Inhaltsverzeichnis

1	Einleitung		
2	Auf g 2.1	gabenstellung Vermessung der Signale mit dem Oszilloskop	3 3
	2.2	Aufnahme der Energie-Spektren	3
	2.3	Energiefenster Setzen	4
	2.4	Messung der verzögerten Koinzidenzen	4
	2.5	Messung der zufälligen Koinzidenzen	4
	2.6	Zeitkalibration des TAC	4
3	The	oretische Grundlagen	4
	3.1	Zerfallsprozesse	4
	3.2	Prozesse in der Atomhülle	6
	3.3	Wechselwirkung von Strahlung mit Materie	6
4	Mes	sprinzip	7
	4.1	Verzögerte Koinzidenzen	7
	4.2	Nachweis von γ -Strahlung	8
5	Sign	ale am Oszilloskop	9
6	Aus	wertung	11
	6.1	Optimales Setting	11
	6.2	Cobalt Spektrum	12
	6.3	Americium Spektrum	13
	6.4	Energiekanaleichung	14
	6.5	Escapepeaks Cobalt	16
	6.6	Energiefenster	17
	6.7	Zeitkanaleichung	17
	6.8	Zufällige Koinzidenzen	18
	6.9	Verzögerte Koinzidenzen	19
7	Fazi	t	21
	7.1	Energiekanaleichung	21
	7.2	Lebensdauer und Halbwertszeit	21
8	Anh	ang	22
-	8.1	Diskussion der Energiekanaleichung	22
	8.2	Spektren	23
		I I I I I I I I I I I I I I I I I I I	

1 Einleitung

Bei diesem Versuch geht es darum, die Halbwertszeit des 14,4 keV-Zustandes von ⁵⁷Fe zu bestimmen. Dazu wird die Methode der verzögerten Koinzidenzen angewendet. In Abb.(1) kann man das vereinfachte Zerfallsschema von ⁵⁷Co zu ⁵⁷Fe, und in dessen Grundzustand, betrachten.

Abbildung 1: vereinfachtes Zerfallsschema von ⁵⁷Co [1]

2 Aufgabenstellung

2.1 Vermessung der Signale mit dem Oszilloskop

Zuerst wir eines der später verwendeten radioaktiven Präparate zwischen die beiden Szintillatoren gelegt. Nun sollen mit dem Oszilloskop die Signale des Vorverstärkers und die bipolaren und unipolaren Ausgänge des Hauptverstärkers betrachtet werden. Anschließend sollen die Anstiegszeiten (Zeitintervall zwischen 10% und 90% des Maximalwerts), die Abfallzeiten(90% - > 10%) sowie die Signal-Amplituden grob bestimmt werden.

2.2 Aufnahme der Energie-Spektren

Es sollen nun die Energie-Spektren von ⁵⁷Co und ²⁴¹Am mit dem Multi Channel Analyser aufgenommen werden. Die Messzeit beträgt je nach Präparat ca. 5-10 Minuten. Durch die Messung von ⁵⁷Co in beiden möglichen Ausrichtungen soll untersucht werden, welcher Detektor sich am besten für die Messung des 14,4keV-Peak bzw. den 122keV-Peak eignet. Anschließend wird das Spektrum von ²⁴¹ mit dem Detektor gemessen, welcher ein gut erkennbares ⁵⁷Co-Spektrum aufzeigt.

Später sollen mit den charakteristischen Peaks eine Energie-Kalibration durchgeführt werden um damit die beiden Spektren auswerten zu können.

2.3 Energiefenster Setzen

Die Energiefenster beider Single Channel Analyser (SCA) soll nun so eingestellt werden, dass die jeweiligen Signale der Photonen einen Ausgangspuls erzeugen.

2.4 Messung der verzögerten Koinzidenzen

Mit dem Multi Channel Analyser wird nun das Spektrum der verzögerten Koinzidenzen aufgenommen. Das Signal des 122keV Zerfalls soll verzögert werden und als Stoppsignal nach dem 14,4keV Zerfall dienen. Die erhaltenen Spektren sollen schließlich mit verschiedenen Funktionen gefittet werden um die Lebensdauer daraus bestimmen zu können.

2.5 Messung der zufälligen Koinzidenzen

Um auszuschließen das die Messung durch zufällige Koinzidenzen verfälscht wird, werden wir noch eine zusätzliche Messreihe durchführen, bei der das 122keV-Signal nicht verzögert wird.

2.6 Zeitkalibration des TAC

Mit dem Time to Amplitude Converter (TAC) soll nun das unverzögerte Signal im Start-Eingang eingelesen werden und das verzögerte im Stopp-Eingang. Es soll eine Messung für unterschiedliche Delays folgen, woraus später eine Zeiteichung erfolgen kann.

3 Theoretische Grundlagen

3.1 Zerfallsprozesse

Bei radioaktivem Zerfall geht ein instabiler Kern, auch Mutterkern genannt, durch verschiedene Zerfallsarten in einen Tochterkern über. Im Allgemeinen kann auch dieser Kern radioaktiv sein, sodass sich der Prozess wiederholt bis ein stabiler Zustand erreicht wird. Man spricht von einem statistischen Prozess. Die Wahrscheinlichkeit, mit der ein Kern in einem Zeitintervall *dt* zerfällt, ist über die Zerfallskonstante λ gegeben:

$$dN = -\lambda \cdot N \cdot dt$$

Durch Integration ergibt sich das Zerfallsgesetz, mit N_0 als Teilchenanzahl bei t = 0:

$$N(t) = N_0 \cdot e^{-\lambda t}$$

3.1.1 α -Zerfall

Bei diesem Zerfallsprozess wandelt sich ein angeregter Kern durch Aussendung eines Helium-Kerns in einen Tochterkern um:

$$A_Z^A X \rightarrow A^{-4}_{Z-2} Y + {}^4_2 He$$

Da sich das Helium-Atom bei seiner Entstehung noch innerhalb des Coloumbwalls des Mutterkerns befindet, muss dieser zunächst überwunden werden. Durch die klassische Physik kann dieser Effekt jedoch nicht erklärt werden, denn das Atom verfügt nicht über die benötigte kinetische Energie. So kann der α -Zerfall lediglich durch den Tunneleffekt erklärt werden.

3.1.2 β -Zerfall

Die Ursache für den β -Zerfall liegt in der schwachen Wechselwirkung. Es findet eine Änderung der Kernladungszahl Z um den Wert eins statt, während die Massenzahl A konstant bleibt. Es gibt unterschiedliche Arten von β -Zerfall:

 β^- -Zerfall Hierbei wird ein Neutron in ein Proton umgewandelt und zusätzlich ein Elektron, sowie ein Elektronenantineutrino emittiert:

$$n \rightarrow p + e^- + \bar{v}_e$$

 β^+ -Zerfall Hier wird ein Proton in ein Neutron umgewandelt und zusätzlich ein Positron, sowie ein Elektronenneutrino emittiert:

$$p \rightarrow n + e^+ + v_e$$

3.1.3 Elektroneneinfang

Dieser Effekt ist eine weitere Art der Radioaktivität, bei der in einem Atom, ebenso wie beim β^+ -Zerfall, ein Proton in ein Neutron umgewandelt wird. Ebenso entsteht ein Elektronenneutrino.

$$p + e^- \rightarrow n + v_e$$

Dies geschieht durch das Einfangen eines Elektrons durch den Atomkern. Die dadurch entstandene Lücke (meist in der K-Schale) wird durch ein Elektron aus einer höher liegenden Schalen gefüllt, wodurch entweder ein Röntgenquant oder ein Hüllenelektron (Auger-Elektron) an die Umgebung ausgesendet wird, um die überschüssige Energie abzugeben.

3.1.4 γ-Strahlung

Nach einem α - oder β -Zerfall kommt es oft vor, dass sich der Tochterkern in einem angeregten Zustand befindet. Diese Energie kann durch Emission von γ -Strahlung abgegeben werden. Hierbei handelt es sich um hochenergetische, elektromagnetische Strahlung mit kurzen Wellenlängen von unter $10^{-9}m$.

3.1.5 Innere Konversion

Eine weitere Möglichkeit, wie ein angeregter Kern seine überschüssige Energie abgeben kann, findet sich in der inneren Konversion. Dieser Effekt tritt vor allem bei schweren Kernen auf. Hierbei wird die Energie des Atoms direkt auf eines der Hüllenelektronen übertragen, welches dadurch mit einer kinetischen Energie von $E_{kin} = E_{Anregung} - E_{Bindung}$ herausgelöst wird. Wenn ein nachrückendes Elektron diesen Platz nun einnimmt, entsteht entweder Röntgenstrahlung oder es kommt zum Auger-Effekt.

3.1.6 Auger-Effekt

Dieser tritt auf, wenn z.B. durch Elektroneneinfang eine Lücke in einer unteren Schale des Atoms entstanden ist und diese durch ein Elektron aus einer höheren Schale aufgefüllt wird. Oft wird bei diesem Vorgang Röntgenstrahlung emittiert. Es kann jedoch auch vorkommen, dass die noch vorhandene Energie auf ein anderes Elektron (Auger-Elektron) mit geringerer Bindungsenergie übertragen wird und dieses dadurch aus dem Atom heraus gelöst wird. Es entsteht eine weitere Lücke.

3.2 Prozesse in der Atomhülle

Sowohl beim Elektroneneinfang als auch bei der Inneren Konversion existiert in der Atomhülle ein unbesetzter Elektronen-Zustand. Im Normalfall wird diese Lücke durch ein Elektron einer höheren Schale aufgefüllt. Die dadurch freiwerdende Differenz an Bindungsenergie wird durch durch Emission eines Röntgenquants ("charakteristische Röntgenstrahlung") oder durch ein Auger-Elektron abgegeben

3.3 Wechselwirkung von Strahlung mit Materie

Um Strahlung nachzuweisen, nutzt man deren Wechselwirkung mit Materie aus, denn elektromagnetische Strahlung kann nur indirekt gemessem werden. Je nach Energie können folgende drei Effekte auftreten, deren Wirkungsquerschnitt von der γ -Energie und der Kernladungszahl Z des Materials abhängt:

- Photoeffekt, dominierend für $E_{\gamma} < 200 \text{keV}$ (bei Z ≈ 50)
- Comptoneffekt, dominierend für 200keV < E_{γ} < 5MeV (bei Z \approx 50)
- Paarbildung, erst möglich für $E_{\gamma} \ge 1,022 \text{MeV}$

Wenn Gammastrahlen auf Materie treffen werden diese laut dem Exponentialgesetz $I_d = I_0 e^{\mu d}$ absorbiert. I_d steht für die Intensität nach einer Strecke *d* im Material, I_0 die anfängliche Intensität der Gammastrahlen und μ ist der Absorptionskoeffizient des Materials. Dieser ist von der γ -Energie und dem verwendeten Material abhängig.

3.3.1 Photoeffekt

Beim Photoeffekt betrachtet man einen vollständigen Energieübertrag von einem γ -Quant mit der Energie $E = h \cdot v$ auf ein Elektron, welches sich auf einer der inneren Atomschalen (meist der K-Schale) befindet. Dadurch wird dieses mit der kinetischen Energie $E_{kin} = h \cdot v - E_{Bindung}$ aus dem Atom herausgelöst. Diese Lücke wird durch ein nachrückendes Elektron gefüllt, wodurch entweder Röntgenstrahlung oder der Auger-Effekt auftritt.

Der Wirkungsquerschnitt für den Photoeffekt verhält sich wie folgt: $\sigma \propto \frac{Z^5}{E^{3,5}}$, wobei Z für die Kernladungszahl des Absorbermaterials und E für die Energie des γ -Quants stehen.

3.3.2 Comptoneffekt

Unter dem Comptoneffekt, versteht man die Streuung eines γ -Quants mit der Energie $E = h \cdot v_0$ an einem freien oder nur leicht gebundenen Elektron. Dabei wird nur ein Teil der Energie E auf das Elektron übertragen, welches dadurch abgelenkt wird. Das Photon ändert nach dem Stoß seine Richtung ebenfalls und setzt mit geringerer Energie seine Bahn fort.

3.3.3 Paarbildung

Durch die Wechselwirkung von einem γ -Quant in einem elektromagnetischen Feld eines Kerns bzw. eines Elektrons, kann es zur sogenannten Paarbildung kommen. Das γ -Quant muss jedoch mindestens eine Energie von $E_{\gamma} = 2 \cdot E_{e^-}$ mit E_{e^-} als Ruheenergie des Elektrons, besitzen um diesen Effekt auslösen zu können. Das γ -Teilchen wird hierbei in ein Elektron-Positron-Paar umgewandelt. Überschüssige Energie dieses Vorgangs, wird in kinetische Energie der erzeugten Teilchen umgewandelt. Schon nach kurzer Zeit vereinigt sich das Positron wieder mit einem Elektron, diese zerstrahlen schließlich in zwei, seltener auch in drei, γ -Quanten. Enstehen zwei Quanten, besitzen diese jeweils 511*keV*, welche wiederum durch den Photo- oder Compton-Effekt absorbiert werden können.

Die Wahrscheinlichkeit für eine Paarbildung *P* steigt proportional zur Protonenanzahl Z-Quadrat an, $P \sim Z^2$.

4 Messprinzip

4.1 Verzögerte Koinzidenzen

Die Methode der verzögerten Koinzidenzen ist vor allem bei Halbwertszeiten welche im Bereich von Nanosekunden bis Millisekunden liegt gut geeignet. Man misst dabei die Zeit die zwischen zwei γ -Zerfällen liegt. Vorteilhaft ist hier, dass die Existenz des 14,4keV Zustands von ⁵⁷Fe zeitgleich mit der Emission eines γ -Quants, mit 122keV Energie, zusammenfällt und der Zerfall des Zustandes mit einem 14,4keV γ -Quant. Das Zerfallsgesetz, welches einen statistischen Prozess beschreibt, lautet wie folgt:

$$N(t) = N_0 e^{-t/\tau} \tag{1}$$

Wobei N(t) die Anzahl der nach der Zeit *t* noch vorhandenen Kerne ist, N_0 die Zahl der Kerne bei t = 0 und τ die Lebensdauer bezeichnet. Bei einem 14,4keV Zustand erwartet man nun für die Anzahl der gemessenen Zerfälle in Abhängigkeit von Δt folgendes Schema.

Abbildung 2: Simuliertes Zeitspektrum des Zerfalls des 14,4 keV-Zustandes [1]

Da beim Zerfall des 14,4 keV-Zustandes nur in 10% der Fälle ein γ -Quant ausgesendet wird (90% innere Konversion) wird die Messung mit dem 14,4 keV- γ -Quant gestartet und durch das 122 keV- γ -Quant beendet. So verhindert man eine unnötig lange Totzeit welche jedes Start-Signal erzeugt.

4.2 Nachweis von γ -Strahlung

Damit man unterscheiden kann welches der γ -Quanten gemessen wurde wird ein Szintillator und ein Photomultiplier verwendet.

4.2.1 Szintillator

Bei diesem Versuch verwenden wir einen anorganischen NaI(TI)-Szintillator, bei welchem das Gitter des Ionenkristalls die Lichtemission verantworten. Vor allem die hohe Lichtausbeute ist bei diesem Szintillator von Vorteil. Die Funktionsweise lässt sich mit Hilfe des Bändermodells beschreiben. Die Elektronen werden angeregt und befinden sich dann im Leitungsband, wo sie unter Emission von niederenergetischen Photonen wieder abgeregt werden können. Durch eine Dotierung von Thallium erhält der Kristall ein zusätzliches Energie-Niveau zwischen Valenzund Leitungsband. Dies verhindert das Photonen direkt nach der Emission wieder Elektronen anregen.

4.2.2 Photomultiplier

Nach dem im Szintillator Licht emittiert wurde wird dieses in den Photomultiplier geleitet. Der Photomultiplier wandelt dann das Signal in ein elektrisches um. Dies funktioniert durch eine Photokathode des Multipliers wo das Licht Elektronen herausschlägt, welche anschließend durch angelegte Spannung beschleunigt und verstärkt wird. Je höher also die Energie des einfallenden Lichtes, desto größer das elektrische Signal.

4.2.3 Gemessenes Energiespektrum

Das Spektrum welches sich bei der Messung ergibt wird auf dem Computer in verschiedenen Kanälen dargestellt. Ein typisches ⁵⁷Co-Spektrum mit einem NaI(TI)-Szintillator ist in Abb.(3) zu sehen.

Abbildung 3: Gamma-Spektrum von ⁵⁷Co [1]

5 Signale am Oszilloskop

Bevor wir mit der eigentlichen Messung begannen, haben wir uns zunächst mit dem Versuchsaufbau vertraut gemacht und uns die verschiedenen Signale des Vor- und des Hauptverstärkers betrachtet. Diese nahmen wir mit dem Oszilloskop auf.

(a) Photomultiplier

(b) Unipolarer Ausgang des Hauptverstärkers

⁽c) Bipolarer Ausgang des Hauptverstärkers

(d) Positives logisches Signal des Single Chanle Analysers

- (a) Signal des Photomultipliers: charakteristisch ist der plötzliche Anstieg des Signals, was auf die Mindestenergie welche nötig ist um Elektronen beim Multiplier herauszuschlagen zurückzuführen ist.
- (b) Unipolarer Ausgang des HV: hier erhielten wir ein positives Signal
- (c) Bipolarer Ausgang des HV: es sind nun zwei Signale mit unterschiedlichem Vorzeichen sichtbar.
- (d) positives logisches Signal des SCA: ein logisches Signal, welches lediglich als Peak vorkommt.

6 Auswertung

6.1 Optimales Setting

Wir führten zunächst 4 Messungen mit ⁵⁷*Co* durch, in denen wir wir sowohl die Orientierung der Probe als auch den Szintillator veränderten. Diese 4 Messungen dienen zunächst dazu, die optimale Orientierung unsere Probe und der "besseren"Szintillator zu finden. Wir entschieden uns für die Aufnahme des rechten Szintillator und der Orientierung der Probe zu ihm(siehe Abbildung 4). Die Einstellungen des Amplifier sind in Tabelle 1 zu finden, welche so gewählt wurden, dass der letzte Peak von Cobalt auf ca. Kanal 800 fällt. Diese Einstellung schien uns sinnvoll, da wir so eine möglichst hohe Auflösung erhalten, ohne jedoch wichtige Daten abzuschneiden. Die Plots für die restlichen Einstellungen sind im Anhang 8.2 zu finden.

Szintillator	Parameter	Wert
linker Szintillator		
	Gain	6,08
	Coarse	200
	Shaping	0,5
rechter Szintillator		
	Gain	5,2
	Coarse	200
	Shaping	0,5

Abbildung 4: Spektrum von Cobalt mit optimaler Ausrichtung

Die Wahl für diese Einstellung viel vor allem auf Grund der guten Auflösung der Escapepeaks.

6.2 Cobalt Spektrum

Cobalt zerfällt in den 2. angeregten Zustand von ${}^{57}Fe$. Wir konnten im Cobalt-Spektrum 4 Peaks identifizieren. Zur Analyse fitten wir diese Peaks mit einer Gausskurve. Die Ergebnisse der Peaks sind in Abbildung 5 bis 7 zu finden. Eine genauere Analyse der Peaks ist in Kapitel 8.1 und 6.5 zu finden.

Abbildung 5: 1. Peak im Cobalt-Spektrum

Abbildung 6: 2. und 3. Peak im Cobalt-Spektrum

Abbildung 7: 4. Peak im Cobalt-Spektrum

6.3 Americium Spektrum

Americum zerfällt in angeregte Zustände von Neptunium. In diesem Spektrum (Abbildung 8) konnten wir 2 Peaks erkennen, die wir ebenfalls mit Gausskurven fitten (Abbildung 9 und 10). Diese Analyse dieses Spektrum ist ebenfalls in Kapitel 8.1 zu finden.

Abbildung 8: Americium-Spektrum

Abbildung 9: 1. Peak im Americium-Spektrum

Abbildung 10: 2. Peak im Americium-Spektrum

6.4 Energiekanaleichung

Für eine Energiekanaleichung müssen wir zunächst die im vorangegangen Kapiteln gefunden Peaks, theoretischen Werten zuordnen. Dies ist nicht immer leicht, da oftmals verschiedene Übergänge im selben Energiebereich liegen und nur schwer einzeln aufzulösen sind. Die theoretischen Werte, die bei unserem Versuch in Frage kommen, sind in der Tabelle 2 zu finden.

Element	Übergang	Energie (in keV)
Neptunium-237		
	$3. \rightarrow 1.$ Schale	59,5
	$3. \rightarrow 2.$ Schale	26,3
	$2. \rightarrow 1.$ Schale	33,3
Ferrum-57		
	$3. \rightarrow 1.$ Schale	136,5
	$3. \rightarrow 2.$ Schale	122,1
	$2. \rightarrow 1.$ Schale	14,4

Tabelle 2: Theoretische Peaks der Spektren

Wir entschieden uns bei der Energieeichung die Werte der Escapepeaks des Cobalt Zerfalls nichts zu berücksichtigen, da hier ein genauer theortischer Wert nur schwer festzulegen ist. Auffälig ist, dass wir bei beiden Zerfällen 3 theoretische Werte erwarten, aber jeweils nur zwei Peaks erkennen können.

Bei der Zuordnung im Ferrum-Spektrum konnten wir zunächst eindeutig den 14,4*keV* Peak zu unserem ersten Peak zuordnen. Der vierte Peak stellt wohl eine Überglagerung des 136,5*keV* und des 122,1*keV* da. Wir benutzen für unsere Zuordnung jedoch trotzdem nur den 122,1*keV* Wert, da dieser Übergang deutlich häufiger geschieht und somit dominiert.

Bei der Zuordnung des Neptunium ergibt sich bei unserem ersten Peak ein Problem. Die Auflösung unserer Spektrum ist hier zu ungenau um den 26,3 keV und den 33,3 keV Peak zu differenzieren. Für uns kamen hier zunächst drei Möglichkeiten in Frage. Ihn als 22,1 keV oder 33,3 keV zu identifizieren, oder ein Mittel aus beiden zu nehmen. Ein Vergleich der drei Möglichkeiten liefert bei dem 33,3 keV das beste Ergebnis. Bei genauerem betrachten des Spektrum in Abbildung 9 kann man auch erkennen, dass bei ca. Kanal 195 eine Abflachung zu erkennen ist, die dann von einem erneuten Peak überlagert wird. Diese Abflachung stellt vermutlich den 26,3 keV Peak da, ist aber leider nicht zur Auswertung benutzbar.

Uns schien es sinnvoll bei den Werten unserer Kanäle einen zusatzlichen Fehler anzunehmen, da die der Fehler in den Plots nur die Genauigkeit des Fits, aber nicht die eigentliche Ungenauigkeit unserer Kanäle berücksichtigt. Deshalb nehmen wir einen zusätzlichen Fehler von ± 1 Kanal auf den 1. Peak des Cobalt und auf den 2. Peak des Americium an. Den anderen beiden Peaks wollen wir einen zuätzlichen Fehler von ± 2 Kanälen geben, da hier zusätzlich die Überlagerung der Peaks eine Verschiebung des Maximums verursacht. Bei der Fehlerberechnung können wir diese Fehler quadratisch addieren, um so unseren Gesamtfehler auf unser gemessenen Peaks zu erhalten. Zur Energieeichung wollen wir die Zuteilung in Tabelle 3 benutzen.

Element	Messpeak (in Kanälen)	Fehler (in Kanälen)	Übergang	Energie (in keV)
Neptunium-237				
	407	± 2	$3. \rightarrow 1.$ Schale	59,5
	208	± 1	$2. \rightarrow 1.$ Schale	33,3
Ferrum-57				
	821	± 2	$3. \rightarrow 2.$ Schale	122,1
	68	± 2	$2. \rightarrow 1.$ Schale	14,4

Tabelle 3: Theoretische Peaks der Spektren

Für eine Energiekanaleichung benutzen wir die im vorangegangen Kapitel gefundenen Zuordnungen und tragen diese gegeneinander auf. Mit diesen Daten führen wir eine lin. Regression durch (Abbildung 11) und erhalten so den Zusammenhang:

$$E(k) = 3,864 + 0,1406k \tag{2}$$

wobei k den Kanal angibt. Eine ausführlichere Diskussion über eventuelle Verbesserungen und der generellen Aussagekraft der Eichung ist in Kapitel 8.1 zu finden.

Abbildung 11: Energiekanaleichung

6.5 Escapepeaks Cobalt

Durch die Energiekanaleichung können wir nun die Energie der beiden gemessenen Escapepeaks im Cobaltspektrum berechnen. Wir berechnen mit Hilfe der Gleichung 2 folgende Energien: $2.Peak: E = (73, 3 \pm 0, 4)keV$ $3.Peak: E = (87, 5 \pm 0, 4)keV$, wobei sich der Fehler durch Gausssche Fehlerfortpflanzung ergibt:

$$s_E = \sqrt{s_a^2 + k^2 * s_b^2 + b^2 s_k^2} \tag{3}$$

mit dem Kanal k und dem Fehler $s_k = 1$ darauf, dem Achsenabschnitt a und der Steigung b mit ihren entsprechenden Fehlern. Diese Peaks liegen zu mindestens in dem erwarteten Bereich von $28 \, keV$ unterhalb des $122, 1 \, keV$ und des $136, 5 \, keV$ Peaks.

6.6 Energiefenster

Zur Justierung der Energiefenster benutzten wir unser Computerauswertungsprogramm und versuchten die beiden Peaks möglichst exakt, aber ohne zu viel abzuschneiden, festzulegen. Bei unserer Messung benutzen wir den rechten Szintillator für den 14*keV* Peak und den linken für den 121*keV*. Da wir nun beide Szintillatoren gleichzeitig benutzen wollten, verwendeten wir nun auch beide Amplifier und mussten deswegen erneut unsere Einstellung für diese justieren. Um unsere Einstellungen zu überprüfen fürhten wir immer wieder kurze Probemessungen für unsere verzögerten Koinzidenzen durch (siehe Anhang **??**). Wir entschieden uns am Schluss für die Einstellungen, die in Tabelle 4 zu finden sind.

Gerät	Parameter	Wert
linker Szintillator		
	Gain	1,1
	Coarse	200
	Shaping	0,5
linker SCA		
	Upper	5,38
	Lower	3,81
rechter Szintillator		
	Gain	6,08
	Coarse	200
	Shaping	0,5
rechter SCA		
	Upper	1,30
	Lower	0,7

Tabelle 4: Settings für die verzögerten Koinzidenzen

Bei diesen Messungen entschieden wir uns ebenfalls welche Einstellung der Dalayeinheiten und des TAC wir für unsere Haupt- und Untergrundmessung verwenden wollen. Hier fielen unsere Entscheidungen auf: Dalay = 198 ns und TAC: $Range = 0, 2 \mu s$ und $Amplitude \approx 3.Strich$.

6.7 Zeitkanaleichung

Um die exakte Verzögerung unserer Delayeinheit zu bestimmen, führen wir noch eine Zeitkanaleichung durch. Hierzu teilen wir ein ankommendes Signal auf und schicken nur einen Teil durch das Delay. Wir führten hier eine Messreihe mit 12 Messungen durch die Werte in Tabelle 5 ergaben.

Delay	Kanal
(in ns)	(in Kanlälen)
198	191
190	184
182	177
166	150
150	147
134	132
118	117
102	102
86	88
70	73
54	58
38	43

Tabelle 5: Messwerte der Zeitkanaleichung

Für die Eichung tragen wir die Werten gegeneinander auf und fuhren eine lin. Regression durch, wobei wir wieder einen Fehler von ± 1 Kanal auf unsere Messwerte annehmen. Das Ergebnis ist in Abbildung 12 zu finden.

Abbildung 12: Zeitkanaleichung

6.8 Zufällige Koinzidenzen

Um bei unserer späteren Messung verhindern zu können, dass wir zwei Reaktionen aus unterschiedlichen Kernen berücksichtigen führen wir zuächst eine Untergrundmessung durch. Hierzu starten wir die Messung mit einem unverzögerten 121 keV Signal und stoppen es mit einem um 198 ns verzögerten 14 keV Signal. Hierdurch wird gewährleistet, dass wir kein echtes Signal aufnehmen können, sondern nur zufällige Ereignisse messen. Die Messung führten wir zwei Stunden lang aus (Abb. 13).

Abbildung 13: Untergrundmessung

6.9 Verzögerte Koinzidenzen

In unserer Hauptmessung wollen wir nun die Lebensdauer des Zustands bestimmen. Hierzu benutzen wir als Startsignal das unverzögerte 14 keV Signal und als Stoppsignal das um 198 ns verzögerte 122 keV Signal. Unsere Messzeit betrug dabei 14 Stunden. Um unser Untergrund zu berücksichtigen müssen wir diesen zunächst auf die längere Messzeit normieren und bei der Fehlerberechnung ist zu beachten, dass der Fehler auf unsere Einzelereignisse N nicht mehr \sqrt{N} ist, sondern das diese sich nun aus dem Fehler des Untergrunds und dem unserer Messung ergeben:

$$s_N = \sqrt{\left(\frac{\partial N}{\partial N_s}\right)^2 s_{N_s}^2 + \left(\frac{\partial N}{\partial N_u}\right)^2 s_{N_u}^2} = \sqrt{s_{N_s}^2 + \left(\frac{t_s}{t_u} s_{N_u}\right)^2} \tag{4}$$

Auf unsere Kanäle nehmen wir hier wieder einen Fehler von ± 1 Kanal an. Um unsere Lebensdauer bestimmen zu können gehen wir nun auf zwei Arten vor. Zu erst fitten wir unsere Daten mit einer exp. Funktion (Abb. 14) und als zweites tragen wir unsere Daten logarithmisch auf und führen eine lin. Regression durch (Abb. 15). Für den linearen Fit müssen wir auch eine Fehlerfortpflanzung durchführen, der Fehler ergibt sich dann durch:

$$s_L = \sqrt{\left(\frac{\partial \ln(N)}{\partial N}\right)^2 s_N^2} = \frac{s_N}{N} \tag{5}$$

wobei N die Ereigniszahl (Untergrund bereits verrechnet) ist und s_N der Fehler dazu.

Abbildung 14: Messung

Abbildung 15: Messung logarithmisch

Wir erhalten also folgende Ergebnisse:

$$N_{exp}(k) = 6,147 \exp(0,007781 k) \tag{6}$$

$$N_{lin}(k) = 6,039 + 0,01024k \tag{7}$$

wobei k jeweils für die Kanalzahl steht. Die Lebenszeit und die Halbwertszeit ergibt sich nun für den exp. Verlauf durch:

$$\tau_{exp} = \frac{p1_{zeit}}{p1_{exp}} = \frac{1,079\frac{ns}{kanal}}{0,007781\frac{1}{kanal}} = 138,67ns$$
(8)

$$s_{\tau_{exp}} = \sqrt{\left(\frac{\partial \tau_{exp}}{\partial p \mathbf{1}_{zeit}}\right)^2 s_{p\mathbf{1}_{zeit}}^2 + \left(\frac{\partial \tau_{exp}}{\partial p \mathbf{1}_{exp}}\right)^2 s_{p\mathbf{1}_{exp}}^2} = 5,42ns \tag{9}$$

$$T_{exp_{\frac{1}{2}}} = ln(2)\tau = 96, 12ns \tag{10}$$

$$s_{T_{\frac{1}{2}}} = ln(2)s_{\tau} = 3,76ns \tag{11}$$

Für den lin. Fit ergeben sich folgende Werte:

$$T_{lin\frac{1}{2}} = \frac{p_{1_{zeit}}}{p_{1_{lin}}} = \frac{1,079\frac{ns}{kanal}}{0,01024\frac{1}{kanal}} = 105,37ns$$
(12)

$$s_{T_{lin\frac{1}{2}}} = \sqrt{\left(\frac{\partial T_{lin\frac{1}{2}}}{\partial p \mathbf{1}_{zeit}}\right)^2 s_{p\mathbf{1}_{zeit}}^2 + \left(\frac{\partial T_{lin\frac{1}{2}}}{\partial p \mathbf{1}_{lin}}\right)^2 s_{p\mathbf{1}_{lin}}^2} = 2,05ns$$
(13)

$$\tau_{lin} = \frac{T_{lin\frac{1}{2}}}{ln(2)} = 152,02ns \tag{14}$$

$$s_{\tau_{lin}} = \frac{s_{T_{lin}\frac{1}{2}}}{ln(2)} = 2,96ns$$
(15)

7 Fazit

7.1 Energiekanaleichung

Wir konnten folgenden Zusammenhang zwischen Energie E und Kanal k feststellen:

$$E(k) = 3,864 + 0,1406k \tag{16}$$

7.2 Lebensdauer und Halbwertszeit

Unsere Messungen lieferten folgende Ergebnisse:

$$\tau_{exp} = (138 \pm 5)ns \tag{17}$$

$$\tau_{lin} = (152 \pm 3)ns \tag{18}$$

$$T_{exp\frac{1}{2}} = (96 \pm 4)ns \tag{19}$$

$$T_{lin\frac{1}{2}} = (105 \pm 2)ns \tag{20}$$

Somit stimmen die Ergebnisse unseres exp. Verlauf innerhalb einer Standartabweichung mit den Literaturwerten von $\tau = 141, 4ns$ und $T_{\frac{1}{2}} = 98ns$ überein. Unser lin. Fit liefert mit mit einem Bereich von 4σ eine Übereinstimmung, sodass wir im gesamten die Literaturwerte durch unsere Messung bestätigen konnten.

8 Anhang

8.1 Diskussion der Energiekanaleichung

Unsere Energieeichung ist nur in sehr beschränktem Mass aussagekräftig. Dies erkennt man sehr gut an dem extrem hohen χ^2 -Wert. Dies hat mehrere Gründe. Zum einen ist eine solche Eichung mit 4 Messpunkten vorzunehmen sehr gewagt. Da wir mit einem Polynom 1. Grades fitten verlieren wir zwei Freiheitsgrade, sodass uns letztlich nur zwei Freiheitsgrade für den eigentlichen Fit bleiben. Des weiteren ist ein lin. Verlauf wohl ein zu einfaches Modell für unsere Messapparatur. Ein höheres Polynom oder vielleicht auch zwei Eichgeraden wären deutlich sinnvoller. In unserem Versuchsaufbau ist uns jedoch mit lediglich zwei Proben, bei den wir jeweils nur 2 Peaks auflösen konnten hierzu keine Möglichkeit geblieben. Man kann jedoch gut erkennen, das eine Eichung nur für die unteren Kanäle deutlich genauer ist (Abb. 16). Hier sieht man deutlich, das wir eine viel besseren χ^2 -Wert bekommen und unser Modell somit besser übereinstimmt. Uns fehlen jedoch die Daten dies auch für den höheren Kanalbereich durchzuführen. Es wäre daher durchaus angebracht eine weitere Probe zu Eichung hinzu zu ziehen. Diese sollte ins Besondere weitere Peaks im energetisch höhren Bereich haben.

Abbildung 16: Energiekanaleichung für tiefere Kanäle

8.2 Spektren

(a) Spektrum Co linker Szin. gegen die Orientierung

(b) Spektrum Co linker Szin. mit der Orientierung

(c) Spektrum Co rechter Szin. gegen die Orientierung

(d) Spektrum Am linker Szin. gegen der Orientierung

8.3 Versuchsaufschriebe

Versuch -	Kurze Halbwertsz	seikn Versuchstag 21.10 13
Vermessing der	signale mit dem	Oszilloskop
Aufnahme	versidenes Signe	de mit dem Oszi.
-> Photom	ultip /Vorverstarker aver Aussang des *	Implifiers
-> Bipoles -> Positi	er Ausgung des res signel des	Amplibers Single Chanel Analyser
Einsbellung 657	Amplifier für	Spektrum (SCt. bereiks mit geschulten ganzofn
1. Messcancy	Gain 6,08 Course 200	lisker Sin mit dusrichtung des Probe zu ihm
	Shaping 0,5	
2. Messerry	Gain 5,2 Course 200	rechter Szinmit Ausrichtung gogen ihn
	shaping 0,5	
3. illessing	Gain 5,2 Coarse 200	verliker Szin mit tycvichtung zer ihm
	Shaping 015	
4. Macang	Gain 6,08 Course 200	linke. Stin mit Ausrichtung jegen ihn
A-247	Shaping 0, S	
1. Meesang	Sain 5,2	veille Szin firsvichtung
	Shaping 0,5	
2. Messing	Guin 6,08 Course 200	geger ihn tueriching
	Shaping 0,5	1

Abbildung 17: Durchführungsprotokoll 1

Abbildung 18: Durchführungsprotokoll 2

Abbildung 19: Durchführungsprotokoll 3 27

Literatur

[1] M.Kohli. Versuchsanleitung, Kurze Halbwertszeiten. http://wwwhep.physik.uni-freiburg.de, 2010.