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1. Tasks
The things that have to be done can be separated into two main exercises: the measurement
of the spectrum of the absorption in iodine 2 and that of its emission. The precise tasks will
now be listed.

1.1. Absorption

• The spectrum of the absorption of iodine molecules shall be measured.

• The vibration band of the progression ν ′′ = 0 shall be identified.

• The vibration constants ω′ and ω′ex′e are to be calculated with the Birge-Sponer-plot.

• The dissociation energy De shall be calculated with the Morse-potential and with the
difference of terms.

• The stimulation energy T ′e and the energy at which the iodine molecule dissociates Ediss
shall be calculated.

• The Morse-potential is to be drawn for the excited state.

1.2. Emission

• The spectrum of a mercury vapour lamp shall me measured in a range of 4000-6000Å in
order to calibrate the monochromator.

• The emission spectrum of the iodine molecule shall be drawn in a range from 6000Å to
8000Å.

• The monochromator shall be calibrated.

• The transmission, which has been initiated by the laser shall be identified.

• At last for five lines the Franck-Condon-factors are to be calculated and compared to the
measured data.
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2. Theoretical basics
The formulas and pictures of this chapter are, as long as not quoted otherwise, from [3].

2.1. Born-Oppenheimer-approximation

The main assumption of the Born-Oppenheimer approximation is, that the core of an atom
moves much slower, than the electrons surrounding it. From this follows, that the configuration
of the electrons follows the movement of the atom adiabatically and instantaneously [1]. This
allows to separate the wave function of the electron and the core. This is described by the
following formula from [7]

Ψk({ri},{Rj}) = χk({Rj}) ·Ψ0
k({ri},{Rj}), (2.1)

where the wave function of the core is given as χk({Rj}) and that of the electron as Ψ0
k({ri},{Rj}).

Rj gives the coordinates of the core and rj that of the electron. The core wave function can
be reduced further, by neglecting the rotation of the nucleon and just looking at the electronic
and vibration transitions. This assumption is valid, because the energy differences from the
rotation are around two magnitudes smaller than those resulting from the vibration.

2.2. Electronic transitions

The transition we are interested in this experiment is

X1Σ+
0g↔ B3Π+

0u. (2.2)

It follows the selection rules for molecules and is the only possible transition:

• g↔ u, g= g, u= u

• ∆Ω = 0, ±1

• ∆Λ = 0, ±1

• ∆S = 0

Ω is here the projection of the total angular momentum and Λ that of the orbital angular
momentum on the axis of the molecule. S is the total spin of the electron. Because the last two
selection rules don’t always have to be true, it is no problem, that the last one gets violated by
our transition. The coupling that follows from this violation of the last rule is called coupling
case c. In such an electronic transition smaller transitions can be identified: vibration and
rotation transitions. The relative intensities of the vibration levels are given by the so called
Franck-Condon-factors, which we will discuss in subsection 2.3.

2.3. Franck-Condon-principle

The Franck-Condon-principle describes the probability of a transition between two energy levels
in the sketch shown in Figure 1.
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Figure 1: Electronic, vibration and rotation transitions [3].

A transition between the electronic levels gets more probable, if the potentials are over each
other. The probability for a transition can be calculated quantum mechanically with the Franck-
Condon-factor

FC(νi,νk) =
∣∣∣∣∫ Φvib(νi)Φvib(νk)dR

∣∣∣∣2 (2.3)

with the distance R between the two cores and νi and νj the different energy levels.

2.4. Morse-potential

The Morse-potential describes the electronic potential of a molecule with two atoms, depending
on the distance R between the cores. Its can be written as

Epot(R) =De · (1− exp(−a(R−Re)))2 . (2.4)

De is here the dissociation energy, this is the energy, which the molecule needs in order to break
apart, a is a factor. This potential can be seen in Figure 2 in comparison to a parable potential
and the real potential of a molecule with two atoms.



2 Theoretical basics 6

Figure 2: Comparason of a parabel potential, a Morse potential and the real potential of a
ground state of a molecule [7, p. 300].

It can be seen, that the Morse potential describes the real potential good in the range between
R = Re and R→∞. Furthermore it can solve the Schroedinger-equation analytically. The
energy eigenvalue is

Evib(ν) = h̄ωe

(
ν+ 1

2

)
− h̄ωexe

(
ν+ 1

2

)2
, (2.5)

with the vibration constants ωe and ωexe. By comparing this formula with that shown in [7],
it is possible to calculate the dissociation energy

De = ω2
e

4ωexe
. (2.6)

2.5. Birge-Sponer plot

One way to calculate the dissociation energy De was discovered by Birge and Sponer.
First we need the reduced energy

G(ν) = Evib
h̄

. (2.7)

Now we look at the difference between two neighbour vibration modes. With the Morse potential
in mind (Equation 2.5) we get

G(ν+ 1)−G(ν) = ωe

(
ν+ 3

2

)
−ωexe

(
ν+ 3

2

)2
−ωe

(
ν+ 1

2

)
−ωexe

(
ν+ 1

2

)2
(2.8)

= ωe−ωexe
(

1 + 2
(
ν+ 1

2

))
:= ∆G(ν+ 1/2). (2.9)

If we plot the measured ∆G against x= ν+ 1/2 we expect a linear relation. Therefore we can
simply do a linear fit with Equation 2.9 as the fit function. We then simply have to plug in the
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fit parameters in Equation 2.6.
Birge and Sponer gave us a second way to calculate De. First we need to define a reduced
energy D0 as

D0 =
νdiss∑
ν=0

∆G(ν+ 1/2), (2.10)

so that we get

De =G(0) +D0. (2.11)

Since we have a linear relation, the sum in Equation 2.10 can be exchanged with an integral
resulting in

D0 =
νdiss∫
ν=0

∆G(ν+ 1/2) (2.12)

= 1
2(ωe−ωexe) ·

1
2

(
ωe
ωexe

−1
)
, (2.13)

where νdiss is the x-axis intercept in the Birge-Sponer plot. G(0) is calculated with approxi-
mating the harmonic oscillator, where the eigenenergies are E = h̄ω(n+ 1/2)⇒∆E = 2E(0).
Therefore we get

G(0) = 1
2∆G(1/2) = 1

2(ωe−2ωexe). (2.14)

2.6. Excitation energy Te and dissociation energy Ediss

The energy Ediss is the energy needed for the state ν ′′ = 0 to push the molecule into a higher
electron state, where it lies in a region of bound and not bound states. To calculate it we need
a progression from ν ′′ = 0 to a certain ν ′ with a known wavelength. We then need to add all
the ∆G′s for higher progressions.

Ediss =G(ν ′) +
ν′

diss∑
ν′

∆G(ν ′+ 1/2). (2.15)

For Te we first need σ00:

σ00 = Ediss−D0. (2.16)

With that we can calculate the excitation energy Te with

Te = σ00−G(0) + G̃(0), (2.17)

where G̃(0) comes from [2].



3 Setup and procedure 8

3. Setup and procedure

Setup

The setup of this experiment can be seen in Figure 3.

Figure 3: Setup of the experiment from [3].

(1) is a lamp and (3) a mirror, which allows to bring the light into the tube with iodine (4).
Behind the tube there is another mirror which is used in the first part of the experiment, where
we use a spectrometer (8). We didn’t use the lens as shown at (2), but had two lenses at (6),
and in the second part at (5). The filter (7) wasn’t there, thereby we couldn’t use it. For
measuring the emission spectrum we didn’t use the spectrometer, but a monochromator (12)
with a photo multiplier (13). For this experiment a HeNe-laser (11) is needed, which can enter
the tube through a mirror. In order to control this setup there is a power supply unit for
the peltier cooling of the photo multiplier and that of the photo multiplier. There is also a
discriminator. The signals of the spectrometer and the monochromator can be seen and saved
on a computer.

Procedure

The first part of the experiment was to measure the absorption spectrum of iodine. For this we
used the light of a halogen lamp. This can be used for the absorption, because it has a continuous
spectrum. We focused the light on a paper, which we put in front of the spectrometer. When
we got it sharp and collimated, we had to change its position a bit, because the opening of the
spectrometer isn’t directly on the surface of the unit. After we had done this we were able to
measure the spectrum with the program SpectraSuite on the computer.
The first task of the second part of the experiment was to calibrate the monochromator. For this
we exchanged the halogen lamp with a mercury lamp. From now on we used the monochromator
with the photomultiplier. The voltage of the photo multiplier changed while we were measuring
between 999 V and 1000 V. We also used the control unit and the discriminator in this part of
the experiment. The light of the mercury lamp got focused on the slid of the monochromator.
Then we measured the spectrum in a range of 4000 to 6001Å. After that we turned of the
mercury vapour lamp and used a laser instead. Because of the small intensities in the emission
spectrum of iodine, we made the room as dark as possible. The difficult part here was to get the
laser focused on the slid of the monochromator. Crucial here was to set the lenses in the right
order, which wasn’t all that easy because they were not marked. Furthermore the slid is again
set a bit behind the surface of the device so the light couldn’t be focused on the surface. The
resonance peak of the laser was measured in a range of 6320Å and 6352Å with a step velocity of
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2Å/s. Here the slid had a width of 50 µm. After that we made a measurement between 6400Å
and 8128Å in order to measure the fluorescence spectrum. Here the step velocity was 1Å/s
and the slid had a width of 370 µm. The software, which was used for measuring everything
except for the absorption spectrum, was JodAnalog.



4 Data analysis 10

4. Data analysis
The analysis of the data was done using Python. For fit functions we used the least-square-fit
function curve_fit from the scipy.optimize package. Some plots won’t have errorbars in
them. That’s due to the fact, that they are either to small to be visible or we omitted them on
purpose for the sake of clarity.

4.1. Spectrum of the absorption

In Figure 4 the measured data for the absorption spectrum from a halogen lamp through I2
is plotted over the wavelength. The data was collected using the given software SpectraSuit.
We chose an integration time of 0.1 s and set the software to average over 17 measurements.
The full header from the data file is shown in the appendix in subsection D.1. The shape of the
curve is due to the halogen lamp. The intensity of the continuous spectrum rises from 400 nm
to 500 nm slowly, from 500 nm to 620 nm very fast and from 620 nm to 730 nm falls fast down
again. We can’t say, whether the lamp has also a spectrum below 400 nm or above 730 nm,
because the used CCD can’t resolve such wavelengths. At 400 nm the intensity suddenly jumps
to a higher one. This could be the point, where our CCD starts to measure actual data and
before that it is just interference and or noise.
For the y-axis we would have errors following

√
n, but those are to small to be visible in this

plot.

Figure 4: Plotted data for the absorption spectrum.

In Figure 5 a detailed version of the spectra is shown for 500nm< λ < 650nm.
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Figure 5: Detail plot for the absorption spectrum.

The teal coloured line at 632.957 nm is the wavelength of our used laser. This is needed later in
the emission part. The purple line is the point, where the progression ν ′′ = 0→ ν ′ = 25 happens.
In the manual it is given that this progression happens at 545.8 nm. In Figure 6 the red line is
that given wavelength. We can see, that we didn’t measure an absorption at that point, but at
545.55 nm (black line). Therefore we used 545.55 nm for the calculations.

Figure 6: Detailed plot for the progression ν ′′ = 0→ ν ′ = 25.
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In Figure 5 we draw the lines for all the other progressions belonging to ν ′′ = 0. Having the
Morse potential in mind, the chosen lines are farther apart for lower energies and closer together
for higher energies. Therefore the numbers are allocated from right to left, meaning that the
lines at the right side have a lower number, than the ones on the left.
For smaller energies/larger wavelengths it gets more and more hard to set lines for the progres-
sion having the distance relation in mind. It is most likely that at around 565 nm a different
progression starts. As a read off error for the wavelengths we chose 0.0001 nm. The values for
our chosen wavelengths are in the appendix in Table 8.

Calculation for the oscillation constants ωe and ωexe

To make the Birge-Sponer plot, we first need to convert our wavelengths to vacuum wavelengths.
To do so, we need to multiply them by the diffraction factor of air

λvac = λair nair, (4.1)

sλvac = λvac ·
sλair

λair
. (4.2)

Following [4] we have different factors for different wavelengths. Our data is divided into two
groups. The first one needs

nair = 1.000279, (4.3)

for wavelengths from 500 nm to 540 nm and the second group needs

nair = 1.000278, (4.4)

for wavelengths from 540 nm to 600 nm.
For the energy G of our photons we need

G= 2π
λvac

, (4.5)

with

sG =G · sλ
λ
. (4.6)

Therefore we get

∆G(ν+ 1/2) =G(ν+ 1)−G(ν) = 2π
λ(ν+ 1) −

2π
λ(ν) , (4.7)

with the error

s∆G =
√
s2
G(ν+1) +s2

G(ν). (4.8)

Having the Morse potential in mind, we expect a linear relation for ∆G and (ν + 1/2) (see
subsection 2.5). Therefore we do a linear fit with

∆G= ωe−ωexe · (1 + 2(ν+ 1/2)). (4.9)

In Figure 7 a reduced ∆G (meaning it is divided by a factor of 2π) is plotted against (ν+1/2)
to get the oscillation constants directly from the fit function.
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Figure 7: The calculated values for a the Birge-Sponer plot with a linear fit function. The black
point is the given progression ν ′′ = 0→ ν ′ = 25 but at our measured wavelength of
545.55 nm.

From our fit function we get

ωe = (131±2) 1
cm , (4.10)

ωexe = (1.01±0.03) 1
cm . (4.11)

The errors on those values come purely from the covariance matrix of our fit function, therefore
we have no statement on the effects from our read off errors on the calculated value. The used
curve_fit function from the scipy.optimize package has an option for an error input, and
using this has an effect on the value (only a very small one), but in the package documentation
it says, that it is only a least-square fit. Thereby we don’t know the effect of giving an error
input and didn’t use this option.

Calculation of the dissociation energy De using the Morse potential and the term
difference

With Equation 2.6 and Equation 4.10 we can calculate the dissociation energy De with the
Morse potential as our underlining theory. We get

De = (4292±184) 1
cm . (4.12)
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The error gets propagated from the fit parameter errors with

sDe =De ·

√(2sωe

ωe

)2
+
(
sωexe

ωexe

)2
. (4.13)

The other way to calculate the dissociation energy is described in subsection 2.5. First we need
to calculate D0. With basic Gaussian error propagation we get

D0 = (4227±184) 1
cm . (4.14)

Now we need G(0). We calculated

G(0) = (65±3) 1
cm . (4.15)

Now we can calculate D̃e from D0 +G(0). We get

D̃e = (4292±184) 1
cm . (4.16)

We can see that both values for the dissociation energy are virtually the same. We take the
mean value of those and get

De, mean = (4292±130) 1
cm , (4.17)

with basic error propagation.

Calculation of the energy Ediss, σ00 and the excitation energy Te

To get the energy, where our molecule dissociates we use

Ediss =G(ν ′ = 25) +
νdiss∫

ν′=25

∆G(ν+ 1/2)dν (4.18)

= 1
λ(ν ′ = 25) + 1

2(ωe−ωexe(1 + 2 ·25))
(1

2

(
ωe
ωexe

−1
)
−25

)
(4.19)

= (19916±97) 1
cm . (4.20)

The error is calculated doing Gaussian error propagation. For σ00 we get

σ00 = Ediss−D0 = (15689±208) 1
cm . (4.21)

For the excitation energy Te we need G̃(0) for the groundstate. We get this value from [2],
G̃(0) = 107cm−1. With that we can calculate Te:

Te = σ00−G(0) + G̃(0) = (15731±208) 1
cm . (4.22)

Plott of the Morse potential with the calculated values

To plot the Morse potential we need De, mean, a and Re. Re and a we can calculate with

c= 3 ·108 m
s , µ= 1.05327 ·10−25 kg and Be = (2.897±0.007) 1

m , (4.23)
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from [5]. We get

Re =
√

h̄

4πcµBe
= (3.028±0.004)Å, (4.24)

and

a=
√
ωexe4πcµ

h̄
= (1.95±0.05) 1

Å
. (4.25)

In Figure 8 we plotted the Morse potential with the calculated and measured values.

Figure 8: Calculated Morse potential. The black line is De, mean.
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4.2. Spectrum of the emission

In the second part of the experiment we look at the spectrum of the emission of iodine. In
order to measure this, the monochromator has to be calibrated. For this we used the spectrum
of a mercury vapour lamp. The expected values for lines from [3] are listed in Table 1.

λ [nm] 404.66 435.83 546.07 576.96 579.07
name h-line g-line e-line orange double rule

Table 1: Spectral line of a Hg-lamp.

We compare those values we measured for the orange double rule with their corresponding
values from literature. We chose these lines for calibration, because the wave lengths of the
emission spectrum of I2 will be bigger, so that these are the closest lines we have for comparison.
Our original data had an offset of 2.63Å, so we shifted it for this value. The result can be seen
in Figure 9.

Figure 9: Calibration with orange double rule.

Because of the broadness of the peaks and by comparing them to Figure 10 and Figure 13, 14
and 15 in the appendix, we chose an error of sλ = 5Å on the wavelength. Since the effect of the
diffraction factor is smaller than the error, we neglected it. The fact, that none of the spectral
lines is flat on top, indicates, that the discriminator was set correctly and didn’t overmodulate.
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Figure 10: Total spectrum of the calibration.

Especially the plots in Figure 13 and Figure 14 show some differences between our maximum
and that from literature. This indicates, that there might be some problems in comparing wave
length, that are far away from the orange double rule, to those from literature.

After finishing the calibration, we can start analysing the measured data of the emission spec-
trum of I2. Because of very different intensities, the spectrum gets measured in two parts. At
first the width of the aperture is much smaller (d= 50µm) and we measured in a range of λ=
6320Å to 6350Å. The plot can be seen in Figure 11.
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Figure 11: Resonant frequency of the laser.

For the position of the maximum we get a wave length of

λ= (6329±5)Å. (4.26)

The error on a Gaussian fit can be neglected compared to the error we got by the calibration.
By taking again a look at Figure 6, we see, that the teal coloured line fits a dip in that spectrum
very nicely. This makes sense, because the same energy is needed in order to get a maximum
in the emission spectrum as to get a minimum in the emission spectrum.
In the second measurement the aperture gets widened to d= 370µm. The reason for this is, that
the intensities of the fluorescence spectrum are much smaller. This makes this measurement
much more difficult, than the ones before, because it is very hard to remove most of the noise
but see as many peaks as possible. The data we got is plotted in Figure 12.
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Figure 12: Measured emission spectrum.

The vertical lines indicate the maxima we assumed to be spectral lines. There are some other
wave length, that could be read as spectral lines, but because of the noise we couldn’t be sure.
Those wave lengths shown in the plot are listed in Table 2. The errors here are read off errors.

Wavelength [Å]
λ1 6474±10
λ2 6516±10
λ3 6573±10
λ4 6949±10
λ5 7375±10
λ6 7411±10
λ7 7467±10
λ8 7655±10
λ9 7844±10
λ10 8037±10

Table 2: Spectral lines of I2.

This data can be compared to Figure 5. The peaks of the absorption end there around 6500Å.
Here the first detected peak is at (6474.8±0.5)Å. In order to identify the transitions of a
progression ν ′ → ν ′′ we have to search for equidistant peaks. The transitions, that we were
able to identify for the progression ν ′ = 1→ ν ′′ are listed in Table 3 and for the progression
ν ′ = 2→ ν ′′ in Table 4.
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k [cm−1] ν ′′ klit [cm−1]
λ1 15444±24 1 15424.5088
λ3 15213±24 3 15213.6508
λ4 14388±20 7 14382.3588
λ5 13559±18 11 13570.4908
λ7 13391±18 12 13370.5588

Table 3: Identification of the transitions in the progression ν ′ = 1→ ν ′′, with literature values
from [4].

k [cm−1] ν ′′ klit [cm−1]
λ6 13492±18 12 13493.0588
λ8 13062±18 14 13096.8368
λ9 12748±16 16 12705.4708

Table 4: Identification of the transitions in the progression ν ′ = 2→ ν ′′, with literature values
from [4].

We also found one peak of the progression ν ′ = 4→ ν ′′ and one for ν ′ = 3→ ν ′′. Both are listed
in Table 5.

k [cm−1] ν ′′ klit [cm−1]
λ2 15346±24 4 15367.3068
λ10 12442±16 19 12440.0608

Table 5: Identification of the transitions in the progression ν ′ = 3→ ν ′′, with literature values
from [4].

From the wavelengths we calculate the wave numbers k and compare this to values from [4].
The uncertainty of the inverse wave length is calculated with

sk = k
sλ
λ
. (4.27)

The fact, that there are always some gaps between the progressions, indicates, that we lost
some emission lines in the noise. With our data it isn’t possible to say which progression is the
one belonging to the laser.
In order to calculate the height of the peaks, one can use the Franck-Condon-factors. Their
calculation is described in [4]. In the following we will summarise the way how to calculate
them. The formulas, that are needed are

FC(νi,νk) =
∣∣∣∣∫ Ψvib(νi)Ψvib(νk)dR

∣∣∣∣2 (4.28)

Ψvib(ν) =NνHν(x)e−R2/2 (4.29)

Nν = 1√
2νν!π

(4.30)

Hν = (−1)νex2 dν

dxν
e−x

2 (4.31)

x= R−R0√
h̄√
µk

. (4.32)
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ν is the vibration quantum number, the distance between the cores is given here as R, R0 is the
equilibrium distance between the potentials of each state which is known for the excited state
and mustn’t be looked at for the ground state. µ is the known reduced mass of I2 and k is the
force constant of a harmonic oscillator. It can be calculated with the second derivation of the
Morse potential. From this follows, that k depends on ED, a and Re which are all known. With
these data it is possible to calculate for known νi and νk the Franck-Condon-factors. While
comparing these factors with the height of the peaks, it is necessary to remember, that the first
two peaks are on an exponential underground.
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5. Summary and discussion
The first part of the experiment was about the absorption spectrum. We could calculate the
following values with their literature value counterpart from [6]:

measured value literature value
ωe [cm−1] 131±2 125
ωexe [cm−1] 1.01±0.03 0.70
De [cm−1] 4292±130 4391
Ediss [cm−1] 19916±97 -
Te [cm−1] 15731±208 15711
a [Å−1] 1.95±0.05 -
Re [Å] 3.028±0.004 3.028

We see that ωe is in a 3σ range to the literature value, with a relative error of 1.5 %, therefore
being a reasonable result. ωexe is in a 11σ range with a relative error of 2.9 %. With such a
small relative error we would conclude, that there must be a systematic offset. The measured
spectrum from our CCD could have a shift on the x-axis. That would change the wavelengths,
but the difference between two neighbour wavelengths/energies wouldn’t change. A y-axis offset
in our CCD wouldn’t affect our wavelengths at all. Therefore our CCD can’t be the origin of
an offset for ωe and ωexe.
Since the errors on those two values come purely from our fit function and are not propagated
from our read off errors for the wavelengths, we need to take a closer look at those errors. In
Figure 7 we can see, that the read off errors are enormous in comparison to our y-axis error
from our fit function. If we took those errors into account, our errors for ωe and ωexe would
be much bigger and therefore pushing us into a smaller σ range to the literature value. Obvi-
ously the relative error would rise for those values as well, but we could improve our read off
errors, by choosing a more precise read off method, for example fitting inverted Gaussians onto
the troughs in Figure 5 and or using a CCD with a higher x-axis resolution to get more data
points around the troughs. With that we then could make an assumption, whether there is a
systematic error/offset caused by our measure method or not.
De got calculated in two different ways. The first one was to have the Morse potential as
the underlining theory and calculate it with Equation 2.6. The other way was to calculate it
through a term difference. Both gave us the same result and the same error. Therefore we took
the median and propagated their error. De, Te and Re are all in a one σ interval with their
corresponding literature value. This is surprising, since they are calculated, using ωe and ωexe
which are quite off of the real value. De has a relative error of 3 %, Te 1.3 % and Re 0.13 %.
For Ediss we don’t have a literature value, but since it is used to calculate Te, which is very
close to the literature value and very precise, we conclude, that it should be also very close to
the real value and is very precise, since it has a relative error of 0.5 %. For a we also have no
literature value. It has a relative error of 1.7 %. For all those values we have to keep in mind,
that their error is propagated from the fit function errors and not from the read off errors for
the wavelengths.

The second part of the experiment was about the emission spectrum. With a mercury vapour
lamp it was possible to adjust the data gained from a monochromator. With these corrections
we got

(6329±5)Å

as the wavelength of the laser, which is in a 1σ range of the literature value from [3]. This
value is 6330Å. This indicates, that the calibration was done well. A major problem occurred
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in the measurement of the fluorescence spectrum. Here it wasn’t possible to get noise further
down with the discriminator, without loosing the peaks. This made it impossible to see small
resonance maxima. Following from this we only were able to identify ten maxima. In the room
in which the experiment took place there are quiet some sources for the noise, for example
control lamps and screens of computers. Furthermore while we were measuring in the same
room, there was another group, which used flashlights in order to see something on their setting.
The light in the room could be reduced by measuring the background. For this it would be
essential, that the wave lengths fit perfectly to those of the measurement. Another possible
source of the noise is, that there was to few gaseous iodine in the tube. Following from that
the smaller peaks couldn’t emit enough light to be seen through the noise and the not gaseous
iodine absorbs some of the light.
We assume, that the most important error in this experiment is that on the wavelength. This
is due to the fact, that the calibration of the data was done with just two wave lengths, which
were quiet close. This gave a rather good calibration for some lines (e-line of the mercury,
resonance frequency of the laser), but at some other lines differences can be seen (g-line, h-
line). Another possible source of errors on the wavelength is, that the motor, that moves the
grid in the monochromator, might not always have the same velocity. This can’t be checked,
because we only can average over the total time of measurement. Furthermore we can’t know
how good the lattice is, that is installed in the monochromator. All of these errors could have
been reduced, if the wavelength, which is detected by the monochromator, and that which is
the x-axis of our data on the computer would be synchronised automatically.
In the emission spectrum of iodine we found ten intensity maxima. We were able to identify
most transitions as belonging to two progressions: ν ′ = 1→ ν ′′ and ν ′ = 3→ ν ′′. The results
are listed in Table 6 and Table 7 together with the difference between the measured data and
the values from the literature.

k [cm−1] ν ′′ klit [cm−1] σ

λ1 = (6474±5)Å 15444±24 1 15424.5088 1
λ3 = (6573±5)Å 15213±24 3 15213.6508 1
λ4 = (6949±5)Å 14388±20 7 14382.3588 1
λ5 = (7375±5)Å 13559±18 11 13570.4908 1
λ7 = (7467±5)Å 13391±18 12 13370.5588 2

Table 6: Transitions in the progression ν ′ = 1→ ν ′′, with literature values from [4].

k [cm−1] ν ′′ klit [cm−1] σ

λ6 = (7411±5)Å 13492±18 12 13493.0588 1
λ8 = (7655±5)Å 13062±18 14 13096.8368 2
λ9 = (7844±5)Å 12748±16 16 12705.4708 3

Table 7: Transitions in the progression ν ′ = 2→ ν ′′, with literature values from [4].

We assume, that the last peak (at λ10 = (8037±5)Å) belongs to the progression ν ′ = 3→ ν ′′,
because here the literature value and our measured value are in a 1σ range. The peak at
λ2 = (6516±5)Å might belong to the progression ν ′ = 4→ ν ′′ with a 2σ range, but since it is
only a very small peak, we can’t exclude, that this is simply some noise. Since none of the k’s
has a relative error bigger than srel = 1%, and most data is in small σ-ranges to the literature,
we can say, that our measurement gave quite good results. We assume, that the reason, why
there are gaps between the ν ′′ in our lists, results in the noise and the fact, that those peaks
are probably very small. These small differences between the theoretical values and our data
shows our trouble in choosing which progression from the level the iodine had been excited to.
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Another possible reason for this difficulty is, that there was some error in iodine tube. This we
couldn’t check, because the tube was closed, but was discovered by a different group after us.
We weren’t able to calculate the heights of the peaks with the Franck-Conan-factors, but we
described the way, with which it could be done.
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D. Appendix

D.1. Absorption

ν ′ 52 51 50 49 48 47 46 45 44
λ [nm] 506.1 506.8 507.68 508.37 509.24 510.29 511.16 512.2 513.24
ν ′ 43 42 41 40 39 38 37 36 35

λ [nm] 514.28 515.5 516.71 518.09 519.3 520.85 522.23 523.78 525.5
ν ′ 34 33 32 31 30 29 28 27 26

λ [nm] 527.21 528.92 530.8 532.68 534.55 536.59 538.79 540.99 543.19
ν ′ 25 24 23 22 21 20 19 18

λ [nm] 545.55 548.07 550.58 553.09 555.92 558.75 561.57 564.5

Table 8: Wavelengths of the progressions.

Header from the data file from SpectraSuite

SpectraSuite Datei
++++++++++++++++++++++++++++++++++++
Datum: Thu Jan 01 05:34:06 CET 2004
Benutzer: Student
Dark-Spektrum vorhanden: Nein
Referenz-Spektrum vorhanden: Nein
Zahl der probierten Teilspektren: 1
Spektrometer: USB2+H15728
Integrationszeit (usec): 100000 (USB2+H15728)
Spektren Durchschnitt berechnet: 17 (USB2+H15728)
Boxcar Glättung: 0 (USB2+H15728)
Dunkelstromkorrektur: Nein (USB2+H15728)
Puls/Lampe aktiviert: Nein (USB2+H15728)
Correct for Detector Non-linearity: Nein (USB2+H15728)
Streulichtkorrektur: Nein (USB2+H15728)
Anzahl Pixel in verarbeitetem Spektrum: 2048
>>>>>Begin Processed Spectral Data<<<<<
394,80 1110,52
394,99 1110,52
395,18 1110,52
[...]
726,41 10203,50
726,54 10203,50
726,67 10203,50
>>>>>End Processed Spectral Data<<<<<
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D.2. Additional plots for the emission

Figure 13: Data and literature value for the h-line.

Figure 14: Data and literature value for the g-line.
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Figure 15: Data and literature value for the e-line.

D.3. Table for determination of transitions

Figure 16: Data for the determination of transitions in the emission spectrum from [4].

D.4. Original data




