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1 Physical Background

1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation assumes that the motion of nuclei and electrons in
a molecule can be described separately. As electrons are much lighter and move faster than
nuclei, their equations of motion can be solved with no remark to the nuclei. Therefore, the
wave function ψmol can be approximated by a product of two independent wave functions:

ψmol(ri, Rj) = ψvib(Rj) · ψel(ri, Rj), (1)

where ψvib describes the nuclei and ψel the electrons.

1.2 Molecular Term Symbol

To characterize a state of a molecule and give a short overview of the quantum numbers,
the so called molecular term symbol can be used:

2S+1Λ(+/−)
Ω,(g/u). (2)

In this notation,

• S is the total spin quantum number and the whole term 2S+1 gives the multiplicity,

• Λ refers to the projection of the orbital angular momentum along the internuclear
axis and for Λ = 0, 1, 2, ... we write Σ,Π,∆,

• Ω gives the total angular momentum projected on the internuclear axis,

• g/u for gerade and ungerade (even and odd) represent the effect of the point mirroring
operation î,

• +/− are used to describe the effect of mirroring along a plane around the internuclear
axis.

As the electronic states are not part of the notation, they are often added by a capital
letter directly in front of the term symbol. The electronic ground state is labelled X and
the exited stated are labelled with A,B,C, ... in their energetic order.

1.3 Electronic transitions

The ground state of the iodine molecule is 1Σ+
0,g. To find possible transitions, the selection

rules for electronic transitions

• g ↔ u, g = g, u= u

• ∆Ω = 0,±1

• ∆Λ = 0,±1
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are applied. The third rule can be applied because of the strong spin-orbit interaction.
Using these rules in respect of the transitions that can be observed with the used spec-
trometer only one transition will be measured:

X1Σ+
0,g ↔ B3Π+

0,u. (3)

The observed electronic transition consists out of a system of vibrational transitions. For
a spectrometer with a better resolution the rotational transitions, would be interesting as
for every vibrational transition several rotational lines could be observed. With the setup
used in the experiment, this resolution is not possible, so the rotational transitions are not
relevant.

1.4 Franck-Condon Principle

The Franck-Condon principle is used to to explain the intensity of different vibronic tran-
sitions. As vibronic transitions are very fast compared to the movement of the nuclei,
transitions where the nuclear position changes the least appear more likely (cf. fig. 1).
Therefore if the vibrational wave functions overlap more the intensity of the correspond-
ing transition will be higher. The overlap of the two vibrational wave functions can be
calculated and is called the Frank-Condon factor:

FC(ν, ν ′) =
∣∣∣∣∫ ψνψν′ dr

∣∣∣∣2 . (4)

Figure 1: In the diagram, an electronic transition from the ground state to the first exited
state is shown. Two different transitions in the vibronic state are shown and one can see
that the transitions occur straight without a change in the nuclear coordinates.
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1.5 Morse-Potential

The Morse-potential

V (r) = De(1− exp(−a(r − re)))2

with re = 2.979Å
(5)

approximates the potential energy of a molecule. It approximates the vibrational structure
of a molecule much better than approximating the potential energy with the quantum
harmonic oscillator (see fig. 2) as it also includes more effects. Approximating with the
Morse potential also takes possible bond breaking and unbound states into account.
Solving the Schrödinger equation with the Morse potential yields

Evib
hc

= ωe

(
n+ 1

2

)
− ωeex

(
n+ 1

2

)2
. (6)

The molecular constants are given by

ωe = a

√
~De

πcµ
,

ωexe = ~a2

4πcµ,
(7)

where µ is the reduced mass and a a constant. By eliminating the constant a the dissoci-
ation energy can be calculated with

De = ω2
e

4ωexe
. (8)

Figure 2: In the graphic, the difference between the quantum harmonic oscillator approx-
imation of the potential and the Morse potential is shown. One can see the difference in
the vibrational levels for the different approximations.
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1.6 Birge-Sponer Method

The energy for vibration and rotation in molecules is quantized. Approximating the
potential to determine the allowed energies to the vibronic states yields:

G(ν) = ωe

(
ν + 1

2

)
− ωexe

(
ν + 1

2

)2
. (9)

The parameters ωe and ωexe are molecule constants that can be determined with use of
the Birge-Sponer method. The Birge-Sponer method determines the molecule constants
and the dissociation energy by calculating the difference between the levels with

∆Gν+ 1
2

= G

(
ν + 1

2

)
−G(ν) = ωe − ωexe (2ν + 2) . (10)

With the maximum of the sum at νmax, the dissociation energy of the ground state can
be found with

D0 =
νmax∑
ν=0

∆Gν+ 1
2
. (11)

To calculate the dissociation energy relative to the minimum of the potential, the zero-
point energy has to be added:

De = D0 +G(0). (12)

To provide some further visualisation of the discussed quantities one can take a look at
fig. 3.

Figure 3: In this figure the discussed quantities are visualised.
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2 Setup and Implementation

2.1 Setup

The setup that is shown in fig. 4 contains everything needed for both parts of the experi-
ment.

Figure 4: Setup of the experiment, 1: halogen lamp, 2: lens, 3:mirror, 4:iodine-tube, 5:
mirror, 6: lens, 7: filter, 9: power supply for the lamps, 10: mercury lamp, 11: helium-
neon laser, 12: monochromator, 13: photomultiplier. In the actual setup the filter does
not exist anymore

Measuring the Absorption Spectra For the first part of the experiment the setup is
used as shown in fig. 4. The halogen lamp is adjusted in a way that the light is focussed
by the first lens (150 mm) and reflected into the iodine-tube with help of the mirror. The
light that comes out of the iodine-tube is reflected by a second mirror and focused on the
CCD-spectrometer with help of a second lens (70 mm).

Calibration of the Monochromator For calibrating the monochromator the halogen
lamp is replaced with the mercury lamp. Furthermore the second mirror is taken out of
a setup and its place is taken by the second lens so the light that passes the iodine-tube
is focused on the monochromator. The signal of the monochromator is amplified by a
photomultiplier.

Measuring the Emission Spectra To measure the emission spectra, the mercury
lamp is switched off and the laser is focused on the iodine-tube. Same as for calibrating,
the light that comes out of the iodine-tube is focused on the monochromator.
The signal from the monochromator as well as the signal of the CCD-spectrometer can
be read out on the computer. Next to the experimental setup, the Peltier-cooling for the
photomultiplier, its power-supply and the discriminator are placed.
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2.2 Implementation

Measuring the Absorption Spectra Using the setup as described before, first of all
the optical path is checked and optimized by moving the lenses and mirrors a little. Then
the program SpectraSuite was opened and the small blind in front of the laser was adjusted
until a nice spectrum was visible. For the measurement, the integration time was chosen
as 100 ms and 10 000 scans for average was chosen to smooth the curve.

Calibrating the Monochromator To calibrate the monochromator, the setup was
changed as described above and the optical path was checked and optimized again. The
program Jod-analog.vi was started and the spectrum for wavelengths 4000Å to 6000Å
was measured. Measuring a spectrum means that on the monochromator a starting point
and a step width was chosen. For the calibration, the starting point was 4000Å and the
step width 2Å. This starting point was also set in the program in a small window that
appears after switching the parameter-lever. On the discriminator, different settings could
be changed. Firstly, the range was adjusted so the signal does not over modulate and the
discriminator level was used to do fine adjustments. For the calibration, the discrimi-
nator was set to 0.4 and the range was chosen to 1 000 000. Then the program and the
monochromator were started and stopped when the monochromator has reached 6000Å.
The exact wavelengths for start and stop that were shown on the monochromator were
noted as the values shown by the program are not accurate.

Measuring the Emission Spectra The setup was changed to the third one and again
the optical path was checked.
Firstly, the laser-peak was measured with a step width of 2Å, start- and stop-wavelength
at 6300Å and 6400Å, range of 3 000 000 and discriminator level of 0.4. The slit width of
the monochromator was set to 50 µm. The measured data were saved and the relevant
wavelengths noted.
Secondly the fluorescent-spectra was measured. To do so, the step width was set to 1Å,
start- and stop-wavelengths to 6400Å and 8000Å, respectively, and a range of 1000 and
discriminator level of 0.4. The slit-width was changed to 370 µm.
For all measurements, a hairdryer was used to heat to iodine-tube. For measuring the
emission-spectra, the room was shaded.
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3 Analysis

3.1 Analysis of the Absorption-Spectrum

To analyze the vibration behavior of the iodine molecule, the absorption-spectrum was
measured. To identify a certain transition, a wavelength of λ25 = 545.8 nm for the ν ′′ =
0→ ν ′ = 25 transition was given. The measured spectrum is shown in fig. 5. To determine
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Figure 5: In this graph, the measured spectrum is displayed. The given reference wave-
length is marked with a vertical red line.

the values for ωexe and ωe, the linearity of the dependency between ∆G and ν+1/2 is used.
The given transition is used to identify other transitions of the ν ′′ = 0 progression. The
corresponding wavelengths are used to calculate the differences between the transitions and
plot them against the vibration quantum number ν ′ in the so called Birge-Sponer-Plot.
The used wavelengths are marked in fig. 6. To calculate ∆G,

∆G = 1
λν′+1

− 1
λν′

(13)

was used. The error on ∆G is given by Gaussian error propagation using the estimated
error sλ = 0.1 nm.

s∆G =

√√√√( sλ
λ2
ν′+1

)2

−
(
sλ
λ2
ν′

)2

(14)

The Birge-Sponer-Plot is shown in fig. 7. To determine ωexe and ωe, a linear regression
of the form

f(x) = mx+ c (15)

is made. The fit parameters were calculated by using the function curve_fit from the
python module scipy.optimize which uses the method of least squares. The fitted pa-
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Figure 6: In this figure the used wavelengths are marked with crosses and the reference-
wavelength is marked with a line.

rameters are:

m = (−2.11± 0.15) 1
cm c = (133± 5) 1

cm . (16)

If one compares the linear fit to eq. (10), it can be seen that ωexe can be calculated by

ωexe = −m2 . (17)

With Gaussian error propagation one finds that the error is given by

sωexe = sm
2 . (18)

So for the value of ωexe,

ωexe = (1.05± 0.08) 1
cm (19)

was calculated. For the calculation of ωe,

∆G(ν + 1
2) = ωe − ωexe︸ ︷︷ ︸

c

−2ωexe︸ ︷︷ ︸
m

(ν + 1
2) (20)

is used so it is easily seen that ωe is given by

ωe = c+ ωexe (21)

with an error calculated by

sωe =
√
s2
c + s2

ωexe
. (22)

Finally for the value, we obtain

ωe = (135± 5) 1
cm . (23)
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Figure 7: In this picture the linear regression and the Birge-Sponer-Plot are displayed

3.1.1 Calculation of the Potential Depth

The potential depth is going to be calculated in two different ways. Firstly, using the
Morse-Potential approximation which delivers

D′e = ω2
e

4ωexe
. (24)

Using Gaussian error propagation for the uncertainty,

sD′
e

=
√(

ωe
2ωexe

sωe

)2
+
(

ω2
e

4(ωexe)2 sωexe

)2
. (25)

was used. So for the value of the potential depth,

D′e,1 = (4313± 428) 1
cm . (26)

is determined. The second option to calculate the potential depth is to use the term
differences. We know that the potential depth is the sum of all term differences of a
shared electronic state. This sum can be approximated by the area under the straight line
of the Birge-Sponer-Plot as shown in the equation below:

D′e =
ν′

diss.∑
ν′=0

∆G′(ν ′ + 1
2) +G(0) ≈ cν ′diss.

2 . (27)

To determine the potential depth, the critical value for ν ′ called ν ′diss. which is given as
the zero point of the linear function yielded by the linear regression is needed. So

0 = m

(
ν ′diss. + 1

2

)
+ c (28)

=⇒ ν ′diss. = − c

m
− 1

2 (29)
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with an error determined by Gaussian error propagation of

sν′
diss.

=
√( 1

m
sc

)2
+
(
c

m2 sm

)2
(30)

is used. Finally, the value of ν ′diss. is calculated to be

ν ′diss. = 63± 5 (31)

which leads to a value for the potential depth of

D′e,2 = (4212± 368) 1
cm . (32)

The error was calculated by Gaussian error propagation which delivered the following
equation:

sD′
e,2

= 1
2
√

(c · sν′
diss.

)2 + (ν ′diss. · sc)2 (33)

3.1.2 Calculation of the Dissociation Energy

The dissociation energy is the energy needed for a photon to cause the molecule to dis-
sociate. Since the electric state must change if the molecule gets excited by a photon,
the dissociation energy is not just the depth of the potential. The dissociation energy
can easily be determined by looking at the absorption spectrum and searching for the
lowest wavelength where no absorption peak is observed. The chosen wavelength is, as
shown in fig. 8, λ = (500± 2) nm. Therefore, the dissociation energy can be calculated by
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Figure 8: In this picture the estimation of the dissociation energy is displayed

Ediss. = 1/λ with an error of sEdiss. = sλ/λ
2. The value was determined to be

Ediss. = (20 000± 80) 1
cm . (34)
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3.1.3 Calculation of the Excitation Energy

The excitation energy Te is the energy gap between ν ′ = 0 and ν ′′ = 0. The equation used
to calculate the excitation energy is

Ediss. = Te −G′′(0) +D′e (35)
≈ Te −G′(0) +D′e (36)
= Te +D′0. (37)

Since G′′(0) is unknown, it has to be approximated by G′(0). To do further calculations,
the value for D′0 is needed. It is calculated by

D′0 = D′e −G′(0) = (4129± 48) 1
cm , (38)

where instead of D′0, the already calculated D′e,1 is used. Using these values,

Te = Ediss. −D′0 = (15 553± 435) 1
cm (39)

was determined for the exitation energy where the error is calculated by Gaussian error
propagation with

sTe =
√
s2
Ediss.

+ s2
D′

0
. (40)

3.1.4 The Morse-Potential

Using the values determined earlier for ωexe and D′e,1, it is now possible to plot the so
determined Morse-Potential of the form

V (R) = D′e,1 · (1− exp(−a(R−Re)))2 . (41)

a is calculated by

a =
√

4πcµ · ωexe
~

(42)

where ~ is the reduced Planck constant, µ is the reduced mass of the iodine molecule and
c is the speed of light. It is important to be aware of the units during this calculation.
The computed plot is displayed in fig. 9.
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Figure 9: In this figure the determined Morse-Potential is displayed. For comparison also
the Morse-Potential using the literature values was computed.

3.2 Analysis of the Emission Spectrum

In this part of the experiment, a monochromator was used. Since the measuring program is
not able to measure the wavelength properly, a correction is needed. Therefore, the starting
point and the ending point of a measurement was noted and the measured intensities are
plotted against a linear scaled set of generated data between the starting and the ending
point of the measurement.
For the measurement of the emission spectrum, a calibration measurement was executed.
This calibration uses a Hg-lamp which emits a discrete and very well known spectrum so
one can compare the measured spectrum with the expected one and is therefore able to
correct possible scalings and off-sets. As shown in fig. 10, the measured spectrum fits the
expected one quite well, but since the resolution of measured spectrum is not high enough
it was not possible to see any needed correction.
The used He-Ne-laser is expected to emit light with a wavelength of λ = 6330Å. The
spectrum of the laser to determine the molecular transition of iodine when irradiated by
the laser light was measured. As shown in fig. 11 the spectrum of the laser was neither as
sharp nor as Gaussian shaped as expected so it was not possible to determine a certain
wavelength.
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Figure 10: In this picture the measured spectrum is displayed. For comparison the ex-
pected emission lines of the Hg-lamp are displayed too.
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Figure 11: In this figure the measured spectrum emitted by the laser is displayed. For
comparison, the expected wavelength is shown.
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3.2.1 The Emission Spectrum

The measurement of the emission spectrum does not show enough precision to find a sen-
sitive fit function for the peaks. Therefore, to determine the peaks and the corresponding
wavelengths, the maxima were approximated. The data and the determined peaks are
displayed in fig. 12. Below the determined peak positions are listed. The errors where
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Figure 12: In this figure the measured emission spectrum is displayed. In red the estimated
peak locations are marked.

determined by estimating the half peak width as this seemed to give sensitive values in
respect to the noisy data.

λ1 = (6502± 4)Å λ5 = (6855± 15)Å
λ2 = (6590± 10)Å λ6 = (6960± 20)Å
λ3 = (6680± 10)Å λ7 = (7060± 20)Å
λ4 = (6771± 15)Å λ8 = (7167± 20)Å

To determine the measured progression by comparing the wavelengths to literature values,
it helps to calculate the wave numbers k = 1/λ. The error is given by Gaussian error
propagation sk = sλ/λ

2. The so computed values are listed in table 1. By comparing the
measured wave numbers and the values in [FP] it was seen that the measured emission-
peaks are most probably caused by the ν ′ = 6→ ν ′′ = 5 . . . 12 progression.
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ν ′′ kmeas. [ 1
cm ] klit. [ 1

cm ]
5 15 379± 9 15 394
6 15 183± 23 15 187
7 14 970± 22 14 981
8 14 770± 30 14 776
9 14 590± 30 14 572
10 14 380± 40 14 370
11 14 160± 40 14 169
12 13 950± 40 13 969

Table 1: In this table the measured wave numbers are listed

4 Discussion

4.1 Absorption Spectrum

In the first part of the experiment, the absorption spectrum of the iodine molecule was
measured. To do so, a halogen lamp and a CCD-spectrometer were used. The measured
spectrum shows the expected absorption minimums and the given transition could be
identified and used to determine further dips resulting from the zeroth progression between
the X1Σ+

0g and the B3Π+
0u state of the iodine molecule. The Birge-Sponer method has

been used to determine two molecular constants:

ωexe = (1.05± 0.08) 1
cm (43)

and

ωe = (135± 5) 1
cm . (44)

The literature values [SC] for these two constants are

ωexe = (0.7016± 0.0100) 1
cm (45)

and

ωe = (125.273± 0.100) 1
cm . (46)

Even though the spectrum looked really promising, the determined values for the molecular
constants are not that satisfying. The relative uncertainties of the values in respect to
the rough measuring setup are in a sensitive range. Nevertheless, the determined values
do not fit the literature values. One reason for this could be that the location of the
dips is not easy to determine. Even though the dips were not determined by eye but
analytically, a small change in the location of a dip changes the output of the Birge-
Sponer plot significantly. As this error can not really be quantized it was neglected in the
further analysis. So finding a better method to determine the location of the dips or at
least a way to include the error would most probably yield better results.
Furthermore, the potential depth of the exited state was calculated twice using two differ-
ent methods. Firstly, it was calculated by using the Morse potential approximation that
lead to

D′e,1 = (4313± 428) 1
cm . (47)
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Secondly, the value was calculated by determining the area enclosed by the line in the
Birge-Sponer plot. The second method yields

D′e,2 = (4212± 368) 1
cm . (48)

The literature value for the potential depth [SC] is D′e,lit = 4391 1
cm . Comparing the

values, the experimentally determined values are in a very nice magnitude and both hit
the literature value within one standard derivation. Surprisingly, the second method does
not give a better value than approximating with help of the Morse-potential. A reason for
this could be that the fitted line underestimates the real area.
The excitation energy was determined to

Ediss. = (20 000± 80) 1
cm (49)

while the literature [SC] gives Ediss, lit = 20 014 1
cm for the excitation energy. Therefore,

the determined value is in a 1σ-neighborhood. Also, the relative error is of satisfying
order.
Lastly, the dissociation energy was used to determine the energy Te which is the energy
difference between the potential minima of the two states. The calculated value is

Te = Ediss. −D′0 = (15 553± 435) 1
cm (50)

and the literature [SC] gives Telit = 15 770.59 1
cm . Again, the calculated value is in a

good 1σ-range in respect to the literature value.
With use of the calculated values, the Morse potential was calculated and plotted in
comparison to the Morse potential plotted with use of the literature values. As seen in
fig. 2, the calculated Morse potential shows a very satisfying result. For the asymptotic
part of the potential curve the measured and literature curve differ a little but with the
calculated values it should be in one standard deviation.

4.2 Emission Spectrum

In the second part of the experiment, the emission of the iodine molecule was measured by
exciting it with a laser and measuring the spectrum with a monochromator. The location
of the peaks were determined and the measured values were compared to wave numbers
one would expect for different progressions. By comparison, it was found that most likely
the ν ′ = 6 → ν ′′ = 5...12 progression has been measured. The measured data and the
expected data for that progression are listed in table 2. The measured values are all in
a 1σ-range of the expected ones with respect to the chosen progression. Also, the error is
in a sensitive range. Nevertheless, it would be really nice and most probably yield better
results to be able to use a better spectrometer as the work with the monochromator is not
really pleasing and the data is interstratified by a lot of random noise.
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ν ′′ kmeas. [ 1
cm ] klit. [ 1

cm ]
5 15 379± 9 15 394
6 15 183± 23 15 187
7 14 970± 22 14 981
8 14 770± 30 14 776
9 14 590± 30 14 572
10 14 380± 40 14 370
11 14 160± 40 14 169
12 13 950± 40 13 969

Table 2: The measured wave numbers in comparison to the expected ones if the right
transition was chosen.
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