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1 Task 3

1. Task
1. The magnetic field of the electromagnet shall be examined. Futhermore the homogenity

of the field is to be analized.

2. The core-magnetic moment of the 19F-core in teflon shall be determined.

3. The gyromagnetic proportion of the proton in hydrogen shall be determined.

4. The gyromagnetic proportion of the proton in glycol is to be determined.

5. The resonanz frequency of protons of the hydrogen probe shall be determined. For this
the Lock-in-method is to be used.
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2. Theoretical basics
Most of the equations and explanations in this chapter are based on [1]. If not they are labelled
with their corresponding reference.

2.1. Spin

The inner angular momentum of a quantum mechanical particle is called spin. These particles
can be separated in two groups: the fermions (with spin s = 1

2 ,
3
2 ,...) and the bosons (integer

spins). Electrons, protons and neutrons are fermions. The spin is quantized and takes, only
specific absolute values ∣∣∣~S∣∣∣= h̄

√
S(S+ 1).

Here S is the spin quantum number with S = 0, 1
2 ,1, .... Analogue to this there is a spin, the

nuclear spin, in the core of an atom ∣∣∣~I∣∣∣= h̄
√
I(I+ 1).

I is the so called nuclear spin quantum number. If we take a fixed axis, the values we can get
are

Iz =mI h̄,

with mI ∈ {−I,−I+ 1, . . . ,0, . . . , I−1, I}. Therefore we can have 2I+ 1 possible Iz.

2.2. Magnetic moment

Particles that have a spin, also must have a magnetic moment. These two are connected by the
gyromagnetic relationship γ = gIµk

h̄ , with the constant core-g-factor gI and the core magneton
µk = eh̄

2mp
:

~µ= γ~I.

According to the Pauli principle, every orbital can host two protons and two neutrons. The
two protons must then have opposing spins. The same is the case for the neutrons. Following
from this, it is obvious, that a core in its ground state, with an even number of protons and
neutrons has a spin of I = 0, whereas one with an uneven number of one of the nucleon types,
has a spin of I = 1/2.

2.3. Magnetic resonance

In an external magnetic field ~B, a core with the magnetic moment ~µ has the potential energy

E =−~µ · ~B.

If we look at a field that is in a specific direction, for example in the z-direction, we get different
energy levels with the magnetic quantum number mI

E =−gIµKmIB.

This is called the Zeeman effect. If we take a look at the energies of two energetical neighbours,
meaning ∆mI =±1, we get

∆E = gIµkB.
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This energy ∆E is the amount of energy it takes to flip a spin of a particle into a higher energy
level or the energy which gets emitted if the spin flips down again.
Besides interaction with other atom cores, there are spontaneous and or induced absorption
and emission of photons to achieve excitement. Basically we can use the interaction with a
radiation field (e.g. electro-magnetic). With this known energy ∆E needed, we can calculate
the so called resonance frequency of the radiation field with

ν = ∆E
h

= gIµkB

h
= γB

2π .

When resonating, the radiation field will loose or gain energy.
At thermal equilibrium, the population density on one energy level is Boltzmann distributed.
Therefore the ratio of the population densities n of two energy levels (Ehigh >Elow) is

nhigh
nlow

= e−
Ehigh−Elow

kT = e−
∆E
kT .

Therefore the radiation field looses more energy than it gains. With that we would expect the
ratio to level over time (nratio = 1), meaning the effect of the resonance would wear of, but in
reality it does not. That’s due to relaxation effects.

Spin-Lattice interaction [6]

Atoms that are bond in a molecular structure constantly vibrate, because of the heat of the
system. The vibration of the charged particles in the atoms causes a complex magnetic field
(see Maxwell equations). This field is called the lattice field. The lattice field interacts with
both low and high energy state cores, which results in the higher energy states giving energy
to the lower ones. Therefore a part of the energy gained from a spin flipping into a higher
energy state gets dissipated into the lattice field, which results in a slightly faster vibration and
therefore temperature. This energy is lost for the radiation field, because the photons, who
get emitted, when the spin falls back down again, have a smaller energy than when they were
absorbed.

Spin-Spin interaction

The other form of relaxation is called spin-spin interaction. The spin from one core produces
a magnetic field at the location of a second atom core. This magnetic field can increase or
decrease the applied magnetic field, and therefore the core has a slightly different resonance
frequency.

Chemical shift

The third significant effect is the chemical shift. In a molecular structure, the atoms enter into
chemical bonds with other atoms. In reality in each material we use are impurities, like foreign
atoms. Those have a different resonance frequency. The bond with such atoms defines the
shielding coefficient σ. The effective magnetic field which interacts with the cores is dependent
on that coefficient

Beff = (1−σ)B0 [4].

Therefore the shielding coefficient changes the effective magnetic field and therefore changes
the value of the resonance frequency.
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2.4. Methods of measurement

Hall effect & hall probe

Charged particles in a magnetic field are influenced by said field. The equation, which describes
the force that takes effect on the particles is the Lorentz force

~FL = q
(
~v× ~B

)
.† (2.1)

If we observe a (block shaped) conductor, with a current and an external magnetic field applied,
the electrons in the conductor move to one side according to equation 2.1. Therefore on one
side of the conductor, there are more electrons than on the other side, meaning an electrical
field is produced, with the force FE = qE††. This force of the electric field starts to compensate
the effect of the Lorentz force till they compensate each other and come to an equilibrium. Now
we can derive the equation for the hall voltage:

| ~FE |= | ~FL|
q ·E = q ·vB
UH
d

= vB

UH = vBd.

We can see, that with a hall probe we can measure the magnetic field strength, if we apply a
known voltage to a conductor. Taking the current into account, with I = nevBd we get

UH = I

ne
. (2.2)

By looking at eq. 2.2 we can derive, that a hall probe should be made out of semi-conducting
material, because the lower the number n of electrons is, the higher the voltage gets.

Lock-in method

The lock-in method is used to optimise signals with a very bad signal to noise ratio. It makes
signals visible again, even if the noise it 100000 times larger than the signal.
To do so, we need a reference signal (Uref =U0 sinωt), which has to have the same phase relation
as our signal. Our magnetic field modulation signal is a saw tooth function with a sinus on
top of it (U(t) = Usz +U0 sinωt shown in Figure 1). This signal influences the NMR signal
and gives us our absorption signal. This signal gets multiplied by the reference signal and
integrated, therefore filtering out all the signal with different phase relations than our reference
signal.
To understand the filtering process, we need to look at the Taylor series expansion of our
absorption signal:

A(U(t))≈A(Usz) + dA

dU
U0 sinωt. (2.3)

When we multiply that with our reference signal and then integrate it, in the second part of
(2.3) all the signals with a different phase relation vanish, because of the orthogonality relations
of trigonometric functions

+∞∫
−∞

sin(ω1x)sin(ω2x)dx= δ(ω2−ω1).

†The general equation also has a electric field in it: ~FL = q
(

~E +~v × ~B
)
.

††E = U
d , with d as the length of the conductor
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Figure 1: Differentiated absorption signal [1].
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3. Setup and procedure

Setup

The setup for the measurement of the magnetic field is shown in figure 2.

Figure 2: Setup for the measurement of the magnetic field [1].

It consists of a power supply (B) unit which is connected to an electromagnet (C). Between the
magnet there is a hole in which we put a hall probe (D) which passes the measured data through
to a teslameter (A). The depth to which the probe enters the magnetic field is measured with a
measurement tape that is fixed to the probe. In order to get results, a fixed voltage and current
have to be chosen on the power supply unit. Then the depth of the probe is varied. This has
to be logged together with the amplitudes of the magnetic field.

The measurement apparatus for the testing of a 19F-core-, a hydrogen- and a glycol-sample can
be seen in figure 3.
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Figure 3: Setup for the measurements in exercise 2, 3 and 4 [1].

Again it has a power supply unit (B) and the electromagnet (C). But now there are also two
electromagnets at the facing ends of the electromagnet, at which sinus modulated voltage is
applied. Furthermore a HF-oscillator (A) is connected to the area between the electromagnet.
The samples are inserted in the same hole as the hall probe before. The frequency generator
is connected to an oscilloscope (D) that records the modulated electromagnetic field and the
HF-signal that interacts with the sample. In this part the hall probe is only needed once before
every measurement in order to know what the strength of the applied magnetic field is.

In the last part a hydrogen-sample gets measured with the Lock-in method. The setup is shown
in figure 4.

Figure 4: Setup for the measurement in
exercise 5 [1].
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It consists, as the setups before, of a power supply unit (B) and an electromagnet (C). There
is also again an oscillator (A). But this time we also need an adder (F), in order to get a saw
tooth signal on top of which there is a sine signal. The resulting signal gets from the interaction
of the magnetic field with the sample, after it has been cleaned by the lock-in-method, can be
looked at with an oscilloscope (E).

Procedure

We started by measuring our magnetic field, or more precise, we measured for its homogeneity.
We did this by using the hall probe, sticking it in the magnet deeper and deeper. Each time
we measured how deep it is and the value of the magnetic field strength. By looking at the
data, we choose a point of depth at which we expect the field to be the most homogeneously
and used it for the following measurements (d= 2.0cm).
For the next three parts we needed the highly oscillating radiation field. We build the setup as

shown in figure 3. As probes we used 19F, 1H and glycol. With the help of the given resonance
frequencies for each probe we estimated the strength of the magnetic field needed to set our
HF-frequency below 20 MHz, because the used frequency generator isn’t capable of delivering
a higher frequency. With the set magnetic field we started varying the frequency until we saw
the resonance peaks. We then set them to be equidistant. Having achieved that, we exported
the data from the oscilloscope as .csv and .png files. Then we zoomed in on one peak for the
error measurement. For that we need four data sets. The first one is the frequency at which
resonance starts. While rotating the frequency knob clockwise to increase its value, the shown
frequency dropped at some point and started rising again after that. The second data set has
to be just right before the drop happens and the third right after it. The fourth data set is
at the last point where one can see some kind of resonance. With those four data sets we can
calculate the error on the frequency (this is explained in the data analysis chapter).
In the last part we used the setup pictured in figure 4. The key difference is, that we now use a

lock-in amplifier to get cleaner signals and hope to gain an overall more accurate measurement.
After adjusting all the settings with a little help from our tutor†, we saw the rising staircase
function, which modulates our magnetic field, and the frequency with the resonance peak on
the oscilloscope. We then changed the frequency to move the peak in the range of one full
period of the modulation. We measured at eight different frequencies and exported the data as
.csv files.

†He did everything. Thanks Stephen.
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4. Data analysis

4.1. Measurement of the magnetic field with the hall probe

All our analysis was made with python. Because we wanted to get the graphs clearer we mostly
didn’t draw in errors and often connected the measured points with lines.
For the first measurement we chose a voltage of U = (9.00±0.05)V and a current of A =
(4.080±0.005)A.
In order to know whether the magnetic field is homogeneous or not we collected the data shown
in figure 5. The corresponding data is in table 1. The read off error on the magnetic field is
sB = 0.5mT and that of the depth sd = 0.1cm.

Figure 5: The value of the measured magnetic field plotted against the depth of the hall probe.

height [cm] 0 0.1 0.2 0.4 0.7 1 1.3 1.6 2 2.3 2.7 3
B-field [mT] 474 479 485 488 489 489 489 489 489 489 489 489

Table 1: Data of the measurement of the magnetic field with sB = 0.5mT and sd = 0.1cm.

It can be seen, that below a depth of 0.7 cm the field is very homogeneous. The total error on
the magnetic field in this part is still 0.5 mT, because we didn’t measure any differences from
the value B = 489mT and therefore didn’t get a standard deviation from the mean value. The
lower end we couldn’t measure because the tape measure on the hall probe could not be read
of at that depth. Because we had to re-adjust the current for each measurement we remeasured
the magnetic field after each of them.

4.2. Determination of the core magnetic moment of a 19F-core

The amplitude and the time distribution for a frequency of ν = (19.2396±0.0002)MHz is shown
in figure 6. This frequency was chosen, because there the peaks of the HF-signal had the same
distance and the ways through zero were at the same points as those of the modulation signal.
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This modulation signal is shrunk by a factor of fifty in order to fit into the diagram. A
screen shot of the oscillator can be found in the appendix (fig. 29). We chose a B-field of
(480.0±0.5) mT. In the following we will take a closer look at the peak around 0 s.

Figure 6: Data for 19F with the modulation signal that is shrunk by a factor of 50.

The aim for the chosen frequency is, that the peaks of the signal (see fig 6) are equidistant. In
order to get the error on the frequency we measured four times around the peak in the middle
for slightly different frequencies. The first and the last measurement (blue and red curve in
7) got taken at frequencies for which there is no signal, but just noise, at t ≈ 0s. Turning the
frequency dial, starting from the frequency of the blue curve, higher towards the frequency of
the red curve, it can be seen, that at one point the frequency drops. This is a result of the
setup. Physically we would expect the frequency to constantly rise, if we turn the dial of the
frequency generator clockwise. In reality we observe the drop, because the generator is coupled
to our system. Since we can’t compensate this calibration off set, we do the described four
measurements to calculate an error. The data of the orange and green plots were measured
shortly before and after this drop. These plots are shown in figure 7. The reason, why we don’t
get sharp signals, but ones that oscillate back to zero, is because of the rule of Lenz. It says,
that if a magnetic flux gets changed, then a capacity gets induced, which opposes the change
of the magnetic field.
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Figure 7: Method to determine the error of ν for 19F.

From this plot then the error can be calculated with the formula:

sν =

√(∆tab
∆T ·∆νab

)2
+
(∆tcd

∆T ·∆νcd
)2
, (4.1)

where ∆tab and ∆tcd are the time differences between the peaks, ∆T is their sum and ∆νab
and ∆νcd are the differences between the frequencies we chose. For the values of the four peaks
(ta = 0.000335s, tb = 0.000175s, tc = 9.5 ·10−5 s, td =−0.002210s) we get sν =0.06 MHz. This
gets added quadratic to the read-off error for the frequency which is sνmess = 0.0002MHz

s=
√
s2
ν +s2

νmess,

although the read-off error also could be neglected. From this follows a frequency of

ν = (19.24±0.06)MHz.

The following formula from [1] allows us to calculate the gyro magnetic factor. Since we assume
the core magneton and Planck’s constant to be precise, with the formulas

gI = ν ·h
µK ·B

, (4.2)

and

sgI = gI ·

√(
sν
ν

)2
+
(
sB
B

)2
,

and for µK = 3.1524512550 ·10−8 eV
T from [2] we get

gI = 5.261±0.020.
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From this it is easy to get the gyro magnetic property

γ = gI ·µK
h

, (4.3)

with the value

γ = (2.520±0.009) ·108 rad
sT ,

where the error is calculated as

sγ = γ ·
(
sgI

gI

)
.

With this we then calculated the modulus of the magnetic moment. Since 19F has a spin of
I = 1/2, for the absolute value of the spin we get

|~I|= h̄
√
I(I+ 1) = 5.7003 ·10−16 eVs.

The magnetic moment gets calculated with

~µ= γ~I,

and the error with

s|~µ| = |~µ| ·
sγ
γ
.

As the absolute value for the magnetic moment we get

|~µ|= (2.286±0.009) ·10−8 eV
T .

4.3. Determination of the gyro magnetic property of a proton in hydrogen

In this chapter and the following one we are going to use the same method as in the previous
one. The only difference is that we will stop calculating once we know the gyro magnetic prop-
erty and won’t continue until we have calculated the magnetic moment.

This time the magnetic field is B = (451.0±0.5)mT. The measured plot can be seen in figure 8,
or in the appendix (figure 30).
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Figure 8: Data for resonance of a proton in hydrogen with the modulation signal that is shrunk
by a factor of 50.

The frequency which we measured around is ν = (19.2970±0.0002)MHz. The plots of the
surrounding frequencies, which are needed in order to calculate the error on the frequency (see
previous chapter), are overlaid in figure 9.

Figure 9: Method to determine the error of ν for hydrogen.

With the method described in the previous chapter (formula 4.1) we get as error sν = 0.07MHz.
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By adding it quadratic to the read-off error, our frequency then is

ν = (19.30±0.07)MHz.

In order to get the gyro magnetic factor we use formula 4.2 again which provides us with

gI = 5.616±0.012.

Finally we want to get the gyro magnetic property of the proton in hydrogen. This we calculate
with formula 4.3. The result is

γ = (2.690±0.006) ·108 rad
sT .

4.4. Determination of the gyro magnetic property of a proton in glycol

In order to calculate the gyro magnetic property of a proton in glycol we chose a magnetic field
of B = (451.0±0.5)mT. The equal distance of the peaks in figure 10 (see also fig 31 for a screen
shot of the oscillator) gave us a frequency of ν = (19.2970±0.0002)MHz.

Figure 10: Data for resonance of a proton in glycol with the modulation signal that is shrunk
by a factor of 50.

Around this frequency we measured the data, which is plotted in figure 11. We do this because
we want to have equidistant peaks in figure 10 and need to know, whether the frequency we
chose fulfils this condition. This method is chosen for all measurements in chapters 4.2 to 4.4,
because the peaks are quiet broad and simply reading off of the error wouldn’t be as precise.
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Figure 11: Method to determine the error of ν glycol.

This time formula 4.1 gave us an error of snu = 0.08MHz on the frequency. Following from this
we get

ν = (19.30±0.08)MHz.

The gyro magnetic factor is, according to formula 4.2

gI = 5.616±0.012.

The gyro magnetic property is calculated again with formula 4.3 and results in

γ = (2.690±0.006) ·108 rad
sT .

4.5. Fine measurement of the resonance frequency of a proton in hydrogen
with the Lock-in-method

The parameters we chose on the synchron detector and for the saw tooth for this measurements
are listed in table 2.

synchron detector saw tooth
time constant/period 0.3 s 10 s

amplitude - 0.5 V
B-field (452.0±0.5) mT

Table 2: Parameters, at which we measured with the lock-in method.

The method we used here is the so called Lock-in method. Instead of an absorption curve, its dif-
ferential is used here. This means, that now the minimum of an absorption curve is a transition
through zero. The modulation signal used this time is a saw tooth signal which has a sinus curve
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with a small amplitude superimposed. In order to get the transition through zero we measured
eight times around the zero transition. Then we fitted linear approximations to the absorption
signal and the saw-tooth signal. This was done with the scipy.optimize.curve_fit function
from Python. From this we got a linear function

y = ax+ b,

that allows to calculate the zero transitions by putting y to zero and solve the equation for x.
The error on the x-axis gets calculated by varying the parameters of the fit function, meaning
that we created separate lines using the errors for a and b:

y1 = (a−sa)x+ (b)
y2 = (a−sa)x+ (b−sb)
y3 = (a−sa)x+ (b+sb)
y4 = (a+sa)x+ (b)
y5 = (a+sa)x+ (b−sb)
y6 = (a+sa)x+ (b+sb).

The lines with the biggest distance to the ’normal’ line at y = 0 (i.e. on the x-axis) give us the
error on x. As an example the plots for one measurement can be seen in figure 12 and 13. The
others are shown in the appendix in figures 15 to 28.

Figure 12: Measured Lock-in method data
at ν = (19.2780±0.0002)MHz.

Figure 13: Enlargement from figure 12 with fits
for the absorption and the saw tooth.

The frequencies at which we measured and their corresponding time differences between transi-
tions through zero are listed in table 1. These time differences we calculated by subtracting the
zero transition of the signal from that of the saw tooth. The error on the frequency is 0.05 MHz,
because the frequency, while measuring, wasn’t always constant, and that on the time difference
1.1 s. The error on the time difference was calculated by changing the parameters in the fit
functions.
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Frequency [MHz] Time difference [s]
19.28 3.5
19.32 2.7
19.35 0.6
19.37 0.01
19.40 -2.4
19.46 -3.2
19.38 -0.7
19.30 2.7

Table 3: Time differences between zero intersection of the absorption and the modulating curve.

We have plotted this data in figure 14.

Figure 14: Determination of the resonance frequency.

The function, that describes this linear approximation is

(−0.0233±0.0002)x+ (19.365±0.005).

This gives us the frequency for the time interval zero which corresponds with the y axis section.
The error is calculated from the square root of the diagonal elements from the covariance matrix
which we got by scypy.optimize.curve_fit. Putting this together we get for the frequency

ν = (19.365±0.005)MHz.

This now can be compared to the resonance frequency of hydrogen calculated in chapter 4.3,
which is νH = (19.29±0.07)MHz. We can see, that the two values are in a 2σ range to one
another. Looking at the relative errors, which are νrel = 0.026% and νHrel

= 0.36%, we can say
that the measurement methods are precise and the results meaningful.
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5. Summary and discussion
The intention of the first experiment was to find out, whether there is a sufficient large enough,
homogeneous magnetic field strength area created by our magnet or not. Our result can be
seen in figure 5. We didn’t reach the lower end of the magnetic field, because of some scotch
tape on the tape measure, that made it very imprecise to measure underneath of 3 cm. But the
area we measured was, from 0.7 cm on very homogeneous. This is also shown by the relative
error of 0.2 %.

The execution of the next three parts were similar to each other. The goal of the first one
was, to determine the core magnetic moment of a 19F-core. In the second and third the gyro
magnetic properties of a proton in hydrogen and glycol were to be determined.

19F hydrogen glycol
frequency ν [MHz] 19.24±0.06 19.30±0.07 19.30±0.08

gyromagnetic property γ [108 rads−1T−1] 2.520±0.009 2.690±0.006 2.690±0.006
magnetic moment |~µ| [10−8 eVT−1] 2.286±0.009 - -

Table 4: Experimental gathered data of parts 2 to 4.

γprot = (2.675221900±0.000000018) ·108 rad
sT [2] is the theoretical value for the gyro magnetic

property of a proton. This can be compared to the gyro magnetic properties of hydrogen and
glycol. For both of them we have measured the same value. This makes sense, because in both
measurements we had the absorption spectra of a single proton. The value from the literature
is in their 3σ-range. For this there are some possible reasons. A problem at the measuring
device was, that the modulation wheel for the frequency was not very precisely swivelling. An-
other problem was, that the signal sometimes jumped very fast in the direction of the y-axis.
This made it complicated to get the absorption curve peaks on the transitions through the
x-axis of the modulation curve. The process for getting the peaks equidistant, was also quite
difficult and therefore this might also be a source of the difference to literature. Although two
measurements are a bit few to very- or falsifier this, the fact, that both measurements lead to
the same result leads us to the assumption, that there might be a systematic error. One reason
for this might be, that the modulation graph wasn’t put accurate enough onto the zero-line in
the oscilloscope, which we used to see the zero transitions of the absorption amplitude. This
error would be systematic, because we always kept this function in the same position. Another
problem of the setup was, that the electric wires that connected the different devices were very
sensible to movement and interference from other electronic devices. An even bigger difference
between the one we measured and the literature value was for the magnetic moment of 19F in
Teflon. The theoretical value here is µlit = 2.62887 ·10−8 eV

T [5]. This is in the range of 39σ.
Here the error sources are the same as before. But because of this big difference, we also tried,
whether we had chosen the errors too small. For this we measured the time difference between
two peaks in the plots. We guessed an error of 0.001 s on the time difference we read off. This
gave us then a magnetic moment of |~µ|= (2.29±0.12) eV

T . This is 3σ away from the theoretical
value. With a relative error of 5.2 % we can conclude that the estimation of the error for the
distance would have been a valid option for the error calculations and would have given us
reasonable results.

The last part was about using the lock-in method to measure the resonance frequency of hydro-
gen. The result we get here is νLock = (19.365±0.005)MHz. This we compare to the frequency
measured in the third part (reminder, this value was ν = (19.30±0.07)MHz). As we can see
the result measured with the Lock-in method is in a 2σ interval of the one measured previously.
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This fits very nicely, but by comparing the relative errors for the lock-in it is 0.026 % and for the
other one 0.36 %, we can see, that the results we get from the lock-in method are more precise.
This is also the result we would have expected, because the transition of the absorption signal
through zero amplitude is easier to detect than the maxima in the measurement without lock-in.

So what we did in this experiment was to look, whether the magnetic field in the set up was
homogeneous and calculated the core magnetic moment of 19F and the gyro magnetic property
of a proton in hydrogen and glycol. Finally we tested another method for measuring the
resonance frequency of protons in hydrogen, the lock-in method, and compared it to the value
we measured before.
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D. Appendix

D.1. Additional Plots

Figure 15: Measured Lock-in method data
at ν = (19.3008±0.0002)MHz.

Figure 16: Enlargement from figure 15 with fits
for the absorption and the saw tooth.

Figure 17: Measured Lock-in method data
at ν = (19.3209±0.0002)MHz.

Figure 18: Enlargement from figure 17 with fits
for the absorption and the saw tooth.

Figure 19: Measured Lock-in method data
at ν = (19.3446±0.0002)MHz.

Figure 20: Enlargement from figure 19 with fits
for the absorption and the saw tooth.
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Figure 21: Measured Lock-in method data
at ν = (19.3659±0.0002)MHz.

Figure 22: Enlargement from figure 21 with fits
for the absorption and the saw tooth.

Figure 23: Measured Lock-in method data
at ν = (19.3767±0.0002)MHz.

Figure 24: Enlargement from figure 23 with fits
for the absorption and the saw tooth.

Figure 25: Measured Lock-in method data
at ν = (19.4003±0.0002)MHz.

Figure 26: Enlargement from figure 25 with fits
for the absorption and the saw tooth.
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Figure 27: Measured Lock-in method data
at ν = (19.4618±0.0002)MHz.

Figure 28: Enlargement from figure 27 with fits
for the absorption and the saw tooth.

D.2. Oscilloscope screenshots

Figure 29: Screenshot of oscillator for 19F.
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Figure 30: Screenshot of oscillator for hydrogen.

Figure 31: Screenshot of oscillator for glycol.

D.3. Original data












