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1 Introduction

The experiment is about the short half lives. The aim will be to determine the life time
of the 57Fe 14.4 KeV state with the delayed coincidence method. To understand what is
happening within the experiment, we will give short explanations of the different decays
that are possible and the ones we are observing in the following section, followed by the
instruments and methods used to measure the life time.

2 Theoretical Background

The formulas and the theories are taken from [1], if not cited diffrently.

2.1 Law of Radioactive Decay

Most elements and their isotopes are stable, but neither the less some are unstable and
decay over time. This phenomenon is called radioactive decay. This process is a statistical
process, where the number of atoms N over time can be described with the following
relation:

dN

dt
= −λ ·N (1)

Here is λ the specific decay constant for an isotope. Through integration this results in the
Law of radioactive decay

N(t) = N0 · e−λ·t, (2)

N0 describes the number of atoms at the time 0 (N0 = N(0)). The most interesting quantity
of Radioactive decay is the so called Half-life T1/2. it indicates the time, after which half
of the beginning atoms have decayed.

N(T1/2) =
N0

2
⇐⇒ T1/2

τ = 1
λ : lifetime

↓
= τ ln 2 (3)

Another important quantity is the activity A which is the negative change rate in the
number of atoms.

A = −dN
dt

= λ ·N(t) =
ln 2

T1/2
N(t) (4)

2.2 Different Types of Decay

2.2.1 α – decay

A parent nucleus X decays over time into its so called daughter nucleus Y. The common
notation for nuclei and their compositions is AZX where X is the element, A is the number of
protons plus the number of neutrons in the nucleus and Z is the number of protons without
the neutrons. An α particle consists of two protons and two neutrons and therefore a twice
positively charged He nucleus (42He). This kind of decay mainly occurs in heavy nuclei. The
reaction Formula for the α-decay is given by:

A
ZX −→ A−4

Z−2Y. (5)
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2.2.2 β− – decay

β− rays consist of electrons and anti electron neutrinos.

A
ZX−→ A

Z+1Y + e−+ν̄e

The Weak interaction changes with a W−boson one down-quark into one up-quark, and
therefore the neutron into a proton.

Figure 1: Feynman diagram of the β−–decay. This picture was taken from [2]

2.2.3 Electron capture

The phenomenon of the electron capture is another way of a β− –decay. Instead of a neutron
which becomes a proton, the opposite is the case. An electron from the lower k-shell is being
absorbed in the nucleus and an electron neutrino emitted. A Feynman diagram can be seen
in Figure 2. The Electron capture does take place in this experiment, but it is not the one,
we will be detecting.

Figure 2: Feynman diagram of electron capture. This picture was taken from [3]

2



2.3 γ decay

In this experiment, we will only be able to detect the γ decay which takes place when an
isotope decays into an exited state of the daughter isotope. When this relaxes into a lower
energy state, it emits γ rays with a frequency proportional to the energy difference of those
states.

2.4 Internal Conversion

Another phenomenon that can occur during the relaxation of an excited nucleus is the
internal conversion, where the excess energy is not emitted as a Photon but absorbed by an
Electron in the atomic shell which then has enough energy to surmount its binding energy
and is emitted from the atom. The hole which is left by the emitted electron is filled by an
electron from an energetically higher shell. The energy difference between the shells for its
part can be emitted as X-radiation or by emission of another electron which is then called
Auger electron.

2.5 Inorganic Scintillator:

An inorganic scintillator has a lattice structure. An absorbed photon causes a collective
lattice excitation of the crystal. By solving the stationary Schrödinger equation for a
periodic potential, one can show that the atoms in a crystalline material have got collective
energy bands (cf. fig. 3).

Figure 3: Band structure of a doped scintillation crystal [4]

An electron in the valence band can be excited into the conduction band where it moves
freely and the crystal becomes a conductor. In the valence band there remains a hole which
also moves freely through the crystal. An electron that is excited by a photon but does not
absorb enough energy to reach the conduction band, is still loosely bound to the hole. This
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electron-hole-pair is called an exciton and can also move freely inside the crystal. When the
electrons relax into the valence band, another photon is emitted. To be able to detect this
photon, it has to be made sure that it is not re-absorbed by the crystal. This is achieved by
doping the crystal with activator atoms. This so called activator impurity locally deforms
the conduction band and creates new energy levels. The electrons, holes and excitons move
through the crystal until they reach such an impurity, where they recombine emitting a
photon which hasn’t got enough energy to excite a valence electron into the conduction
band. Therefore these activator photons can pass through the crystal and be detected.

2.6 Used Isotopes of this Experiment and their Decays

There are two different isotopes used in this experiment, one is used for the calibration of
the energy spectra, the other one shall be examined and the life time of one exited state is
to be determined.

2.6.1 Americium or 241Am

241Am decays with α-decay into the exited state of 237Np Which has an energy of 59.5 keV.
By γ decay it can relax further directly to the ground state, or before that to the 33.2 keV
state. This isotope is going to be used as the calibration for the energy axis later on. A
simplified diagramm of those decays can be seen in figure 4.

Figure 4: The simplified decay scheme of the 241Am decay

2.6.2 Cobalt or 57Co

The 57Co isotope decays via Electron Capture into the exitetd state of the 57Fe isotope
with an energy of 136.5 keV. In 88 out of 100 cases this relaxes by emitting a γ ray to the
14.4 keV state, whose life time shall be identified. In the other 12 cases, it decays directly
into the ground state. From the 14.4 keV state there are two different ways for the state
to relax. One by internal conversion which we are not able to measure. The other is less
likley but relaxes by γ decay. A systematic diagram can be seen in Figure 5
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Figure 5: The simplified decay scheme of the 57Co isotope

2.7 Delayed Coincidence Method

We want to measure the life time of the 14.4 keV state. The NIM modules which we use,
allow us to start a measurement by one signal and stop it with another. We obtain a signal
with an amplitude proportional to the time difference. The easiest way would be to use the
signal from the relaxation between the 136.5 and 14.4 keV decay as the start signal and the
14.4 keV signal for the stop signal. But because the 14.4 decays with a probability of 90 %
with Internal conversion, we will only stop in 1 out of ten events. Therefore the time the
computer waits after receiving a start signal will cover up events which we might actually
want to detect, and instead recieve a stop signal by a 14.4 keV photon from another atom.
The idea to measure this life time τ is to start with the 14.4 keV signal because we know
that every time we detect a 14.4 signal, a signal with the energy of 122.1 keV must have
been there before. What we do is, that we delay the 122.1 keV signal by a minimum of
the expected life time. This means, that with a known delay we can expect the stop signal
after the start signal within a certain time. The time difference between those signals will
be called ∆t. The inversion of start and stop signal leads to an exponential curve of the
following form:

N(∆t) = N0 exp

[
∆t

τ

]
(6)

The delay tD of the stop signal shifts the curve to the right. The shifted curve is the one
measured in the experiment. Therefore, to obtain the physical decay curve, we have to
consider a function

N(∆t) = N0 exp

[
∆t+ tD

τ

]
(7)
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3 Experimental Setup

In the setup of this experiment, the main parts are the two inorganic scintillators, which are
positioned in 180◦ degrees from one another with a space in between, where the samples are
placed. This can be seen in Figure 6a. Also one can see the sample of the americium, where
the more active side is turned upwards. In Figure 6b the cobalt sample is pictured in front
of lead covered setup. The two scintillaton detectors have a built-in photo multiplier (PM)
, which then sends the signal to a amplifier (PA) which is also built into the detector. After
the pre amplification the received signal will take different routes through the NIM-modules
throughout the experiment depending on the quantity measured.

3.1 NIM-Modules

3.1.1 Main Amplifier (MA)

The amplification level can be controlled by the gain controller (and the coarse gain for
adjustment on a higher scale). The Shaping Time controller determines the shape of the
output signal. Within the adjusted shaping time interval, the maximum amplitude is
determined. The shaping time should be elected to be long enough to reach the maximum
amplitude but short enough to reduce the dead time resulting from the delay of the output
signal by the shaping time. There are two modes of the output signal: The unipolar output,
which delivers a gaussian-shaped signal and the bipolar output, which delivers a dispersion
curve.

3.1.2 Multi Channel Analyzer (MCA)

The multi channel analyzer measures the height of an incoming pulse by comparing it with
a sawtooth voltage signal. The pulses are then distributed into an adjustable number of
channels, sorting them by their height. In the experiment, after an energy calibration, the
channels can be assigned with a corresponding energy each.

3.1.3 Single Channel Analyzer (SCA)

The single channel analyzer only detects incoming signals with a certain amplitude window.
The amplitude window can be adjusted with a lower level and a upper level controller. In
the experiment, the amplitude window is adjusted for the equipment to only detect photons
within a certain energy frame. The output of the SCA is a logical rectangular signal.

3.1.4 Time Amplitude Converter (TAC)

The time amplitude converter takes two negative logic inputs and gives a signal, whose
height is proportional to the time difference of those.
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a) Marked side of 241Am sample b) 57Co sample with yellow label pointing to-
wards the experimentator

Figure 6: Photographs of the two samples. In the background of fig. 6a, the two detectors
can be seen.

3.2 Circuit setups for the different parts

In the first part we use a setup, which can be seen schematically in Figure 7. It was
used firstly for measuring the energy spectra of every alignment of the samples for both
scintillators.
For the second part, the time calibration, we need the setup of Figure 8 where the signal
from the SCA is beeing delayed by a certain time and the TAC gives the output signal to
the MCA, which then puts the signal into the respective bin depending on its amplitude.
For the last part, the delayed coincidence measurement, the signal of the 122.1 keV signal
gets delayed by tree delay units, of which each one can delay a signal by up to 66 ns. the
14.4 keV signal goes straight into the TCA. From there the signal goes trough the MCA to
the computer. this setup can be seen in Figure 9

Figure 7: A block circuit diagram for the energy calibration as well as the setting of the
energy windows
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Figure 8: A block circuit diagram for the time calibration.

Figure 9: A block circuit diagram for the time calibration.
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4 Execution of the Experiment

Firstly we looked at the different signals, the NIM-modules as well as the ones from the
pre amplifier and the photo multiplier have as output. Those can be seen in Figure 10.
After the pictures were taken, we started with the measurements for every alignment of the
samples, starting with the left scintillator with the setup of Figure 7.The measure time was
set to 10 minutes. while doing the measurement for the right scintillator, it broke and it
took some time to fix it. The technical support noticed a hole inside the scintillator and
after round about 7 hours this hole was been covered by duct tape. Because there was
not much time left for the measurements, we decided to do the delayed time coincidence
measurement right after that. The setup from Figure 9 was set up. We set the amplifier
for the TAC so that we could see enough background on the far side of the channels. It was
important to place the more active side of the 57Co towards the scintilator which was able
to capture the 14.4keV peak. This orientation can be seen in Figure 6b. We started the
measurement and saved the data the next morning, like the ones before, on the Computer.
The next day, we set the setup fromFigure 8 up and did the time calibration, by delaying
firstly with 198 ns and did 20ns steps downwards till we reached 7.5 ns.

a) Pre amplified signal

b) Logicacl negative output
from the SCA

c) Logical positive output from
the SCA

d) Bipolar output from the MA e) Unipolar output from the
MA

Figure 10: Two signals in comparison the Yellow line is the signal from the photo multiplier,
the blue lines are explained in the captions.
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5 Data Analysis

5.1 Energy Spectra

In figures 11, 12, 13 and 14, the spectrum of the respective sample, measured with the
two different detectors at different orientations, is shown. The two possible orientations of
the respective sample are encoded as orientation 1 and 2. The orientations are defined as
follows:

Americium: The americium sample has something written on one side (cf. fig. 6a).
Therefore we can define the orientation as the relative direction of the marked side to the
detector which is taking the respective measurement:

Orientation 1: Marked side pointing towards detector
Orientation 2: Marked side pointing away from detector

Cobalt: The two active sides of the cobalt sample are pointing to the left or right side
of the sample. In the middle between the two sides the sample has got a yellow label on
one side (cf. fig. 6b) and a white label on the other side. We define the orientation by the
label which is visible to a person standing in front of the experimental setup, in a way that
the orientations specify the direction of the same active side of the sample towards each of
the detectors:

Orientation 1: Yellow label for left detector / white label for right detector
Orientation 2: White label for left detector / yellow label for right detector

Figures 11, 12, 13 and 14 show the number of counts N for each of the MCA channels. The
uncertainty sN =

√
N is given by the poisson distribution.
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a) Orientation 1 b) Orientation 2

Figure 11: Energy spectrum of 241Am as measured with the detector on the right side at
different orientations of the sample

a) Orientation 1 b) Orientation 2

Figure 12: Energy spectrum of 241Am as measured with the detector on the left side at
different orientations of the sample

Comparing the four different measurements taken of the 241Am spectrum, it becomes
evident that orientation 1 corresponds to the more active side of the sample pointing towards
the respective detector and also that the right detector has a better resolution. The two
peaks around channels 120 and 200 can only be destinguished in fig. 11a.
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a) Orientation 1 b) Orientation 2

Figure 13: Energy spectrum of 57Co as measured with the detector on the right side at
different orientations of the sample

a) Orientation 1 b) Orientation 2

Figure 14: Energy spectrum of 57Co as measured with the detector on the left side at
different orientations of the sample

Comparing the four different measurements of the 57Co, it becomes clear that orientation
2 corresponds to the more active side of the sample pointing towards the respective detector.
Furthermore, the detector on the right side shows a better resolution. The small peak
around channel 90 in fig. 13b is not clearly visible in any other measurement.

5.2 Energy Calibration

Since we need to set the SCA window on the 14.4 keV peak and the 122 keV peak of the
57Co sample (cf. section 4), we first have to relate the MCA channels to their corresponding
energies to be able to confirm the correct peaks. for both samples, the detector on the right
side showed a better resolution. For this reason, the energy calibration is done with the
data obtained from the detector on the right hand side. Of each of the measurements of
the 241Am sample in section 5.1, we use the one which shows the clearest resolution, which
is the measurement with orientation 1 (fig. 11a). We can identify a peak of high intensity
around channel 450 and two peaks of lower intensity around channel 124 and 200. To
determine the location of the large peak more exactly, we fit a gaussian function of the
form

f(x) = a exp

[
− (x− µ)2

2σ2

]
+ b , (8)
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to the data frame around the peak, where the mean value µ is considered as the location
of the peak and the standard deviation σ is considered as the uncertainty sµ. The fit is
graphically displayed in fig. 15.

Figure 15: Fit of a gaussian function (eq. 8) to the single peak in the 241Am spectrum

The fit yields the following results for the location of the peak and its uncertainty:

µ = 447.26± 0.03 (9)

σ = 33.06± 0.02 (10)

To the two smaller, overlapping peaks, a superposition of two gaussian functions,

f(x) = a1 exp

[
− (x− µ1)2

2σ2
1

]
+ a2 exp

[
− (x− µ2)2

2σ2
2

]
+ b , (11)

is fitted, where µ1 is considered as the location of the left peak and µ2 as the location of
the right peak. The fit is graphically displayed in fig. 16.
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Figure 16: Fit of a superposition of two gaussian functions (eq. 11) to the double peak in
the 241Am spectrum

The locations of the two peaks and their respective uncertainties result to:

µ1 = 124.37± 0.19 (12)

σ1 = 31.43± 0.11 (13)

µ2 = 201.4± 0.2 (14)

σ2 = 30.01± 0.14 (15)

To identify the peaks in the 57Co spectrum, we again examine the measurement with the
highest resolution, which in this case is the one with the right detector and orientation 2.
We identify a large peak around channel 900 and a small peak around channel 90. To each
of the peaks, a gaussian function (eq. 8) is fitted. The fit to the large peak is displayed in
fig. 17:
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Figure 17: Fit of a gaussian function (eq. 8) to the large peak in the 57Co spectrum

The results for the location and the uncertainty of the large peak are

µ = 906.76± 0.07 (16)

σ = 46.53± 0.16 (17)

Figure 18: Fit of a gaussian function (eq. 8) to the small peak in the 57Co spectrum

The location and uncertainty of the small peak result to:

µ = 86.7± 0.3 (18)

σ = 19.78± 1.98 (19)
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We suspect a linear dependence of the photon energy Eγ and the MCA channel. Since
a linear fit with only the three known 241Am peaks would not be very meaningful, we
also assume the two cobalt peaks to correspond to the energies 14.4 keV and 122.1 keV
respectively. The correspondence of the peaks to the energies Eγ given in [1] can be seen
in table 1

Channel Eγ [keV]
241Am 120± 30 26.3

200± 30 33.2
450± 30 59.5

57Co 90± 20 14.4
900± 50 122.1

Table 1: Assignment of the peaks found to the Photon energies Eγ given in [1]

A linear function of the form

f(x) = mx+ c , (20)

is fitted to the values shown in table 1. The fit is displayed in fig. 19 .

Figure 19: Fit of linear function (eq. 20) for energy calibration

The fit yields the following parameters:

m = (0.13274± 0.00002)keV (21)

c = (0.6996± 0.0011)keV (22)

With this result, we can check if the assumption we made, that the two visible peaks of 57Co
correspond to 14 keV and 122.1 keV respectively, holds. In fig. 19, the linear dependence of
the data seems true. To quantify this suspicion, we calculate the Energy E corresponding
to the observed peaks and compare them to the literature values Eγ [1]:

16



µ [ ] σ [ ] E [keV] sE [keV] Eγ discrepance
241Am 120 30 21 5 26.3 2σ

200 30 31 5 33.2 1σ
450 30 62 5 59.5 1σ

57Co 90 20 16 3 14.4 1σ
900 50 121 9 122.1 1σ

Table 2: Calculation of the energies E corresponding to the observed peaks and comparison
to the literature values Eγ

The values in tab. 2 have been calculated with the following formulae:

E = mµ+ c (23)

sE =

√√√√m2µ2

[(sm
m

)2
+

(
sµ
µ

)2
]

+ s2c , (24)

where it was assumed that the uncertainties sm, sc and sµ = σ are uncorrelated. Since all
the peaks correspond to their respective reference values within 1σ (except the 2σ corre-
spondence of the 26.3 keV americium peak), we can hereby verify that the assumptions we
made about the peak energies of 57Co were correct. The reduced χ2 of χ2

red ≈ 1.0 implies
the same conclusion since it confirms the linear dependence.
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5.3 Time Calibration

The time differences ∆t and the respectively responding MCA channels can be found in the
lab notes (appendix 7.2). To be able to convert the channels into their corresponding time
differences ∆t in section 5.4, we plot the MCA channel as a function to the corresponding
delay set at the delay unit. Assuming a linear dependence, a function of the form

f(x) = ax+ b , (25)

is fitted to the data. Since for each delay only one channel responded, we assume that there
is no error on the channels. Furthermore, the delay is assumed to be exact.

Figure 20: Linear fit relating the MCA channels to their corresponding time difference ∆t

The fit results are:

a = (1.387± 0.010)ns (26)

b = (−14.9± 0.9)ns (27)

18



5.4 Half Life of the 14.4 keV State of 57Fe

5.4.1 SCA Windows

The SCA window for the respective peaks have been set to be symmetric around the
maximum of the peak and to roughly coincide with the standard deviation of the gaussian-
shaped peak. The resulting MCA measurements are displayed in fig. 21.

a) 14.4 keV peak b) 122.1 keV peak

Figure 21: plots of the MCA measurement with the SCA windows set on the respective
57Co peaks

The detector on the left side was used for the 122.1 keV peak and the detector on the
right side for the 14.4 keV peak. The values the SCA windows were set to can be found
in the lab notes (appendix 7.2). Using the zoom function of the interactive window of the
python 2.7 module matplotlib.pyplot, we obtain a rough estimation of how the SCA
window translates into its corresponding MCA channels. The left and right border of the
respective peak in fig. 21 are graphically determined as the channels where the number
of counts reaches zero and the respective uncertainty is graphically determined to include
statistical fluctuations around this point. The results are shown in table 3.

Detector Peak left border [channel] right border [channel]
left 14.4 keV 48± 2 109± 2

right 122.1 keV 680± 5 925± 5

Table 3: Borders of the two peaks used for the delayed coincidences measurement

Since the energy calibration was only done for the detector on the right hand side, we
can only determine the corresponding energy window for the 14.4 keV peak. Therefor we
use equations 23 and 24, which results in the following energy values for the left and right
border of the SCA window for the 14.4 keV peak:

El = (11± 2)keV (left border) (28)

Er = (19± 2)keV (right border) (29)

This corresponds to an energy range of

Er − El = (8± 3)keV . (30)

we can calculate half the energy range,

Er − El
2

= (4.0± 1.4)keV , (31)

and compare it with the statistical uncertainty sE = 3 keV from table 2. They coincide
within 1σ which tells us that we set the SCA window correctly.
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5.4.2 Delayed Coincidence Measurement

The delayed coincidence measurement was done during a measurement time of 56290.06 s.
A plot of the measurement is displayed in fig. 22.

Figure 22: Plot of the delayed coincidence measurement

5.4.3 Random Coincidences

Since one of the detectors was broken for several hours during the experiment, we did’t
have enough time to perform a full background measurement. Therefore we calculate the
unweighted average of the counts of all channels ≥ 150 and consider the standard deviation
of the set as the uncertainty on the number NB of background counts:

NB = 0.3± 0.5 (32)

5.4.4 Linear Fit

Since we expect to find an exponential dependence of the counts N and ∆t, according to
equation 7,

N(∆t) = N0 exp

[
∆t+ tD

τ

]
,

we can take the logarithm of each of the counts and fit a linear function

f(x) = αx+ β . (33)

By comparison of equations 33 and 7, we can calculate the life time τ ′ with the value α
obtained from the fit:

τ ′ =
1

α
. (34)

τ ′ is still in units of MCA channels, so with equation 25 and the values a and b obtained
in section 5.3, we can calculate the life time τ in ns and therefrom the half-life T1/2 of the
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14.4 keV state of 57Fe:

τ = aτ ′ + b (35)

T1/2 = τ log(2) (36)

The uncertainties on τ and T1/2 are calculated through gaussian error propagation, assum-
ing that a,b and α are uncorrelated:

sτ =

√( a
α

)2 [(sα
α

)2
+
(sa
a

)2]
+ s2b (37)

sT1/2
= sτ log(2) (38)

The uncertainties sa, sb, and sα are the statistical uncertainties which result from the
respective χ2 minimization. Through the logarithm, the uncertainties slog(N) on the counts
will become asymmetrical:

slog(N),u = log(N + sN )− log(N) (upper error) (39)

slog(N),l = log(N)− log(N − sN ) (lower error) (40)

The calculated values can be found in appendix 7.1.

For the fit, we use the data of channels 23 to 90. Instead of using the log-likelihood method
to fit the function to the data, we decided to use the standard χ2 minimization. The
reason for this is that the ROOT class TGraphAsymmErrors does not support log-likelihood
fitting, while the histogram classes, which do support log-likelihood fitting, don’t support
asymmetric uncertainties. The log(N) data obtained and the linear fit are displayed in fig.
23.

Figure 23: Linear fit (eq. 33) to log(N) of channels 23 to 90 of fig. 22.

The parameters α and β resulting from the fit are

α = (5.7± 1.3) · 10−3 (41)

β = 2.74± 0.08 (42)
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The reduced χ2 is

χ2
red ≈ 0.7 . (43)

From α we calculate, according to equations 35 and 36:

τ = (230± 50)ns (44)

T1/2 = (160± 40)ns (45)

The relative uncertainty ot T1/2 is:

sT1/2

T1/2
= 25% (46)

5.4.5 Exponential Fit

We can directly fit the data of channels 23 to 90 with an exponential function of the form

f(x) = exp [αx+ β] + c . (47)

The initial estimates for the parameters α and β are taken from the linear fit (equations 41
and 42). The initial estimate for the background parameter c is the background NB (eq.
32). To be able to judge the parameter estimation in comparison to the fit result, the fit
function with the estimated parameters is also drawn into the diagram.

Figure 24: Exponential fit (eq. 47) to the counts N of channels 23 to 90. The function
with the estimated parameters is drawn as a blue line.

Although the estimated parameters seem to fit the data well and the fit result shows a
good consistency with both the data (χ2

red ≈ 0.7) and the estimated function (graphically),
the result for the fit parameters obviously doesn’t make physical sense. The background
parameter c, which should be around zero, is of order −106 and the resulting life time and
half life are of order 10 ms. Therefore, instead of determining the global minimum of χ2,
we have to look for a local minimum by constraining the fit parameters to a range that
makes physical sense. We choose the range

ξ ∈ [0, 100] ∀ ξ ∈ {α, β, c} . (48)
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The fit with constrained parameters is shown in fig 25.

Figure 25: Exponential fit (eq. 47) to the counts N of channels 23 to 90, where the fit
parameters are constrained by eq. 48. The function with the estimated parameters is
drawn as a blue line.

The fit results are:

α = (5.9± 1.3) · 10−3 (49)

β = 2.71± 0.08 (50)

c = 0± 60 (51)

The reduced χ2,

χ2
red ≈ 0.7 , (52)

shows the same goodness of the correlation as the linear fit(fig. 23) and the other exponential
fit (fig. 24) which justifies the constraint (eq. 48). With equations 35 and 36, we obtain:

τ = (220± 50)ns (53)

T1/2 = (150± 40)ns (54)

The relative uncertainty ot T1/2 is:

sT1/2

T1/2
= 27% (55)
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6 Summary and Discussion of Results

In this experiment, the half life of the 14.4 keV state of 57Fe has been determined by
measuring the exponential decay curve with the method of delayed coincidences. The data
has been processed by two methods. On one hand, the natural logarithm of the counts N
of each MCA channel has been calculated and a linear function has been fitted. On the
other hand, the data has directly been fitted with an exponential function. The reference
value of T1/2 = 98 ns is given in the lab guide [1]. The results are:

T1/2 [ns] consistency
linear fit 160± 40 2σ

exponential fit 150± 40 2σ

Table 4: Results for the half life T1/2 of the 14.4 keV state of 57Fe and consistency with the
reference value T1/2 = 98 ns

Both results coincide within 2σ with the reference value. This is a rather good consis-
tency thanks to the great uncertainties, considering that the data obtained (cf. fig. 22) was
not very good for multiple reasons.

Because one of the detectors was broken for several hours during the experiment, we were
not able to take a meaningful measurement of random coincidences (background mesaure-
ment). We calculated the background counts NB as the average of the counts of all channels
≥ 150 to

NB = 0.3± 0.5 (56)

which can only be seen as a rough estimation to the poisson statistics of the counts (obvi-
ously, negative counts at the lower error boundary don’t make sense). It does, for example,
not include a possibly higher distribution of random coincidences towards the first few chan-
nels, which would result in a systematically too small α in the fit functions and therefore
in systematically too large T1/2 values. However, NB coincides well within 1σ with the
background parameter c = 0 ± 60, which, because of its great uncertainty is also just a
rough estimation. The high statistical uncertainty does not consider the poisson statistics
of counting experiments.

The counts in the exponential range of fig. 22 are rather low, which results in high relative
uncertainties. Correspondingly, the measured counts scatter strongly around the expected
exponential curve. This results in high relative errors of T1/2 of 25% from the linear fit and
of 27% from the exponential fit. For low counts, the probability distribution of the counts
in each channel is a Poisson distribution which, by the standard procedure of gaussian er-
ror propagation, is only approximated by a gaussian distribution. This could result in an
overestimation of errors, for example for the background NB , where negative counts clearly
don’t make sense. A low count rate can possibly be caused by an SCA window which is set
too narrow. In our case, in section 5.4.1, we were able to confirm that the energy range of
the SCA window coincides within 1σ with the uncertainty of the peak itself. Thus, a wider
SCA window would have likely produced a systematical error due to photons of energies
not belonging to the 14.4 keV peak being detected.

The low count rate could possibly have been improved by different settings at the main
amplifier and the SCA. Unfortunately, because of the lost time due to the broken detector,
we didn’t have enough time to take test measurements and try different settings.
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7 Appendix

7.1 Calculation of Asymmetric Errors

Channel log(N) [ ] lower error [ ] upper error [ ] Channel log(N) [ ] lower error [ ] upper error [ ]

23 2,77 0,29 0,22 57 3,22 0,22 0,18
24 2,71 0,30 0,23 58 3,22 0,22 0,18
25 3,04 0,25 0,20 59 3,18 0,23 0,19
26 2,77 0,29 0,22 60 3,18 0,23 0,19
27 2,77 0,29 0,22 61 3,30 0,21 0,18
28 2,89 0,27 0,21 62 3,26 0,22 0,18
29 2,64 0,31 0,24 63 2,83 0,28 0,22
30 2,83 0,28 0,22 64 3,14 0,23 0,19
31 3,26 0,22 0,18 65 3,09 0,24 0,19
32 2,77 0,29 0,22 66 3,50 0,19 0,16
33 3,00 0,25 0,20 67 3,14 0,23 0,19
34 3,00 0,25 0,20 68 3,26 0,22 0,18
35 2,48 0,34 0,25 69 2,89 0,27 0,21
36 2,89 0,27 0,21 70 3,04 0,25 0,20
37 3,37 0,21 0,17 71 3,14 0,23 0,19
38 2,56 0,32 0,24 72 3,14 0,23 0,19
39 3,04 0,25 0,20 73 3,26 0,22 0,18
40 2,77 0,29 0,22 74 3,04 0,25 0,20
41 3,30 0,21 0,18 75 3,09 0,24 0,19
42 3,14 0,23 0,19 76 3,30 0,21 0,18
43 3,09 0,24 0,19 77 3,04 0,25 0,20
44 2,89 0,27 0,21 78 3,22 0,22 0,18
45 3,00 0,25 0,20 79 3,53 0,19 0,16
46 3,14 0,23 0,19 80 3,09 0,24 0,19
47 2,89 0,27 0,21 81 3,18 0,23 0,19
48 3,09 0,24 0,19 82 3,09 0,24 0,19
49 3,09 0,24 0,19 83 3,26 0,22 0,18
50 3,18 0,23 0,19 84 3,22 0,22 0,18
51 3,09 0,24 0,19 85 3,18 0,23 0,19
52 3,22 0,22 0,18 86 3,50 0,19 0,16
53 2,77 0,29 0,22 87 3,14 0,23 0,19
54 3,14 0,23 0,19 88 3,14 0,23 0,19
55 3,04 0,25 0,20 89 3,30 0,21 0,18
56 2,77 0,29 0,22 90 2,89 0,27 0,21

Table 5: Values of the natural logarithm of the measured Counts and respective upper and
lower uncertainties used for fitting.
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7.2 Lab Notes
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