima, the
spectrum in range from 495 to 635 nm is shown in the figures 10 - 16 in
steps of 20 nm.
A minimum at a shorter wavelength in the spectrum means, that more
energy was used for the transition. Therefore the value of ν ′ is higher.
To make sure, only minima of a transition starting at ν ′′ = 0 are marked,
∆λ= λ(ν)−λ(ν+1) is calculated. For two neighboured minima it should be
around the same size with a tendency to get smaller for smaller wavelenths.
The wavelengths λ of the minima, ∆λ and ν ′ are shown in tabular 6.

For finding transitions starting at ν ′ =1 or 2, it was used that ∆λ had
the same value independently from which ν ′′ the transition started. The
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Figure 6: First absorption measurement

positions of the minima for ν ′′ = 1;2 can also be found in table 6. The
uncertainty on the position of a minimum is sλ = 0,1 nm. For ∆λ it is
therefore s∆λ =

√
2 ·sλ =

√
2 ·0,1 nm

4.2 Birge-Sponer plot

To be able to plot ∆G(ν+ 1/2) on ν+ 1/2, the reciprocal values k of the
wavelength are calculated and subtracted from each other

k(ν ′) = 1
λ(ν ′) sk(ν′) = sλ

λ(ν ′)2 (13)

∆G(ν ′+ 1/2) = k(ν ′)−k(ν ′+ 1) s∆G =
√
s2
k(ν′) +s2

k(ν′+1) (14)

The calculated values for the ∆G of all three ν ′′ can be found in tables 7 - 9
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4.2.1 Results of the linear regression

For the Birges-Sponer plot of this data, a linear regression was made. The
fitting results are shown in table 1

ν ′′ a sa y0 sy0

0 -0,208 0,007 13,2 0,2
1 -0,19 0,02 12,7 0,4
2 -0,177 0,012 12,29 0,14

Table 1: Results of the three Birges-Sponer plots.

As it was already discussed in part 2.5, ωe and ωexe can be calculated
from the inclination a and the y-offset y0.

ωexe =−a2 sωexe = sa
2 (15)

ωe = y0−
a

2 sωe =
√
s2
y0 + (sa2 )2 (16)

The calculated values for ωe and ωexe can be found in table 2

ν ′′ ωexe / 1/mm sωexe / 1/mm ω / 1/mm sω / 1/mm
0 0,104 0,004 13,3 0,2
1 0,096 0,010 12,8 0,4
2 0,088 0,006 12,38 0,15

Table 2: Calculated values for ωe and ωexe

4.2.2 Weightened averages

For all three measurement series, it is expected to receive the same results
for a, y0, ωe and ωexe. That’s why one can calculate the wheigtened average
of those values to reduce the uncertainty. The formula for the wheigtened
average is given as

ā=
∑3
i=0(ai/s2

i )∑3
i=0(1/si)2 (17)

sā = 1√∑3
i=0(1/si)2

(18)

The calculated values can be found in table 3
The highest possible ν ′ that is still bound in the potential can be calcu-

lated by looking at the cross section with the x axis. Therefore ∆G is set
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quantity weighted average / 1/mm uncertainty / 1/mm
a -0,199 0,006
y0 12,623 0,112
ωexe 0,100 0,003
ωe 12,72 0,11

Table 3: calculated weightened averages

to 0. Quantities marked with a bar are the averages.

0 = ∆G(νdiss+ 1/2) = y0 +a(νdiss+ 1/2) (19)

νdiss =− ȳ0
ā
−1/2 (20)

sνdiss
= ȳ0

ā

√(
sa
a

)2
+
(
sy0

y0

)2
(21)

Like this, we get
νdiss = 62,8±1,9 (22)

4.2.3 Solving the sum for D0

To get the dissociation energy D0, the sum, given in equation 10 has to be
solved. It can be used that a lot of terms cancel each other out, so that the
remaining sum looks as follows

D0 =
νdiss∑
i=0

∆G(νi+
1
2) =

νdiss∑
i=0

G(νi+ 1)−G(νi) (23)

=
νdiss∑
i=0

ωe

(
νi+

3
2

)
−ωexe

(
νi+

3
2

)2
−ωe

(
νi+

1
2

)
+ωexe

(
νi+

1
2

)2

(24)

=ωe
(3

2

)
−ωexe

(3
2

)2
−ωe

(1
2

)
+ωexe

(1
2

)2
(25)

+ωe

(5
2

)
−ωexe

(5
2

)2
−ωe

(3
2

)
+ωexe

(3
2

)2
(26)

+ ... (27)

+ωe

(
νdiss+ 3

2

)
−ωexe

(
νdiss+ 3

2

)2
−ωe

(
νdiss+ 1

2

)
+ωexe

(
νdiss+ 1

2

)2

(28)

=ωe
(
νdiss+ 3

2

)
−ωexe

(
νdiss+ 3

2

)2
− 1

2ωe+ 1
4ωexe (29)

Here it is used that the two last summands of each line were exactly the
negative of the first two summands of the line above.

14



Interestingly, one can see, that the last two summands of the final result are
just the zero point energy that got substracted by the rest. This means the
first two summands are just De

This leaves us with an expression for the dissociation energy, that is just

D0 = ωe (νdiss+ 1)−ωexe
(
ν2
diss+ 2 + 3νdiss

)
(30)

The uncertainty can then be calculated by error propagation as

sD0 =
√

((νdiss+ 1)sωe)2 + (
(
ν2
diss+ 2 + 3νdiss

)
sωexe)2 + ((ωe−2ωexeνdiss+ 3ωexe)sνdiss

)2

(31)

D0 = (399±14)1/mm (32)

The zero point energy G(0) can be calculated as in formula 8

G(0) = 1
2ωe−

1
4ωexe (33)

sG(0) =

√(1
2sωe

)2
+
(1

4sωexe

)2
(34)

And is

G(0) = (6,33±0,06)1/mm (35)

The dissociation energy De can therefore be calculated as

De =D0 +G(0) (36)

sDe =
√
s2
D0

+s2
G(0) (37)

and is

De = (405±14)1/mm (38)

4.2.4 Dissociation energy De with the Morse potential

Like in formula 12, the dissociation energy De can be calculated as follows,
using the approximation of a Morse potential

De,Morse = ω2
e

4ωexe
(39)

sDe =De,Morse

√(
2sωe

ωe

)2
+
(
sωexe

ωexe

)2
(40)

It is

De,Morse = (405±14)1/mm (41)
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Figure 7: Spectrum from 495-515nm

4.3 Dissociation Energy Ediss

To calculate the Dissociation Energy Ediss the beginning of the measured
absorption spectrum is used. There the lowest wavelength which was ab-
sorbed during the experiment can be found. In other words, the lowest
absorbed wavelength is proportional to the maximum energy that can be
absorbed by the molecule before the electron is leaving it. Thus, in figure
10 the minimum wavelength can be estimated to be λmin = (509±1)nm.

The line at λ = 545,8nm corresponds to the transition from ν ′′ = 0→
ν ′ = 15. In the measurements the closest line is at λ= 545,4nm (??). Thus,
there is a displacement wavelength of λdisp = (0,4±0,1)nm. As this error is
comparatively small it is negligible. The Dissociation Energy follows as

Ediss = 1
λmin+λdispl

= 1963,094 1
mm (42)

sEdiss
= sλmin

(λmin+λdispl)2 = 3,85 1
mm (43)
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Therefore the final result for the Dissociation Energy is

Ediss = (1963±4) 1
mm (44)

4.4 Excitation Energy Te

The excitation energy is the energy difference between the excited state and
the ground state of a system. In this experiment it is computable by

Te = Ediss−D0 (45)

sTe =
√

(sdiss)2 + (sD0)2 (46)

The result is
Te = (1564±15) 1

mm (47)

4.5 Morse Potential of the Excited State

Given in 1 is the formula for the Morse potential.

Epot =DE · (1− exp(−a(R−Re))2 (48)

Before, DE = (405±14) 1
mm was determined. Re = 2,979Åis given in 2 and

a can be determined by using

a=
√
ωexe4πcµ

h̄
(49)

where µ is the reduced mass of the iodine molecule.

sa = a

2ωexe
·sωexe (50)

The result is
a= (1,941±0,03) 1

Å
(51)

The resulting Morse Potential can be seen in 8.
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Figure 8: Morse Potential

5 Emission
Before measuring the emission pattern, the monochromator has to be cal-
ibrated. Therefore the halogene lamp is exchanged with a mercury lamp.
The emission spectrum of mercury is known, thus it is possible to find the
correct position of the emission lines on the scale. The detected peaks can
be seen in 9.
Obviously the detected pattern does not fit with the pattern that is expected
for a mercury lamp. The amount of peaks is too large to be caused by the
mercury lamp. It was tried in several measurements to exclude the source
of irritation from the experiment. The light in the room is switched of,
the entrance of the monochromator is covered, all light sources which could
possibly interfere with the experiment are tried to be eliminated as good
as possible. Also, the iodine tube is heated up more with a hairdryer to
have more iodine molecules in gasiform. Still, the monochromator measures
those peaks which appear on random position in the spectrum. Taking a
closer look on the measurement devices, the discriminator is seen to measure
random signals. Those signals seem to be correlated with measured peaks
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Figure 9: Calibration

in the picture.
As there is a systematic problem with the monochromator, it is impossible
to continue the experiment for the emission spectrum of the iodine molecule.
The background noise is to strong and the signal of the mercury lamp which
is searched during this setup is impossible to detect and extract from the
background measurements.
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6 Discussion

6.1 Absorption

6.1.1 Detected spectrum

For wavelengths greater than 500 nm, the absorption spectrum of the iodine
molecule looked like it was expected. However for smaller wavelengths (460
nm -500 nm), there is a minimum that can not be explained by the absorp-
tion properties of iodine. As it was shown, the minimum disappeared when
removing the iodine tube.
Therefore it is likely, that it was created by diffraction effects on the tube.
It is difficult to name a specific object in the tube, because there is no in-
formation about how it looks on the inside of the tube.
Before heating up the pipe, it was noticed, that iodine crystallised on the
windows of the tube. With a melting point of 113,70◦C [3], it is very likely
that there was even after heating still solid iodine in the tube. This could
be a source of diffraction as well.

6.1.2 Vibrational constants ωex and ωe

With the help of Birge-Sponer plot, the vibrational constants ωexe and ωe
were calculated for transitions starting at ν ′′ = 0;1 and 2. They are sum-
marised in tabular 4

ν ′′ ωexe / 1/mm ω / 1/mm
0 0,104 ± 0,004 13,3 ± 0,2
1 0,096 ± 0,010 12,8 ± 0,4
2 0,088 ± 0,006 12,38 ± 0,15

Table 4: Summary of measured values for ωe and ωexe

For ν ′′ = 0 and ν ′′ = 1, the constants are in range of at least 2 standard
deviations of each other.
For ν ′′ = 2, ωexe is in the range of 2 standard deviations of the value for
ν ′′ = 1 as well. In comparison to ν ′′ = 0, both ωex and ωe are significantly
smaller, even though the statistical uncertainty isn’t notably bigger. The
reason for this systematic offset is very likely to be found in the numeration
of minima for ν ′′ = 2. As it is shown in table 6, it is not clear where the
numeration of peaks has to start to match with the values for ∆λ for the
series with ν ′′ = 0.
In table 5, the wheightened averages of all the measured values are com-
pared to the literature values of the National Institute for Standards and
Technology (NIST)[4]. The values from the experiment are in the same
magnitude as the literature values, but vary a lot in perspective of the stan-
dard deviation. Especially quantities that were directly calculated from the
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Quantity experimental value literature value variation
ωexe / 1/cm 100±3 125,96 9 σ
ωe / 1/cm 1,272±0,011 0,764 45 σ

De (Birge) / 1/cm 4050±140 4391 3 σ
De (Morse) / 1/cm 4050±140 4391 3 σ

Ediss / 1/cm 19630±40 20014 10 σ
Te / 1/cm 15640±150 15769 1 σ

Table 5: Comparison between measured results and literature values.

Birge-Sponer plot like ωexe and ωe have high variations. This might be due
to the relatively small error of sλ = 0,1 nm that was raised on the position
of the minima in the intensity distribution.
As a reading error, this uncertainty seems legit, but it has to be considered,
that the measured distribution was only the average distribution over 27
measurement series. Statistical fluctuation can still have shifted minima to
slightly different wavelengths. Therefore the measured intensity disribution
underlies a statistical error itself that did not influence the error propaga-
tion. The real statistical uncertainty is probably bigger.
The calculated values for De and Te did match well with the literature val-
ues. Interestingly, both ways to calculate the dissociation energy delivered
in regard of their uncertainties the same result.
The highest possible vibrational state from the Birge-Sponer plot is

ν ′diss = 62,8±1,9 (52)

As ν has to be a whole number, this would usually mean, that the highest
possible configuration, is ν ′diss = 62 because all higher values are not bound
in the potential anymore. Due to the relatively high uncertainty ν ′diss = 63
is more likely to fit.

6.2 Emission

As it was already mentioned in the execution part of the protocol, it was not
possible to take any qualified measurements for the emission spectrum of the
iodine molecule. Even after all the possible improvements were made, it was
still not possible to detect a reasonable signal with the device. All the lights
in the room were switched off to reduce the light pollution in the experiment
as the spectrometer is really sensitive even to small amounts of light. After
discovering that there is a huge background noise which is detected by the
spectrometer, the entrance of it was covered, thus it was expected to detect
no signal at all as no light should enter the device. Regardless a strong
signal with random peaks was detected. Therefore the conclusion is, that
the problem lies inside of the detector and became irresolvable.
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It was also tried to intensify the given signal of the iodine molecule by heat-
ing up the tube next to the already built in heater. A hairdryer was used to
especially heaten up the glass of the entrance of the tube which foggened up
if it cooled down. To take the measurements it was waited until the small
plate which was hanging on the entrance glass fell down and the glass was
clear again. Still, the detected signal was not strong enough to be separated
from the interfering background noise.
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Figure 10: 495-515nm

7 Appendix
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Figure 11: Absorption spectrum for 515-535nm.

Figure 12: Absorption spectrum for 535-555nm
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Figure 13: Absorption spectrum for 555-575nm

Figure 14: Absorption spectrum for 575-595nm
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Figure 15: Absorption spectrum for 595-615nm

Figure 16: Absorption spectrum for 615-635nm
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Figure 17: Birge-Sponer plot for ν ′′ = 0

Figure 18: Birge-Sponer plot for ν ′′ = 1
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Figure 19: Birge-Sponer plot for ν ′′ = 2
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ν ′ ν ′′ = 0 ν ′′ = 1 ν ′′ = 2
λ / nm ∆λ / nm λ / nm ∆λ / nm λ / nm ∆λ / nm

1
2 633,2 4,7
3 628,5 4,7
4 623,8 4,4
5 619,4 4,2
6 615,2 4,2
7 611 3,9
8 607,1 4
9 603,1 3,9
10 599,2 3,7
11 595,5 3,6
12 591,9 3,6
13 584,4 3,5 588,3 3,5
14 577,2 3,4 580,9 3,3 584,8 3,3
15 573,8 3,2 577,6 3,2 581,5 3,2
16 570,6 3,1 574,4 3,1 578,3 3,3
17 567,5 3,1 571,3 3,1 575 2,9
18 564,4 3 568,2 2,9 572,1 2,9
19 561,4 2,9 565,3 2,7 569,2 2,8
20 558,5 2,8 562,6 2,7 566,4
21 555,7 2,5 559,9 2,9
22 553,2 2,7 557 2,7
23 550,5 2,5 554,3 2,5
24 548 2,6 551,8 2,3
25 545,4 2,2 549,5 2,4
26 543,2 2,4 547,1 2,2
27 540,8 2,2 544,9
28 538,6 2,1
29 536,5 2
30 534,5 2
31 532,5 1,9
32 530,6 1,9
33 528,7 1,7
34 527 1,6
35 525,4 1,7
36 523,7 1,5
37 522,2 1,6
38 520,6 1,3
39 519,3 1,3
40 518 1,4
41 516,6 1,1
42 515,5

Table 6: Location of transitions starting from ν ′′=0;1;2 to ν ′ in the spectrum
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ν′ ν′+ 1/2 λ /nm sλ / nm k / 1/mm sk /1/mm G(ν′ + 0,5) / 1/mm sG / 1/mm
14 14,5 577,2 0,1 1732,5 0,3 10,3 0,4
15 15,5 573,8 0,1 1742,8 0,3 9,8 0,4
16 16,5 570,6 0,1 1752,5 0,3 9,6 0,4
17 17,5 567,5 0,1 1762,1 0,3 9,7 0,4
18 18,5 564,4 0,1 1771,8 0,3 9,5 0,4
19 19,5 561,4 0,1 1781,3 0,3 9,2 0,5
20 20,5 558,5 0,1 1790,5 0,3 9,0 0,5
21 21,5 555,7 0,1 1799,5 0,3 8,1 0,5
22 22,5 553,2 0,1 1807,7 0,3 8,9 0,5
23 23,5 550,5 0,1 1816,5 0,3 8,3 0,5
24 24,5 548 0,1 1824,8 0,3 8,7 0,5
25 25,5 545,4 0,1 1833,5 0,3 7,4 0,5
26 26,5 543,2 0,1 1840,9 0,3 8,2 0,5
27 27,5 540,8 0,1 1849,1 0,3 7,6 0,5
28 28,5 538,6 0,1 1856,7 0,3 7,3 0,5
29 29,5 536,5 0,1 1863,9 0,3 7,0 0,5
30 30,5 534,5 0,1 1870,9 0,4 7,0 0,5
31 31,5 532,5 0,1 1877,9 0,4 6,7 0,5
32 32,5 530,6 0,1 1884,7 0,4 6,8 0,5
33 33,5 528,7 0,1 1891,4 0,4 6,1 0,5
34 34,5 527 0,1 1897,5 0,4 5,8 0,5
35 35,5 525,4 0,1 1903,3 0,4 6,2 0,5
36 36,5 523,7 0,1 1909,5 0,4 5,5 0,5
37 37,5 522,2 0,1 1915,0 0,4 5,9 0,5
38 38,5 520,6 0,1 1920,9 0,4 4,8 0,5
39 39,5 519,3 0,1 1925,7 0,4 4,8 0,5
40 40,5 518 0,1 1930,5 0,4 5,2 0,5
41 41,5 516,6 0,1 1935,7 0,4 4,1 0,5
42 42,5 515,5 0,1 1939,9 0,4

Table 7: Calculated values and uncertainties of ∆G for ν ′′=0
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ν′ ν′+ 1/2 λ /nm sλ / nm k / 1/mm sk /1/mm G(ν′ + 0,5) / 1/mm sG / 1/mm
13 13,5 584,4 0,1 1711,2 0,3 10,3 0,4
14 14,5 580,9 0,1 1721,5 0,3 9,8 0,4
15 15,5 577,6 0,1 1731,3 0,3 9,6 0,4
16 16,5 574,4 0,1 1740,9 0,3 9,4 0,4
17 17,5 571,3 0,1 1750,4 0,3 9,5 0,4
18 18,5 568,2 0,1 1759,9 0,3 9,0 0,4
19 19,5 565,3 0,1 1769,0 0,3 8,5 0,4
20 20,5 562,6 0,1 1777,5 0,3 8,6 0,4
21 21,5 559,9 0,1 1786,0 0,3 9,3 0,5
22 22,5 557 0,1 1795,3 0,3 8,7 0,5
23 23,5 554,3 0,1 1804,1 0,3 8,2 0,5
24 24,5 551,8 0,1 1812,3 0,3 7,6 0,5
25 25,5 549,5 0,1 1819,8 0,3 8,0 0,5
26 26,5 547,1 0,1 1827,8 0,3 7,4 0,5
27 27,5 544,9 0,1 1835,2 0,3

Table 8: Calculated values and uncertainties of ∆G for ν ′′=1

ν′ ν′+ 1/2 λ /nm sλ / nm k / 1/mm sk /1/mm G(ν′ + 0,5) / 1/mm sG / 1/mm
2 2,5 633,2 0,1 1579,3 0,2 11,8 0,4
3 3,5 628,5 0,1 1591,1 0,3 12,0 0,4
4 4,5 623,8 0,1 1603,1 0,3 11,4 0,4
5 5,5 619,4 0,1 1614,5 0,3 11,0 0,4
6 6,5 615,2 0,1 1625,5 0,3 11,2 0,4
7 7,5 611 0,1 1636,7 0,3 10,5 0,4
8 8,5 607,1 0,1 1647,2 0,3 10,9 0,4
9 9,5 603,1 0,1 1658,1 0,3 10,8 0,4
10 10,5 599,2 0,1 1668,9 0,3 10,4 0,4
11 11,5 595,5 0,1 1679,3 0,3 10,2 0,4
12 12,5 591,9 0,1 1689,5 0,3 10,3 0,4
13 13,5 588,3 0,1 1699,8 0,3 10,2 0,4
14 14,5 584,8 0,1 1710,0 0,3 9,7 0,4
15 15,5 581,5 0,1 1719,7 0,3 9,5 0,4
16 16,5 578,3 0,1 1729,2 0,3 9,9 0,4
17 17,5 575 0,1 1739,1 0,3 8,8 0,4
18 18,5 572,1 0,1 1747,9 0,3 8,9 0,4
19 19,5 569,2 0,1 1756,9 0,3 8,7 0,4
20 20,5 566,4 0,1 1765,5 0,3

Table 9: Calculated values and uncertainties of ∆G for ν ′′=2
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