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Table 1 contains an overview of all symbols used in this lab report.

Symbol Meaning

a Molecular constant
A,B, . . . First, second,. . . excited states
De Potential well depth
D0 Energy difference between lowest potential and

continuum
FC Franck-Condon factor
g Eigenvalue of point reflection operator
G Energy term
k Wave number
λ Wavelength
Λ Quantum number of projection of orbital angular

momentum
µ Reduced mass of iodine
ν Vibrational quantum number
Ω Quantum number of projection of total angular

momentum
ωe Molecular constant
ωexe Molecular constant
ψ Wave function
Π Term symbol
ri Electronic coordinates
Rj Nuclear coordinates
S Spin quantum number
Σ Term symbol
u Eigenvalue of point reflection operator
X Ground state
α, β Parameters of regression
sx Error on the quantity x

Table 1: Symbols used in this lab report. Quantities belonging to the ground state
are labelled using a single prime (′); quantities belonging to the excited state are
labelled using two primes (′′).

1 Introduction
This experiment serves as an introduction to molecular spectroscopy, where impor-
tant molecular constants, such as the vibrational constants and dissociation energies
of a molecular state can be determined. The measurements are carried out on the
diatomic iodine molecule I2, since its molecules have an extraordinarily defined band
structure. With an absorption and an emission measurement involving different ex-
perimental setups, not only should important constants of the first excited iodine
state be determined, but also the relevant transitions shall be identified.
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2 Physical basics
If not indicated in any other way, the theory explained in the following section of
this report is based on the instructions [1] and the staatsexamen [2].

2.1 Molecular States

So called molecular term symbols are used to identify a molecular state. Using a
specific notation, this allows for a concise and complete description and character-
ization of all relevant molecular quantum numbers. Molecular term symbols are
written in the following form:

2S+1Λ(+/−)
Ω(g/u). (1)

In the above term,

• S indicates the (total) spin quantum number of the molecule. It is often
associated with the multiplicity 2S + 1 which gives the amount of magnetic
spin quantum numbers.

• Λ is the projection of the orbital angular momentum onto the molecular axis.
For the sake of clarity, the absolute values are replaced by Greek letters: Σ
stands for the ground state (i. e. Λ = 0), whereas Π stands for the first excited
state (i. e. Λ = 1).

• +/− indicate the sign change of the wave function, if the molecule is mirrored
on a plane passing through the intermolecular axis. It the sign changes, one
writes − and + otherwise.

• Ω describes the projection of the total angular momentum of the molecule onto
its molecular axis.

• g/u characterizes the behaviour of the wave function with regard to the point
reflection at the center of symmetry: If the sign of the wave function changes,
u (ungerade) is written and g (gerade) if it does not.

As the molecular term symbols traditionally don’t include the electronic state, the
latter are often indicated by adding a letter in front of the whole term: If the molecule
is in its electronic ground state, one prepends an X to the term. The excited states
are labelled using A,B, . . . according to their energetic order.

2.2 Electronic Transitions and Selection Rules

There are several selection rules that describe which transitions are allowed for
molecules and which are not. Some selection rules are universally valid, whereas
other rules are only valid if both the original state and the end state feature a specific
angular momentum coupling (so called Hund’s coupling cases). In our experiment,
the relevant selection rules are
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• g ↔ u, g = u, u= g

• ∆Ω = 0,+1,−1

• ∆Λ = 0,+1,−1 (Case c)

• ∆S = 0 (Case a)

In this experiment, the transition

X1Σ+
0,g ↔ B3Π+

0,u (2)

of the iodine molecule I2 is observed. This transition is only permitted due to
the strong spin-orbit interaction of the iodine molecule. In addition, several rota-
tional transitions are possible for this transition, but they differ energetically only so
slightly that they can no longer be resolved with the setup used in this experiment.

2.3 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is an assumption to greatly simplify the pro-
cess of solving the Schrödinger equation: The approximation consists in considering
the movements of the electrons and the nucleons separately. This results in the total
wave function of the molecule as a product of the individual wave functions:

ψMol(ri, Rj) = ψvib(Rj) · ψel(ri, Rj) (3)

In the above equation, ψMol refers to the wave function of the molecule, whereas ψvib
and ψel stand for the nuclei’s and electron’s wave functions, respectively; ri and Rj
refer to the electronic and nuclear coordinates. The Born-Oppenheimer approxi-
mation is based on the fact that the nuclei, due to their high mass, move much
more slowly than the electrons, meaning that the electron interactions happen on a
completely different time scale.

2.4 Franck-Condon principle

An electron transition takes place so quickly that it does not interfere with the slow
movement of the nuclei. Thus, an electron transition can be drawn as a vertical line
in a potential curve diagram, as shown in fig. 1.

The Franck-Condon principle states that the probability of a transition is given
through the overlap of the potential curves of the ground and excited states. This
probability can be determined with the Franck-Condon factor:

FC(νi, νk) =
∣∣∣∣∫ ψvib(νi)ψvib(νk) dR

∣∣∣∣2 . (4)

ψvib denotes the normalized vibration wave functions and νi and νk the vibration
quantum numbers for the ground and excited state.
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Figure 1: Visualization of the Franck-Condon principle [4] on two separate energetic
states. The electron transition happens at a much shorter time scale than the nuclei’s
movements, meaning that the nuclear coordinates don’t change.

2.5 Morse Potential

In order to determine the eigen energies of the molecular Hamiltonian, the Schrödinger
equation has to be solved. As the latter involves the potential energy of the molecule
which is quite complex to describe, the potential is often approximated. A polyno-
mial ansatz using a Taylor approximation yields good results close to the equilibrium
distance Re, but approaches infinity when the distance gets too large. The Morse
potential is an alternative exponential approach which approximates the potential
particularly well for large distances between the nuclei up to the distance Re. It is
given by the following form:

V (R) = De ·
[
1− e−a(R−Re)

]2
. (5)

In this equation, De is the well depth and refers to the energy that has to be
supplied in order to break the molecular bond. R describes the distance between
both nuclei, Re is the equilibrium distance, i. e. the distance for which the potential
becomes minimal and a is a constant. For distances much smaller than Re, the
approximation does not work well anymore. From the Morse potential, the energy
eigenvalues of the vibration states can be calculated exactly to

Evib(ν) = hcωe

(
ν + 1

2

)
− hcωexe

(
ν + 1

2

)2
, (6)
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where ωe and ωexe are vibrational constants and ν is the vibrational quantum num-
ber. As the factor hc often occurs in expressions for energy levels, the energy levels
are often written as energy terms G = E/hc. This leads to

G(ν) = ωe

(
ν + 1

2

)
− ωexe

(
ν + 1

2

)2
. (7)

The vibrational constants are given as

ωe = a

√
~De

πµc
, (8a)

ωexe = ~a2

4πµc. (8b)

2.6 Birge-Sponer plot

In the later analysis, a Birge-Sponer plot is used to calculate the molecular con-
stants given in eqs. (8a) and (8b). For this, the energy term difference ∆G of two
neighbouring vibration levels ν and ν + 1 is used:

∆G
(
ν + 1

2

)
= G(ν + 1)−G(ν)

= ωe
(
ν + 3

2

)
− ωexe

(
ν + 3

2

)2
− ωe

(
ν + 1

2

)
+ ωexe

(
ν + 1

2

)2

= ωe − ωexe
[
1 + 2

(
ν + 1

2

)]
= ωe − ωexe(2 + 2ν).

(9)

The x-axis intercept of the Birge-Sponer plot corresponds to the vibrational quantum
number νdiss, which is the highest state of the potential well. As the potential in a
quantum mechanical system allows for a non-zero energy ground state, the energy
needed for a molecule in its ground state is actually lower than the total well depth.
One can calculate this dissociation energy D0 by summing up all the energy term
differences:

D0 =
νdiss∑
ν=0

∆G
(
ν + 1

2

)
. (10)

The potential depth is then simply given as the dissociation energy plus the en-
ergy G(0) of the ground state:

De = G(0) +D0 = 1
2ωe −

1
4ωexe +

νdiss∑
ν=0

∆G
(
ν + 1

2

)
. (11)
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3 Setup and Procedure

3.1 Setup

Figure 2 shows the setup of the first part of the experiment. The parts needed to
assemble the setup for the second part is also pictured.

Figure 2: Setup of the first part of the experiment. 1: Halogen lamp, 2: Lens, 3: Mir-
ror, 4: Tube containing iodine, 5: Mirror, 6: Lens, 7: Filter (not used), 9: Lamp power
supply, 10: Mercury lamp, 11: Helium-Neon laser, 12: Monochromator, 13: Photo-
multiplier.

Iodine tube

Halogen lamp

Lens 1

Mirror Mirror

Lens 2

Spectrometer

Figure 3: The setup used to measure the absorption spectrum of iodine. Lens 1 has
a focal length of 150 mm and lens 2 a focal length of 70 mm. The used spectrometer
is a CCD.

Absorption spectrum The experimental setup used to measure the absorption
spectrum is shown in fig. 3. The light source is a halogen lamp with a continuous
spectrum. The light is parallelized through a lens (focal length: 150 mm) about 15 cm
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behind the lamp and directed into the iodine filled tube using a mirror. At the other
end of the tube is an aperture with which the intensity of the emitted light can be
regulated. The light coming out of the tube is directed through another mirror onto
the CCD. To focus the light onto the CCD, another lens (focal length: 70 mm) is
mounted about 6.5 cm in front of it. The CCD is connected to a computer on which
the measured spectrum can be read with the program “SpectraSuite”.

Iodine tube

He-Ne laser

Lens 1

Lens 2

Monochromator

Photomultiplier

Figure 4: The setup for measuring the emission spectrum. Lens 1 has a focal length
of 150 mm and lens 2 a focal length of 70 mm. A mercury lamp which is not shown
in this figure was used for calibration during the experiment.

Emission spectrum To measure the emission spectrum, the experimental setup
must be slightly modified as shown in fig. 4. As light source, a He-Ne laser is used.
Instead of redirecting the light coming out of the tube with a mirror, the two lenses
used previously are mounted behind the tube. The lenses focus the light on the
input of the monochromator. The width of the input slit of the monochromator and
the speed at which the grating within the monochromator rotates can be adjusted
with a control element on the monochromator. As the angle of the grating controls
the wavelength to be measured, the control unit allows for adjustment of the range
and speed at which the wavelength is measured.

A photomultiplier is placed behind the monochromator with which the optical
signal can be measured as voltage. The resolution and sensitivity of the photomulti-
plier signal can be adjusted with a discriminator. The signal of the photomultiplier
can be recorded on the computer using the program “JodAnalog”. To calibrate the
program, a mercury lamp was temporarily used instead of the He-Ne laser.

3.2 Procedure

Absorption spectrum At first, the experimental setup described in the previous
section was set up. The lenses and mirrors were adjusted in a way that the light
of the halogen lamp was focused as well as possible on the CCD. The program
SpectraSuite was used to measure the absorption spectrum. The upper peaks of the
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spectrum were initially cut off. To prevent this, the aperture at the end of the tube
was reduced until the intensity was low enough so that the measurements were no
longer overdriven. Afterwards, test measurements were carried out with different
integration times and numbers of scans set for averaging. Depending on the setting,
the aperture had to be adjusted to prevent an overdrive. For the measurement used
for the analysis, an integration time of 100 ms and a number of scans for averaging
of 1000 was selected.

Emission spectrum In order to evaluate the emission spectrum, the spectrum
of the mercury lamp had to be measured first in order to perform a wavelength
calibration. For this, the monochromator was set to a value of 4050 nm which
coincides with one of the peak wavelengths of mercury. Then the lenses were adjusted
so that the signal of the photomultiplier became maximum. The spectrum was then
recorded in the range from 4000Å to 6000Å. On the monochromator the slit opening
was set to 34 µm and a velocity of 2Å s−1. For the photomultiplier the discriminator
was set to 0 with a range of 106. After the measurement was complete, the mercury
lamp was switched off and the He-Ne laser switched on. The monochromator was
set to 6330Å which should correspond to the wavelength of the laser peak, and the
slit opening to 50 µm. The lenses and the discriminator were then adjusted to again
maximize the signal. Then, the laser peak was measured in a range of: The settings
used to measure the laser peak were a velocity of 2Å s−1 for the monochromator
and the discriminator was set to 0.4 with a range of 107. Measurements were taken
from 6300Å to 6370Å.

Then, the monochromator was set to 6500Å and the signal was maximized again.
For the emission measurement used for later analysis, the monochromator was set
to a slit width of 370 µm and the spectrum was measured at a velocity of 1Å s−1.
The discriminator was set to 0.4 with a range of 300. The spectrum was measured
from 6400Å to 8000Å.
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4 Analysis

4.1 Absorption Spectrum
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Figure 5: Absorption spectrum of iodine. The expected transition of ν ′′ = 0→ ν ′ =
25 is shown in red.

At first, the absorption spectrum has to be evaluated. The spectrum was mea-
sured using a CCD spectrometer and is shown alongside the expected transition in
fig. 5. In order to be able to create the Birge-Sponer-plot, some transitions have to
be identified.

4.1.1 Identification of Transitions

According to the manual [1], the transition of ν ′′ = 0 → ν ′ = 25 features a wave-
length of λ = 545.8 nm. Using the Franck-Condon-principle, one can now number
the neighbouring transitions which are clearly visible as dips in the spectrum with
the quantum number ν ′. Because we are only interested in the zeroth transition
between the ground state and the excited state B3Π+

0u, one has to be careful not to
select transitions belonging to other states. In order to do so, only a small window
of the spectrum can be used to find the appropriate wavelengths and respective
transition energies. Figure 6 shows an excerpt of the whole spectrum where the
transitions are numbered using the Franck-Condon-principle.

Because of the additional rotational transitions, the data appears a bit noisy with
additional peaks clearly visible. In order not to count the uninteresting transitions,
the lines were selected by hand rather than by use of an analytical way. Because
of this, we estimated the error on each wavelength λν′ to be sλ = 0.2 nm. The
transitional wave numbers kν′ = 1/λν′ can now be calculated. One can estimate the
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Figure 6: Closer view of the spectrum shown in fig. 5 with transition ν ′ values.

error on each wave number using Gaussian error propagation, i. e.

skν′ =
sλν′
λ2
ν′
. (12)

The wave numbers and the wavelengths can be found in the appendix in table 3.

4.1.2 Birch-Sponer Plot

Using the wave numbers kν′ determined above, the Birch-Sponer plot can be created:
For each of the neighbouring wave numbers ν and ν ′, one defines the difference

∆G
(
ν ′ + 1

2

)
= G(ν ′ + 1)−G(ν ′) = kν′+1 − kν′ . (13)

The error on these differences propagate according through Gaussian error propa-
gation:

s∆G(ν′+ 1
2 ) =

√
s2
kν′+1

+ skν′ (14)

The differences of the wave numbers are now plotted against ν ′+ 1
2 and can be found

in the appendix (cf. table 4). The plot is shown in fig. 7. Using the method curve_fit
from the Python module scipy.optimize, a linear regression of the form

∆G
(
ν ′ + 1

2

)
= α ·

(
ν ′ + 1

2

)
+ β (15)

is performed. In the equation shown above, α and β are parameters to be deter-
mined by the fit which yielded α = (−2.08± 0.11) cm−1 for the slope and β =
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Figure 7: Birch sponer plot with the values shown in table 4.

(132± 3) cm−1 for the axis intercept. The plot is shown alongside the data in fig. 7.
The molecular constants of the Morse potential can be calculated through the use
of the Birch-Sponer plot: Substituting the eigenenergies (6) of the Morse potential
in eq. (13), one finds

∆G
(
ν ′ + 1

2

)
= ωe − ωexe(2ν ′ + 2) = −2ωexe

(
ν ′ + 1

2

)
+ (ωe − ωexe). (16)

If one compares the equation above with eq. (15), the molecular constants can be
calculated by the regression parameters:

ωe = β − α

2 = (133± 3) cm−1

ωexe = −α2 = (1.04± 0.06) cm−1
(17)

The errors above were calculated by applying Gaussian error propagation on the
uncertainties sα, sβ given by the covariance matrix returned by the linear regression:

sωe =

√
s2
β + s2

α

4
sωexe = sα

2

(18)

4.1.3 Determination of the Potential Depth

Now, the potential depth D′e of the Morse potential will be determined. In the
following, the potential depth is calculated in two different ways.

The first way consists of summing up the differences ∆G(ν ′+ 1
2) for each transi-

tion ν ′ up to the vibrational quantum number νdiss where the molecule dissociates.
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Additionally, the energy G(0) has to be added to the sum. However, one can es-
timate the sum of the differences by calculating the area under the curve given by
eq. (15). Anyhow, νdiss has to be determined beforehand: Its value is given by the
x-axis intercept of the regression curve (15):

νdiss = −β
α

= 63± 4 (19)

The error on the dissociation vibrational quantum number was calculated from the
errors of the fit parameters by use of Gaussian error propagation:

sνdiss =

√(
sβ
α

)2
+
(
β

α2 · sα
)2

(20)

The area below the regressional curve which approximates the sum of wave number
differences is given by the area of a triangle with base νdiss and height β:

D′e,1 = 1
2νdiss · β

= (4250± 290) cm−1
(21)

Again, the error on the potential depth D′e,1 is given by Gaussian error propagation:

sD′e,1 = 1
2

√
(sνdissβ)2 + (sνdisssβ)2. (22)

The potential depth can also be calculated directly through the Morse potential:
If one substitutes a in eq. (8a) using eq. (8b), the resulting equation can in turn be
solved for D′e,2:

D′e,2 = ω2
e

4ωexe
= (4300± 300) cm−1

(23)

The error on De,2 was propagated in the following way:

sDe,2 =
√( 2ωe

4ωexe
· sωe

)2
+
(

ω2
e

4(ωexe)2 · sωexe
)2

(24)

4.1.4 Determination of the Dissociation Energy

After determining the potential depthD′e of the excited state B3Π+
0u, the dissociation

energy Ediss can be determined. This quantity refers to the energy needed for a
photon to excite the molecule from the vibrational ground state (ν ′ = 0) of the
electronic ground state X1Σ+

0g to the state of dissociation reached at ν ′′ = ν ′′diss.
Because the electronic state must change when the molecule is excited by a photon,
this state of dissociation is located within the excited state B3Π+

0u.
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Figure 8: Crop of the absorption spectrum near the point where no more dips occur
in the spectrum. The smallest wavelength λdiss where no absorption is observed
anymore is marked by the red line. Its uncertainty is represented by the dotted
lines.

The dissociation energy can be determined quite easily by visually analyzing
the spectrum (cf. fig. 8): By looking at the spectrum and searching for the lowest
wavelength λdiss where no absorption occurs anymore, we find the the corresponding
energy to be Ediss. In the case of our spectrum, the location of the smallest wave-
length isn’t exactly clear, meaning that we have to compensate for this by estimating
a larger error. This way, the wavelength λdiss = (502± 2) nm was determined. The
corresponding energy can be easily calculated as

Ediss = 1
λdiss

= (19 920± 80) cm−1, (25)

in which the error was calculated by use of Gaussian error propagation as sEdiss =
sλdiss/λ

2
diss.

4.1.5 Determination of the Excitation Energy

With Ediss determined, the excitation energy Te which refers to the energy difference
between the minima of the excited molecular state and the ground state can now
be calculated. The dissociation energy can be expressed in terms of the excitation
energy as

Ediss = Te −G′′(0) +D′e

≈ Te −G′(0) +D′e

= Te +D′0.

(26)
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Figure 9: Morse potential determined by the molecular constants from the absorp-
tion spectrum plotted alongside the Morse potential obtained by use of the literature
values.

As we have no way of determining G′′(0) for the ground state, it was approximated
as the vibrational energy of the excited state G′(0). D′0 can easily be calculated as

D′0 = D′e,2 −G′(0)

= D′e,2 −
1
2ωe + 1

4ωexe

= (4200± 300) cm−1.

(27)

The error was propagated as

sD′0 =

√√√√
s2
D′e,2

+
s2
G′(0)
4 +

(
sωexe

4

)2
. (28)

Now, by rearranging eq. (26) one arrives at the excitation energy of

Te = Ediss −D′0 = (15 600± 400) cm−1 (29)

in which the error was propagated in the usual way.

4.1.6 Approximation of the Morse potential

With the molecular constants ωe and ωexe determined earlier, it is now possible to
create a plot of the Morse potential given by

V (R) = D′e,2 ·
[
1− e−a(R−Re)

]2
, (30)
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where a is a constant given by

a =
√

4πcµ
~
· ωexe = (19.8± 1.1) nm−1. (31)

In the above equation, c refers to the speed of light, ~ stands for the reduced Planck
constant, µ is the reduced mass of the iodine molecule and ωexe is the molecular
constant determined earlier. As only the latter has an uncertainty, the error of a
can be calculated as

sa = sωexe
2√ωexe

·
√

4πcµ
~

. (32)

The Morse potential is shown alongside the expected potential in fig. 9.

4.2 Emission Spectrum

In this section, the measured emission spectrum will be analyzed. As each of the
measurements needed for the analysis of the spectrum were taken using a software
which wasn’t able to measure the wavelength correctly, a manual correction was
necessary: Instead of using the wavelength given in the files generated by the mea-
surement program, we noted the correct start and end values of the wavelength
shown on the display on the monochromator. By generating a linear set of wave-
lengths with these start and end values as well as the original amount of data points,
the faulty wavelength was corrected.

4.2.1 Calibration of the Monochromator

As the wavelength shown on the monochromator and used in further analysis could
very well be faulty, a calibration is needed to verify the wavelengths and do optional
adjustments. The calibration was carried out using a mercury lamp which features
a very distinct and easily recognizable spectrum. After applying the aforementioned
correction of the wavelength in order to correct the faulty program, the spectrum
could now be plotted. The intensity is shown in fig. 10 alongside the expected lines
of the mercury lamp as given in the manual [1]. As one can see, the peaks are not
as sharp as we’d hoped, spanning multiple nanometers. The distinct orange double
line could not be resolved and looks like a single peak. The position of the peaks,
however, do match the spectrum quite well. As we aren’t able to make out the exact
centers of the peaks in the spectrum, we didn’t correct the wavelength any further.

4.2.2 Laser Peak

The laser used in the measurement of the emission spectrum features a wavelength
of λ = 633 nm = 6330Å. Figure 11 shows our measurement of the laser spectrum.
As one can clearly see, the laser peak is neither really Gaussian shaped nor is it at
the right position but rather a bit off-center. Because the laser spectrum is of this
rather large width, we weren’t able to make out one specific wavelength. For this
reason we could not determine the molecular transition of iodine with certainty.
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Figure 10: Measured spectrum of the mercury lamp for calibration of the monochro-
mator wavelength. The intensity is given by the photomultiplier voltage U . In
addition to the spectrum, the expected lines are also shown.
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Figure 11: Measured spectrum of the laser as voltage U of the photomultiplier.
Additionally, the expected laser wavelength of λ = 633 nm is shown.
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Figure 12: Measured emission spectrum of iodine with marked peaks. The dashed
lines show the estimated uncertainty of the location of each peak.

4.2.3 Emission Spectrum of Iodine

Now, the actual emission spectrum can be evaluated. In order to get a spectrum
with as little noise as possible, the discriminator was set to the low level of 300.
Because of this, the signal overmodulated in the range of the laser peak, leading us
to start the measurement behind the laser peak at λ = 6400Å. Figure 12 shows
the entire emission spectrum. As the peaks shown in the spectrum appear quite
asymmetrical, we decided to approximate the position of each peak by hand rather
than using a fit. In order to compensate for this, we tried to estimate the errors
on the peak positions conservatively. The estimated peaks are shown alongside the
spectrum in fig. 12. Table 2 shows the results from the estimation alongside the
wave number kν′′ which was calculated for each estimated wavelength λν′′ using

kν′′ = 1
λν′′

, skν′′ =
sλν′′
λ2
ν′′
. (33)

By comparing the absolute wave number values with the literature values given in
the staatsexamen [2], we found that the transitions

ν ′ = 6→ ν ′′ = 5 to ν ′ = 6→ ν ′′ = 16

fit the measured wave numbers the best.
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Measurements Lit. Values

ν′′ λν′′ [Å] kν′′ [cm−1] kν′′ [cm−1]

5 6510 ± 10 15 361 ± 24 15 394
6 6591 ± 10 15 172 ± 23 15 186
7 6692 ± 5 14 943 ± 11 14 980
8 6776 ± 15 14 760 ± 30 14 776
9 6871 ± 10 14 554 ± 21 14 572

10 6964 ± 15 14 360 ± 30 14 370
11 7071 ± 12 14 142 ± 24 14 168
12 7165 ± 10 13 957 ± 19 13 969
13 7257 ± 25 13 780 ± 50 13 770
14 7375 ± 20 13 560 ± 40 13 572
15 7469 ± 25 13 390 ± 50 13 376
16 7594 ± 18 13 170 ± 30 13 181

Table 2: Measured wavelengths of the peaks in the emission spectrum (cf. fig. 12)
alongside their respective wave numbers. Additionally, the literature values [2] of
the wave numbers of the transition ν ′ = 6→ ν ′′ = 5 to 16 are shown.

5 Discussion

5.1 Absorption Spectrum

Using a halogen lamp and a CCD detector in conjunction with the program Spectra-
Suite, the absorption spectrum of the iodine molecule I2 was measured. The expected
absorption dips caused by the vibrational transitions were recognized and some of
them attributed to specific vibrational transitions between the ground state X1Σ+

0g
and the excited state B3Π+

0g of iodine. Using the Birch-Sponer method, a Birch-
Sponer plot was created in order to find the molecular constants ωe and ωexe char-
acterizing the molecule’s potential in the excited state:

ωe = (133± 3) cm−1,

and ωexe = (1.04± 0.06) cm−1.
(34)

The literature values of these constants are

ωe = 125.273 cm−1,

and ωexe = 0.7016 cm−1,
(35)

respectively [3]. Comparing the values determined by us with their respective liter-
ature values, one can see that our measurement of ωe deviates by about 2.6σ from
the literature value, whereas ωexe is off by about 5.6σ. As the Birch-Sponer plot in
fig. 7 is quite linear, it seems unlikely that our deviation from the literature values
stem from a statistical misjudgement of the position of the dips in the spectrum.
One could argue, however, that because the measurement of the absorption spec-
trum doesn’t include a calibration as the emission measurement, we have no way
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of knowing that the wavelengths given by SpectraSuite correspond to the actual
wavelength values: If the wavelength’s scaling factor is off by a bit, the linearity
of the dips won’t be affected, but the slope and axis intercept would be affected.
That way, the setup used to take the absorption measurement could be affected by
a systematic error which explains the high deviation of the molecular constants.

Next, the potential wall depth D0 was calculated using two methods: The first
method consisted of approximating the sum of term differences by the area under
the Birch-Sponer plot and gives a potential depth of

D′e,1 = (4250± 290) cm−1. (36)
The second method used the properties of the Morse potential and yielded

D′e,2 = (4300± 300) cm−1. (37)
One can see that the error on both values is quite high, averaging about 7 % of
their values. Comparing both values with their literature value of 4391 cm−1, we see
that both values exist in a 1σ-environment. However, this seems partly due to the
large error as the values deviate by about 3 %. Interestingly, the approximation used
by the method with the Morse potential yields better results than the one which
employed the Birch-Sponer plot. This could on the one hand again be due to a
possible wavelength scaling issue by the program, but on the other hand due to the
fact that we didn’t sum up the term differences exactly, but rather approximated
the sum using the area under the Birch-Sponer plot.

The dissociation energy Ediss was calculated to be
Ediss = (19 920± 80) cm−1 (38)

using a visual analysis of the spectrum near the point where no more dips occur.
The literature value is given as [3, p. 29]

Ediss = 20 014 cm−1, (39)
meaning that our value deviates by about 1.2σ. As our spectrum doesn’t show
the low-wavelength peaks with a high enough precision, this could easily be due to
the noise drowning out any peaks. Another possibility is that we didn’t use the
averaging function of the program appropriately, meaning that the missing peaks
could have been simply averaged away.

Next, the energy difference between the potential minima of ground state and
excited state Te was determined using the dissociation energy. Our analysis showed
the value to be

Te = (15 600± 400) cm−1, (40)
which is in a 1σ-environment with regard to the literature value of 15 770.59 cm−1 [3].

At last, the Morse potential was plotted using the values determined earlier.
Although the constant a = (19.8± 1.1) nm−1 deviates significantly from the one
which can be calculated using the literature values of 1.62 nm−1, the plot fits the
expected Morse potential quite well (cf. fig. 9). As a was calculated using ωexe which
deviates significantly from the literature value, a high deviation of a isn’t surprising.
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5.2 Emission Spectrum

The second part of the experiment dealt with the emission spectrum of iodine: The
spectrum could be measured by using a laser to excite the iodine and subsequently
measuring the wavelength’s intensities using a monochromator. By finding the lo-
cation of each peak by hand and comparing its respective wave number to a table
of literature values [2], the progression could be identified: The transition which
occurred most likely was found to be

ν ′ = 6→ ν ′′ = 5 to ν ′ = 6→ ν ′′ = 16.

As one can see in table 2 the measured wave numbers coincide very well with the
literature values, deviating below one standard deviation. As the relative error is of
a magnitude of about 0.1 %, the peaks locations could be identified with satisfying
precision. However, the method relied on estimating the peaks position by hand. An
analytical fit wasn’t deemed useful by us, as the peaks appeared quite asymmetrical.
Furthermore, the shape of each peak varies by quite a bit, meaning that it is hard
to find an appropriate function to fit the peaks with. This issue could be solved
by the use of a better monochromator unit. One can also criticise the experimental
setup for a faulty measurement program as the program doesn’t give the correct
wavelengths. However, as shown in our calibration measurement (cf. fig. 10), by
noting down start and end values of the wavelength, it was possible to extrapolate
the correct wavelengths up to a satisfying degree. The figure shown there also
supports the idea, that the measurement setup was not as well calibrated as we
hoped it would: This can be seen in the peaks of the mercury lamp, which appear
unusually wide, which could either be due to an imperfect optical path or even a
fault in the monochromator’s function.
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ν′ λν′ [nm] kν′ [cm−1]

37 522.65 ± 0.20 19 133 ± 5
36 524.18 ± 0.20 19 077 ± 5
35 525.78 ± 0.20 19 019 ± 5
34 527.47 ± 0.20 18 958 ± 5
33 529.18 ± 0.20 18 897 ± 5
32 531.04 ± 0.20 18 831 ± 5
31 532.94 ± 0.20 18 764 ± 5
30 534.92 ± 0.20 18 694 ± 5
29 537.08 ± 0.20 18 619 ± 5
28 539.33 ± 0.20 18 542 ± 5
27 541.47 ± 0.20 18 468 ± 5
26 543.65 ± 0.20 18 394 ± 5
25 545.87 ± 0.20 18 319 ± 5
24 548.28 ± 0.20 18 239 ± 5
23 550.80 ± 0.20 18 155 ± 5
22 553.44 ± 0.20 18 069 ± 5
21 556.22 ± 0.20 17 978 ± 5
20 559.00 ± 0.20 17 889 ± 5

Table 3: Values of the transitional wavelengths and respective wave numbers regard-
ing ν ′. The wavelengths are also shown in fig. 6.

ν′ + 1
2 ∆G

(
ν′ + 1

2

)
36.5 56 ± 8
35.5 58 ± 8
34.5 61 ± 8
33.5 61 ± 8
32.5 66 ± 8
31.5 67 ± 7
30.5 69 ± 7
29.5 75 ± 7
28.5 78 ± 7

ν′ + 1
2 ∆G

(
ν′ + 1

2

)
27.5 73 ± 7
26.5 74 ± 7
25.5 75 ± 7
24.5 81 ± 7
23.5 83 ± 7
22.5 87 ± 7
21.5 90 ± 7
20.5 89 ± 7

Table 4: Differences in the transitional wave numbers of the transitions ν ′+1 and ν ′
to be plotted in the birch sponer plot (cf. fig. 7).
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