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1 Experimental overview

This experiment gives a rough overview of the principle of nuclear magnetic reso-
nance. It is split up into five single parts.

1. The magnetic field is measured with a hall probe and its homogeneity is to be
confirmed.

2. A teflon (19F) sample is inserted in the magnetic field and by finding the
resonance frequency the nuclear magnetic moment will be determined.

3. This part of the experiment is about the gyromagnetic ratio of the proton in
a 1H sample. Which will be compute by the given magnetic field and the
resonance frequency which has to be found experimentally in this task.

4. With the same two quantities like in task 3 the gyromagnetic ratio of the
protons in glycol will be examined.

5. In this last task the proton resonance frequency of hydrogen will be obtained
from the 1H sample by the lock-in method.
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2 Theoretical background

In the following chapter, all the equations and pictures used, can be found in [1]

2.1 Spin

In this experiment we will encounter protons and neutrons which form the nuclei
inside atoms. Both are fermions and as we know from the lecture they have an
intrinsic spin ~I which is given by the combination of quarks inside of those fermions.
Protons and neutrons both have a spin with the value of 1

2 . The quantum numbers
for the nuclear spin are I and mI. I determines the absolute value of the spin vector,
whereas mI represents the projection on the z-axis.

|~I| = ~
√
I(I + 1) (1)

This means, that if we observe for example the nucleus spin in z-direction, this
becomes

Iz = ~mI (2)

Where the possible values for mI are given by −I,−I + 1, ..., 0, ..., I− 1, I, there are
2I+1 possibilities for the spin projections.

2.2 Magnetic moment

Due to the quark composition of the nucleons (protons, neutrons) which form a nu-
cleus, a magnetic dipole moment is induced, which leads us to the following equation:

|µ̃I| = γ~I =
gIµk

~
~I (3)

where γ is the gyromagnetic ratio given by

γ =
gIµK
~

=
2πνres
Bz

(4)

and µk = e~
2mpc

= 5.05078 · 10−27 J
T [2] and gI is a proportionality factor, called g-

factor. With the equations 2 and 3 we obtain the following equation for the magnetic
dipole moment in z–direction:

µz = γIz = γ~mI = gIµkmI (5)

2.3 Spins and their behaviour in a magnetic field

When a magnetic moment is exposed to a magnetic field the potential energy is given
by:

Epot = −~µ · ~B (6)

so for the z- direction we get with equation 5:

Epot = −gIµkmIBz (7)

Given the selection rule for quantum mechanical states and the information that all
the probes in the experiment have a spin of I = 1

2 , ∆mI = ±1 the energy change has
to be:

|∆E| = gIµkBz (8)

Therefore photon of this energy will be needed to bring the nucleus into the higher
energy state. But it is important to point out that nuclei with anti-parallel spin
towards the B-field have a higher potential energy than the ones with parallel spin.
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2.4 Resonance

Transitions between different energy levels can be induced by electromagnetic radia-
tion when an incoming photon has got the same frequency as the resonance frequency
of the sample. This frequency results from the known equation:

E = hν (9)

So, if we now take equations 5,8 and 9 we get the frequency which we must apply in
order for a resonance to occur.

νres =
∆E

h
=
gIµkBz

h
(10)

If the radiation has got the frequency above we can use the Zeeman effect. This
means that the nucleus absorbs a quantised unit of energy (a photon) and ”flips”
to a state with more potential energy. On the other hand, it is possible that spins
flip back from the higher energy state to a lower one, by emitting a energy back as
radiation. This process is called induced absorption/emission. An excited nucleus
can also emit a photon by spontaneous emission while dropping back into the lower
energy state. In thermal equilibrium the occupation number of a given energy in a
state is Boltzmann distributed, which means that the ratio between the occupation
numbers of two different states is given by:

nhigh
nlow

= e
− ∆E

kBT (11)

Where kB is the Boltzmann constant and T is the temperature in kelvin. Having this
in mind it is obvious that more particles are in the lower state than in the exited one.
From which we can conclude that there is more radiation absorbed by the sample
than the probe emits back to the radiation field.

2.5 Relaxation processes

There are more ways for an exited particle to relax. The most important ones in this
experiment are the following:

1. Spin-lattice relaxation
This process is occurring, when a lattice is exposed to a magnetic field and anti-
parallel spin pairs flip back to their more relaxed state, they give their energy
to the so called lattice field (a field induced by the rotation and vibration of
the many nuclei) in order to restore the state of equilibrium. This recovers in
an exponential behaviour. During this process there is no photon emitted.

2. Spin-spin relaxation
The nuclear magnetic moment of a nucleus induces a magnetic field at the
location of another nucleus. Which then experiences a slightly higher or lower
magnetic field then the one applied from the outside. This leads to the effect
that absorption lines appear a bit wider on the screen than expected, because
the resonance frequency is changed by the slightly different magnetic field.
Which results together with the spin-lattice relaxation in a damped harmonic
oscillator.

3. Chemical shifting
The resonance frequency of a nucleus is shifted by the molecule structure
around it. Because the molecule binding disturbs the magnetic field and so
the resonance frequency is changed as well.
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2.6 Hall effect

This effect is used in the experiment, by the Tesla meter, which we use to measure
the magnetic field with a so called Hall-probe.

Figure 1: This picture shows the effect of the Hall-probe. [3]

Basically the Hall-probe is a current-carrying conductor which induces a electric
field as soon as it is exposed to a magnetic field. The electrons in the Hall-probe are
drifting with a velocity of ~v when exposed to a magnetic field, they are pushed aside
due to the Lorentz force and cause an electric field inside the conductor, similar to
a capacitor:

FL = e(~v× ~B) = q · ~E = ~FE

The corresponding Hall Voltage is the following:

Uhall = vBd (12)

Where d is the thickness of the Hall-probe. If we substitute the current intensity
equation I = nevBd, into equation 12:

UH =
I

ne

With the equations above it is easy to calculate the magnetic field strength by the
induced Voltage.
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2.7 Measuring methods

Three different measuring methods will be used in this experiment.

2.7.1 Measuring the magnetic field

For the determination of the magnetic field strength the Hall-probe has to be put
inside of a non-modulating magnetic field. Bit by bit while pulling it back out of
the sample hole we can verify, by measuring the field strength with the coupled
tesla-meter, the homogeneity of the field.

2.7.2 Absorption method and sine modulation

As we know from the previous text and equation 10 the resonance frequency νres
strongly depends on the magnetic field strength. So to find νres we modulate the
magnetic field by a sin wave which increases and decreases the magnetic field period-
ically by a relatively small amount. That is very helpful to find the right frequency
because even if the magnetic field is static, the sine wave scans a small range around
it. That means, that per period of the sin-wave the resonance frequency is hit twice.
This is not true only in three cases: Firstly when the B-field modulation is not suffi-
cient enough to scan-pass the searched frequency. Secondly the resonance frequency
is exactly at the maximum of the sine and the of course when it is at the minimum.
If now those absorption-minima are equidistant, we can examine the correlation be-
tween the resonance frequency and the B-field, because then the resonance is at
the zeroes of the sin modulation where the B-field is known from the Hall-probe
measurement.

2.7.3 Lock-in method

The lock-in method is a measuring technique, which amplifies very small signals
underneath a large amount of noise. In the so called synchronous detector, the input
signal from the radiation field (NMR-signal) is multiplied by a phase-shifted reference
signal of the B-field modulation. Instead of a simple sin-wave modulation the lock-in
method makes use of an additional sawtooth function

U = Ust + U0 sin (ωinputt)

The two signals (NMR-signal and reference-signal (Uref = U0 sin (ωref t)) are then
integrated by a low-pass-filter and amplified before it becomes visible on the os-
cilloscope. The sine-wave and the added sawtooth will give the magnetic field a
modulation in the form of a slowly rising sin-wave function. The absorption curve
A(U) can then be written as a taylor series, if the sine is small in comparison to the
sawtooth.

A(U(t)) ≈ A(Ust) +
dA

dU
U0 sin (ωinputt)

With the mathematical principle of orthogonality also every signal without the right
phase shift and frequency will be filtered. Due to the following integral it becomes
clear that the sines where ωinput 6= ωref are getting cancelled out:∫ ∞

−∞
sin (ωinputt) · sin (ωref t)dt = δ(ωinput − ωref )

With the resulting differentiated absorption curve, we can now simply measure the
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time interval between the points where the NMR-signal and the sawtooth-sine-signal
pass zero and plot those as a function of the adjusted frequencies. To get the res-
onance frequency we use the linear dependence of the B-field and the resonance
frequency (equation 10), to calculate the y-axis-intersection.
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3 Experimental setup

The main part of the experiment is an electromagnet with a small hole for samples
in between. This electromagnet is connected to a power supply unit, which makes it
possible to change the voltage and thus the magnetic field strength.

For the measurement of the magnetic field the setup is then completed by a
Teslameter with an attached Hall-probe cf. Figure 2

For the measurement with the absorption method a NMR-Oscillator, gen-
erates high frequencies of roughly 19 MHz. Right next to it the sine modulation is
sent to small modulation-coils between the magnetic poles. With an Oscilloscope
the NMR-signal as well as the sine-modulation wave is made visible. cf. Figure 2

Figure 2: On the top, the setup for the measurement (2.7.1) on the bottom the setup
for the second part (2.7.2)

Lock-in Method In the lock-in method setup the setup of the absorption method
is complemented by the already introduced synchronous detector (see 2.7.3) and a
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machine which is able to generate the sawtooth-, sin-signal, and also to add them up.
The combined signal then goes to the oscilloscope, see the picture below for details:

Figure 3: Experimental setup for the lock-in method
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4 Data analysis

The uncertainty in the measurements used in section 4.2 strongly depends on the
uncertainty in determining that the peaks are equidistant. The display of the fre-
quency generator showed a systematical error by ”jumping” at various frequencies.
We considered this systematic error by measuring the minimum and maximum fre-
quencies νmin, νmax of subjectively still equidistant peaks (considering the jumps
in frequencies) and by following the gaussian error propagation (adding the squared
uncertainties) of the systematical and the statistical uncertainties.
In these cases we will use the newer data for our analysis.

4.1 Measurement of the magnetic field

The measurement of the magnetic field depending on the vertical position of the Hall-
probe shows a good homogeneity in the range between x = 10mm and x = 30mm.
The data is shown in fig. 4. We estimated the B-field with the Hall probe as
B = (472± 0.3)T. Where the error of the B-field is given by: 0.5T√
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Figure 4: The B-field as a function of the x-positon from the hall-probe inside the
magnet
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4.2 Measurements using a sine modulation

In this section we calculate the nuclear g-factor gI and the gyromagnetic ratio γ of
19F (sections 4.2.1 and 4.2.2) and 1H (sections 4.2.3 and 4.2.4) respectively, according
to equations 10 and 4:

gI =
hν

µKB

γ =
2πν

B

We also calculate the z-component of the nuclear magnetic moment µz of the respec-
tive nucleus, according to equation 5, in units of the nuclear magneton:

µz = gIµKmI

Besides, we calculate the respective ν
B ratio to be able to compare the accuracy of

the 1H/Glycol measurements to the Lock-in-method. The error propagation leads
to:

∆gI = gI

√(
∆ν

ν

)2

+

(
∆B

B

)2

(13)

∆γ = γ

√(
∆ν

ν

)2

+

(
∆B

B

)2

(14)

∆µz/µK
= mI∆gI (15)

∆ν/B =
ν

B

√(
∆ν

ν

)2

+

(
∆B

B

)2

(16)

∆ν =
νmax − νmin

2
(17)

We combined the systematical and statistical errors by adding the squares and taking
the square root of the sum.

4.2.1 19F sample

For the 19F-sample we found that the distance between two peaks was equidistant for
a frequency of ν = (19.37±0.03)MHz with a magnetic of B= (428±0.3) mT. We also
estimated an error for the equidistance with a maximum and minimum frequency
which we determined with equation 17 and the following values:

νmin = 19.3484MHz

νmax = 19.4001MHz
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Figure 5: The captured picture from the oscillos-
cope for the 19F-sample

The results are the fol-
lowing:

ν

B
= (40.18± 0.12)MHz · T−1

gI = 5.272± 0.015

γ = (25.25± 0.07) · 107rad · s−1T−1

µz
µK

= 2.636± 0.008

4.2.2 Teflon sample

The teflon sample was also measured with a magnetic field of B= (428±0.3) mT and
with a frequency of ν = (19.34 ± 0.02)MHz. The extrema for the error estimation
were found also with equation 17 and the following values:

νmin = 19.3181MHz

νmax = 19.3592MHz

With this we found the following results

ν

B
= (40.12± 0.09)MHz · T−1

gI = (5.264± 0.012)

γ = (25.21± 0.06) · 107rad · s−1T−1

µz
µK

= 2.632± 0.006
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4.2.3 Glycol sample

For the glycol sample we had to adjust the magnetic field to a strength of B=(452±
0.3) mT. We found equdistancy at a frequency of ν = (19.31± 0.02)MHz the maxi-
mum and minimum for the frequency could not be measured due to an interference
inside of the HF-generator. The frequencies were likely to jump around and although
the peaks always moved in one direction, the resulting minimum frequency was al-
ways higher than the one previously set. So we just estimated in comparison to the
ones before an error of ∆ν = 0.02MHz

Figure 6: The captured picture from the oscillos-
cope for the Glycol sample

The results are the fol-
lowing:

ν

B
= (42.71± 0.06)MHz · T−1

gI = (5.603± 0.008)

γ = (26.84± 0.04) · 107rad · s−1T−1

µz
µK

= 2.802± 0.004

4.2.4 1H sample

For the 1H sample we found with a magnetic field of B=(452± 0.3) mT a frequency
of ν = (19.34 ± 0.02)MHz. In Figure 7 the combined effect of spin-spin relaxation
(ssr) and spin-lattice relaxation (slr) is good visible. We have already talked about
it in section 2.5 but here is a more precise explanation:

If we would only observe one of the two effect ssr and slr the effect of the damped
harmonic oscillation would not be visible. Lets play this through let us assume only
slr would apply, then there would only be a peak and an exponential decay visible
on the oscilloscope, because all energy would be given to the lattice on the way back
to the equilibrium state. But of course we can not neglect the ssr. Which is shifting
the resonance frequency of a few atoms. This leads to an oscillating effect, because
the steady rising magnetic field will hit those ones delayed. They will then again
start to relax, and due to slr lose energy exponentially. Which results in the damped
harmonic oscillating effect.

Figure 7: The captured picture from the oscillos-
cope for the Hydrogen sample

those are the cal-
culated results:

ν

B
= (42.78± 0.06)MHz · T−1

gI = (5.612± 0.008)

γ = (26.88± 0.04) · 107rad · s−1T−1

µz
µK

= 2.806± 0.004
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4.3 Measurements using the lock-in-method

To calculate the resonance frequency using the data obtained with the lock-in-
method, we use the matplotlib module in python 2.7 to plot the data and the built-in
zoom function to determine the zeroes of the two curves.
As an example of this graphical method, we take our first measurement, plot it and
zoom in to the zeroes (cf fig 8).

a) quick plot of a lock-in-measurement with matplotlib. Time values are given in divs k of the
oscilloscope, amplitudes in V.

Blue: Sawtooth function / Orange: NMR signal

b) magnified view the zero of the sawtooth func-
tion c) magnified view of the zero of the NMR signal

Figure 8: Graphical determination of the zeroes

We refrain from fitting either one of the curves since with this method we obtain
the zeroes to a sufficient accuracy compared to the relatively large uncertainty in
measuring the frequencies. The time axis in the data obtained from the oscilloscope
has units of incremental integers k which are multiplied by the value marked ”in-
crement” in the .csv file to obtain actual time values. We then determine the time
difference ∆t between the zeroes of the two curves. Since the HF curve still has some
statistical fluctuations and the zero of the sawtooth is also somewhat blurry from
the sine modulation, we obtain uncertainties ∆k on the zeroes which propagate to
the ∆t values. The matplotlib environment allows to determine the x-y-position of
the cursor. Using this method we obtain a minimum and maximum value for the
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zero of the NMR signal (fig. 8.c):

tmin = 335div

tmax = 342div

We obtain the zero by averaging over these, and take half the distance between tmin
and tmax as the uncertainty of the measurement.

All the data obtained is shown in appendix 6.1. Since νres and B = B0 +Bmod(t)
show a linear dependence according to eq. 10 and the Bmod(t) sawtooth function
increases linearly with t, we expect the resonance frequency at ∆t = 0 where the
B-field reduces to the known B = B0. Therefore we can interpolate the resonance
frequency using a linear fit.

The linear fit made by Origin [5] with the built in weighted linear regression, is
shown in Figure 9. The following errors are taken straight from the regression of
Origin and propagate as shown in equation 16

Figure 9: ν - ∆t - diagram with linear fit

We obtain the y-intercept,

νres = (19.402± 0.016)MHz

or rather the νres
B ratio:

νres
B

= (42.55± 0.07)
MHz

T
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5 Summary and discussion of the results

In this section we summarise our results and compare the values requested in the
tasks (section 1) to reference values.

5.1 Measuring the magnetic field

In section 4.1 we observed a clear homogeneity of the magnetic field at the location
of the samples at a value of B = (472 ± 0.3) mT which allowed us to perform the
other measurements.

5.2 Sine modulation method

In section 4.2 we obtained the following results:

5.2.1 19F Sample

ν

B
= (40.18± 0.12)MHz · T−1

gI = 5.272± 0.015

γ = (25.25± 0.07) · 107rad · s−1T−1

µz
µK

= 2.636± 0.008

5.2.2 Teflon sample

ν

B
= (40.12± 0.09)MHz · T−1

gI = (5.264± 0.012)

γ = (25.21± 0.06) · 107rad · s−1T−1

µz
µK

= 2.632± 0.006

The result for |~µ| of the 19F nucleus, as indicated by Teflon sample coincides within
1σ with the following reference value[4]:

µz19F

µK
= 2.6288688 (18)

5.2.3 Glycol sample

ν

B
= (42.71± 0.06)MHz · T−1

gI = (5.603± 0.008)

γ = (26.84± 0.04) · 107rad · s−1T−1

µz
µK

= 2.802± 0.004

The result for the gyromagnetic ratio γ of the proton as indicated by the Glycol
sample coincides within 2σ with the referenced value [6]

γ1H = 26.75221900 · 107rad · s−1T−1 (19)
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The larger discrepancy could be explained by the great difficulty at adjusting the
resonance frequency due to the interference inside the HF Generator during the
Glycol measurement.

5.2.4 1H sample

ν

B
= (42.78± 0.06)MHz · T−1

gI = (5.612± 0.008)

γ = (26.88± 0.04) · 107rad · s−1T−1

µz
µK

= 2.806± 0.004

The result for the gyromagnetic ratio γ of the proton as indicated by the 1H sample
coincides within 3σ with the above referenced value.

5.3 Lock-in method

In section 4.3 we obtained the following result for the νres
B ratio of the proton by

using the data from the 1H sample:

νres
B

= (42.55± 0.06)MHz · T−1

Which coincides within 1σ with the reference value [7]

νres,1H
B

= 42.5781MHz · T−1 (20)

Although we have to admit that the data points scatter by relatively large distances
around the linear fit, the y-interception still delivers a good result.
This result is in good accordance with the reference value and shows that the Lock-in
method allowed us better measurement than the sine modulation, where the result
has a 3σ discrepancy from the reference value. One could improve the measure-
ments by avoiding the detour via the NMR-oscillator and send the NMR signal after
amplifying it straight into the oscilloscope and reduce the interference inside the
NMR-oscillator by doing so.
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6 Appendix

6.1 lock-in method

NMR-Signal
file name min max average error
1 335 342 6,77 0,07
2 382 388 7,70 0,06
3 882 888 17,70 0,06
4 523 528 10,51 0,05
5 367 372 7,39 0,05
6 727 732 14,59 0,05
7 428 435 8,63 0,07
8 615 620 12,35 0,05
9 880 885 17,65 0,05

Sawtooth
min max average error

1 600 650 12,50 0,50
2 578 604 11,82 0,26
3 78 115 1,93 0,37
4 525 555 10,80 0,30
5 355 384 7,39 0,29
6 738 771 15,09 0,33
7 248 280 5,28 0,32
8 496 530 10,26 0,34
9 500 538 10,38 0,38

∆t error on ∆t Frequency
[s] [s] [MHz]

1 -5,73 0,50 19,3844
2 -4,12 0,27 19,3977
3 15,77 0,37 19,4076
4 -0,29 0,30 19,3694
5 0,00 0,29 19,3795
6 -0,50 0,33 19,3493
7 3,35 0,33 19,4314
8 2,09 0,34 19,4602
9 7,27 0,38 19,4926
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6.2 Lab-notes

??
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