Albert-Ludwigs-Universität Freiburg Physiklabor für Fortgeschrittene Sommersemester 2022

Versuch am 30.-31.08.2022

Kernspinresonanz

Gruppe 13: 01.09.2022

Assistent:

Abstract

Im vorliegenden Versuch geht es um die grundsätzlichen Eigenschaften der Kernspinresonanz. Explizit soll für drei verschiedene Proben (¹⁹Fluor, Wasser und Glykol) das gyromagnetische Verhältnis beziehungsweise das kernmagnetische Moment bestimmt werden. Bei beiden Größen handelt es sich dabei um charakteristische Eigenschaften des Kerns, die direkt mit dem jeweiligen Kernspin verknüpft sind. Es werden zwei unterschiedliche Messmethoden – Sinusmodulation und Lock-in-Verfahren – verwendet und verglichen.

Insgesamt konnten die beschriebenen Messgrößen bei allen Messproben mit einer sehr guten Genauigkeit von jeweils unter 0,3% bestimmt und eine sehr gute Verträglichkeit untereinander, sowie mit Literaturwerten erreicht werden. Es konnte mit beiden Messmethoden vergleichbar genaue Ergebnisse erzielt werden.

Inhaltsverzeichnis

1	L Einführung				
2	 Theorie und Methodologie 2.1 Tabelle der im Protokoll verwendeten Symbole 2.2 Theoretischer Hintergrund 2.2.1 Grundlagen: Spin, Kernspin und magnetisches Moment 2.2.2 Kernspinresonanz: Wechselwirkung mit Magentfeld und Strahlung 2.3 Verwendete Methoden 2.3.1 Bestimmung des Magnetfeldes mithilfe einer Hall-Sonde 2.3.2 Bestimmung der Resonanzfrequenz über ein sinusmoduliertes Magnetfeld 2.3 Bestimmung der Resonanzfrequenz über die Lock-in-Methode 	5 5 5 6 6 7 7			
3	Aufbau und Durchführung	9			
 4 Datenanalyse und Fehlerbetrachtung 4.1 Vermessung des Magnetfeldes und Überprüfung der Homogenität					
	Moments	11 14 16 18			
5	Zusammenfassung und Fehlerdiskussion 5.1 Zusammenstellung der Ergebnisse 5.2 Vergleich mit Literaturwerten 5.3 Fehlerdiskussion und Erörterung der Ergebnisse	 22 22 22 23 			
6	Bibliography	24			
7	Anhang7.1Technische Parameter7.2Messwerte des ¹⁹ Fluors7.3Messwerte des Wassers7.4Messwerte des Glykols7.5Messwerte mit dem Lock-in-Verfahren7.6Laborbuch	 25 26 29 32 35 38 			

1	Im Protokoll verwendete Symbole
2	Zusammenstellung der Messergebnisse 22
3	Vergleich mit Literatur
4	Technische Einstellungen Aufbau

<u>x</u>_____

Abbildungsverzeichnis

1	Absorptionsbild am Oszilloskop
2	Lock-in-Signal
3	Blockschaltbild für Versuchsteil 1
4	Blockschaltbild für die Versuchsteile 2,3,4
5	Blockschaltbild für Versuchsteil 5
6	Homogenitätsmessung des Magnetfelds
7	Messung ¹⁹ Fluor bei 18,1386 MHz
8	Lineare Regressionen der Peak-Abstände von Fluor
9	Messung des Wassers bei 19,2145 MHz
10	Lineare Regressionen der Peak-Abstände von Wasser
11	Messung des Glykols bei 19,1968 MHz
12	Lineare Regressionen der Peak-Abstände von Glykol
13	Messung des Wassers mit den Lock-in-Verfahren bei 19,0759 MHz 19
14	Lineare Regression bei der Lock-in-Methode zur Frequenzbestimmung 20
15	¹⁹ Fluor bei 18,2893 MHz
16	¹⁹ Fluor bei 18,2721 MHz
17	¹⁹ Fluor bei 18,2604 MHz
18	¹⁹ Fluor bei 18,2522 MHz
19	¹⁹ Fluor bei 18,2388 MHz
20	¹⁹ Fluor bei 18,2246 MHz
21	¹⁹ Fluor bei 18,2004 MHz
22	¹⁹ Fluor bei 18,1817 MHz
23	¹⁹ Fluor bei 18,1602 MHz
24	¹⁹ Fluor bei 18,1142 MHz
25	¹⁹ Fluor bei 18,0906 MHz
26	¹⁹ Fluor bei 18,0654 MHz
27	¹⁹ Fluor bei 18,0293 MHz \ldots 28
28	¹⁹ Fluor bei 18,0211 MHz \ldots 28
29	Wasser bei 19,3477 MHz
30	Wasser bei 19, 3375 MHz
31	Wasser bei 19, 3282 MHz
32	Wasser bei 19, 3161 MHz
33	Wasser bei 19, 3081 MHz
34	Wasser bei 19,2912 MHz 29
35	Wasser bei 19,2717 MHz
36	Wasser bei 19,2545 MHz 30
37	Wasser bei 19,2355 MHz 30
38	Wasser bei 19, 1920 MHz
39	Wasser bei 19,1719 MHz
40	Wasser bei 19,1569 MHz
41	Wasser bei 19,1423 MHz 31
42	Wasser bei 19,1022 MHz 31

43	Glykol bei 19,3075 MHz	2
44	Glykol bei 19, 2938 MHz	2
45	Glykol bei 19,2848 MHz	2
46	Glykol bei 19, 2718 MHz	2
47	Glykol bei 19,2558 MHz	2
48	Glykol bei 19,2392 MHz	2
49	Glykol bei 19,2283 MHz	3
50	Glykol bei 19,2155 MHz	3
51	Glykol bei 19, 1814 MHz	3
52	Glykol bei 19,1704 MHz	3
53	Glykol bei 19,1550 MHz	3
54	Glykol bei 19,1363 MHz	3
55	Glykol bei 19,1186 MHz	4
56	Glykol bei 19,0908 MHz	4
57	Lock-in-Verfahren bei 19,1648 MHz 3	5
58	Lock-in-Verfahren bei 19,1564 MHz 3	5
59	Lock-in-Verfahren bei 19,1482 MHz 3	5
60	Lock-in-Verfahren bei 19, 1326 MHz 3	5
61	Lock-in-Verfahren bei 19, 1214 MHz 3	5
62	Lock-in-Verfahren bei 19, 1082 MHz 3	5
63	Lock-in-Verfahren bei 19,0932 MHz 3	6
64	Lock-in-Verfahren bei 19,0826 MHz 3	6
65	Lock-in-Verfahren bei 19,0615 MHz 3	6
66	Lock-in-Verfahren bei 19,0488 MHz 3	6
67	Lock-in-Verfahren bei 19,0352 MHz 3	6
68	Lock-in-Verfahren bei 19,0211 MHz 3	6
69	Lock-in-Verfahren bei 19,0160 MHz 3	7
70	Laborbuch - Seite 1	8
71	Laborbuch - Seite 2	9
72	Laborbuch - Seite 3 44	0
73	Laborbuch - Seite 4	1

1 Einführung

Der in diesem Protokoll behandelte Versuch "Kernspinresonanz" untersucht die grundlegenden Eigenschaften des Kernspins anhand mehrerer verschiedener Proben. Durch einen Elektromagneten wird eine Aufspaltung in Energieniveaus und damit ein möglicher Übergang induziert, der für die Proben ¹⁹Fluor, Wasser und Glykol ausgemessen wird. Mithilfe zweier verschiedener Methoden wird dabei die Resonanzfrequenz bestimmt, wodurch das gyromagnetische Verhältnis und das kernmagnetische Moment der Proben errechnet werden kann. Während im ersten Teil das Magnetfeld sinusförmig moduliert wird um die Resonanzfrequenz zu finden, wird im zweiten Teil die Lock-in-Methode zu deren Bestimmung verwendet.

2 Theorie und Methodologie

Der folgende Abschnitt, in dem die für den Versuch essentielle Theorie und verwendete Methoden eingeführt werden, basiert hauptsächlich auf der Versuchsanleitung, die von der Laborleitung zur Verfügung gestellt wurde [1] und der Arbeit zu diesem Versuch von Alfred Klett [2].

2.1 Tabelle der im Protokoll verwendeten Symbole

Tab. 1: Tabelle der im Protokoll verwendeten Symbole und der zugehörigen physikalischen Größen. Für die Konstanten werden folgende Quellen verwendet: Kernmagneton μ_K [3], reduziertes Plancksches Wirkungsquantum \hbar [4].

Symbol	Größe
S, m_S	Spin
I, m_I	Kernspin
$ec{\mu}$	magnetisches Dipolmoment
γ	gyromagnetisches Verhältnis
g_I	Kern-g-Faktor
$E,\Delta E$	Energie(-differenz)
u	Resonanzfrequenz
В	Magnetfeld
B_0, B_1	Permanentmagnetfeld und Amplitude der Modulation
U_H	Hall-Spannung
$\mu_K = 5,051 \cdot 10^{-27} \mathrm{J}\mathrm{T}^{-1}$ $\hbar = 1,055 \cdot 10^{-34} \mathrm{J}\mathrm{s}$	Kernmagneton reduziertes Wirkungsquantum

2.2 Theoretischer Hintergrund

2.2.1 Grundlagen: Spin, Kernspin und magnetisches Moment

In der Quantenmechanik besitzen Teilchen zusätzlich zum Drehimpuls einen charakteristischen Spin S. Dieser kann halb- (Fermionen) oder ganzzahlig (Bosonen) sein und nur entlang einer Quantisierungsachse gemessen werden. Die möglichen Beträge des Spins sind über $\left|\vec{S}\right| = \hbar \sqrt{S(S+1)}$ gegeben, während die Projektion auf eine Achse die Werte $S_z = m_S \hbar$ mit $-S \leq m_S \leq S$ in ganzzahligen Schritten annehmen kann. Neben dem Elektronenspin gibt es den Kernspin I, der die gleichen Eigenschaften wie der Elektronenspin besitzt [1].

Das magnetische Dipolmoment $\vec{\mu}$ ist proportional zum Kernspin \vec{I} des Teilchens mit der Proportionalitätskonstante γ , die als gyromagnetisches Verhältnis bekannt ist und in diesem Versuch

 $\mathbf{5}$

$$\vec{\mu} = \gamma \vec{I} \quad \text{mit} \quad \gamma = \frac{g_I \mu_K}{\hbar} \quad \text{und} \quad \mu_K = \frac{e\hbar}{2m_P}.$$
 (1)

Hierbei ist g_I der Kern-g-Faktor, der sich je nach Probe unterscheidet und μ_K das Kernmagneton, das sich aus den Konstanten Elementarladung e, reduziertes Wirkungsquantum \hbar und der Protonemasse m_P zusammensetzt. Da sowohl Sauerstoff als auch Kohlenstoff jeweils eine gerade Anzahl an Protonen und Neutronen besitzen und aufgrund des Pauli-Prinzip die Spinzustände paarweise besetzt werden, haben beide Elemente einen Kernspin I = 0. Dadurch kann durch Vermessung von Wasser (H₂O) und Glykol (C₂H₆O₂) jeweils der Kernspin $I = \frac{1}{2}$ des Protons vermessen werden. Auch die Fluor-Probe besitzt, aufgrund der ungeraden Zahl an Protonen und der geraden Neutronenzahl einen Kernspin von $I = \frac{1}{2}$.

2.2.2 Kernspinresonanz: Wechselwirkung mit Magentfeld und Strahlung

In einem angelegten Magnetfeld kommt es aufgrund des magnetischen Dipolmoments zur sogenannten Zeemann-Aufspaltung. Darunter versteht man die Aufspaltung in Energieniveaus, die sich aus der potentiellen Energie ergibt [1]:

$$E = -g_I \mu_K m_I B, \tag{2}$$

$$\Rightarrow \Delta E = g_I \mu_K B \quad \text{mit} \quad \Delta m_I = \pm 1. \tag{3}$$

Bei Anregung durch elektromagnetische Wellen können Photonen absorbiert werden, die die passende Resonanzfrequenz besitzen [1]:

$$\nu = \frac{\Delta E}{h} = \frac{\gamma B}{2\pi}.\tag{4}$$

Im vorliegenden Versuch kann dieser Effekt gemessen werden, indem die Absorption bei unterschiedlichen Resonanzfrequenzen untersucht wird. Da die Besetzungszustände Boltzmannverteilt sind und sich somit mehr Kerne im niedrigen Energiezustand befinden, kann bei richtig gewählter Resonanzfrequenz also mehr Absorption als Emission auftreten. Durch Spin-Gitter-Relaxation kann Energie strahlungslos in Form von Wärme an das Gitter abgegeben werden, wodurch insgesamt eine konstante Absorption gemessen werden kann, die nicht mit der Zeit zurückgeht.

2.3 Verwendete Methoden

2.3.1 Bestimmung des Magnetfeldes mithilfe einer Hall-Sonde

Zur Ausmessung des Magnetfeldes und der Überprüfung der Homogenität wird im folgenden Versuch eine Hall-Sonde verwendet. Diese basiert auf dem Hall-Effekt: Die Elektronen, die durch die Sonde fließen, werden aufgrund von ihrer Driftgeschwindigkeit v durch die Lorentzkraft im Magnetfeld B abgelenkt. Dadurch baut sich ein elektrisches Feld zwischen den beiden Seiten der Sonde auf, bis sich die Lorentzkraft und die Kraft durch das E-Feld genau ausgleichen. Die Spannung, die dann an den beiden Seiten gemessen werden kann ist die sogenannte Hall-Spannung U_H [1]:

$$U_H = \frac{IB}{ned}.$$
(5)

Da Strom I, Ladungsträgerdichte n, Elementarladung e und Dicke d bekannt sind, kann aus dieser Spannung das Magnetfeld bestimmt werden.

2.3.2 Bestimmung der Resonanzfrequenz über ein sinusmoduliertes Magnetfeld

In den ersten Teilen des Versuchs wird die Resonanzfrequenz mithilfe eines sinusmodellierten Magnetfeldes bestimmt [1]. Dazu wird dem permanenten Magnetfeld B_0 ein kleineres sinusförmiges Magnetfeld mit Amplitude B_1 überlagert. Da der Sinus jede Magnetfeldstärke zweimal durchläuft, können in jeder Periode zwei Absorptionspeaks gemessen werden. Ist die Frequenz genau so eingestellt, dass Resonanz beim Magnetfeld B_0 auftritt, treffen somit die Peaks genau mit den Nullstellen des Sinussignals zusammen und die Peaks haben äquidistante Abstände (siehe Abbildung 1). Durch Messung der Abstände kann später eine lineare Regression durchgeführt und damit die genaue Resonanzfrequenz gefunden werden [1].

Abb. 1: Zu sehen sind in rot ein Absorptionssignal und in blau die Modulation des Magnetfelds. Hierbei sind die Absorptionspeaks äquidistant und sie liegen auf den Nulldurchgängen des Sinus, es liegt also Resonanz vor. Die Abbildung ist aus der Versuchsanleitung [1] entnommen.

2.3.3 Bestimmung der Resonanzfrequenz über die Lock-in-Methode

Im letzten Teil des Versuchs wird die sogenannte Lock-in-Methode zur Suche der Resonanzfrequenz verwendet. Dabei wird eine Sägezahnspannung mit niedriger Frequenz zu dem Magnetfeld B_0 addiert, sodass nacheinander verschiedene Magnetfeldstärken durchlaufen werden. Treffen der Absorptionspeak und die Nullstelle des Sägezahnsignals genau aufeinander, ist die Resonanzfrequenz zu B_0 gefunden.

Durch zusätzliche Überlagerung mit einer hochfrequenten Sinusspannung kleiner Amplitude lässt sich mithilfe eines Synchrondetektors zusätzlich Rauschen effektiv entfernen. Dazu wird das Signal mit einem Referenzsignal, das die gleiche Frequenz wie die Sinusspannung besitzt, multipliziert und anschließend integriert. Dadurch ergibt sich ein Signal, das der Ableitung des ursprünglichen Eingangssignals entspricht und bei dem alle Störfrequenzen herausgefiltert sind. Ein solches Signal ist in Abbildung 2 schematisch dargestellt. Durch die Verwendung der Ableitung kann zusätzlich die Peak-Position, die hier dem Nulldurchgang entspricht leichter gefunden und eine lineare Regression mit den Abständen zwischen den Nulldurchgängen durchgeführt werden.

Abb. 2: Zu sehen sind in rot ein differenziertes Absorptionssignal und in blau die Modulation des Magnetfeldes als Sägezahn. Zusätzlich ist noch der Nulldurchgang des differenzierten Absorptionssignal und der Zeitpunkt des Nulldurchgangs der modulierten Sägezahnfunktion, sowie deren zeitlicher Abstand t eingezeichnet. Die Abbildung ist aus der Versuchsanleitung [1] entnommen.

3 Aufbau und Durchführung

х

Um die in der Einführung beschriebenen Versuchsteile durchführen zu können, werden drei verschiedene Aufbauten benötigt. Die jeweiligen eingestellten technischen Parameter sind im Anhang in Tabelle 4 zu finden.

Für die Homogenitätsmessung im ersten Versuchsteil werden zunächst die Spulen an das Netzgerät angeschlossen um ein möglichst homogenes Magnetfeld zu erhalten. Für die Messung wird dann eine an ein Teslameter angeschlossene Hall-Sonde in 1 mm-Schritten in die Probenhalterung eingetaucht und Magnetfeldstärken abgelesen. In Abbildung 3 ist der für diesen Versuchsteil verwendete Aufbau dargestellt.

Abb. 3: Blockschaltbild für Versuchsteil 1 aus der Versuchsanleitung [1].

Für die Untersuchung des kernmagnetischen Moments g_I des ¹⁹Fluors und des gyromagnetischen Verhältnisses γ des Wassers und Glykols in den Versuchsteilen 2 – 4 wird zusätzlich eine Sinusmodulation des Magnetfeldes durchgeführt. Hierzu wird zusätzlich zum vorherigen Aufbau ein NMR-Oszillator mit den Modulationsspulen rechts und links der Probenhalterung verbunden und zur Messung der Absorptionspeaks wird der NMR-Oszillator auch mit der Probenhalterung verbunden. Die Modulationsfrequenz wird ebenfalls über den NMR-Oszillator eingestellt und die Sinusmodulation und die Absorptionspeaks der Probe werden über ein Oszilloskop ausgelesen. In Abbildung 4 ist der für diesen Versuchsteil verwendete Aufbau dargestellt.

Abb. 4: Blockschaltbild für die Versuchsteile 2,3,4 aus der Versuchsanleitung [1].

Für die Lock-in-Methode zur Untersuchung des Wassers wird zunächst erneut das Netzgerät

х

für die Erzeugung des Permanentmagnetfeldes mit den Spulen und der NMR-Oszillator mit der Probenhalterung verbunden um das Absorptionspeaksignal abzugreifen. Dieses Signal wird dann anschließend über einen Vorverstärker 100-fach verstärkt und mit dem Synchrondetektor verbunden. Das rechteckige Referenzsignal des Synchrondetektors wird über einen Sinusgenerator erzeugt. In einem Addierer werden anschließend ein hochfrequentes Sinussignal mit einem niederfrequentem Sägezahnsignal addiert und mit den Modulationsspulen rechts und links der Probenhalterung verbunden. Über ein Oszilloskop werden die modulierte Sägezahnfunktion und das gefilterte Signal aus dem Synchrondetektor ausgelesen. Die technischen Parameter werden dabei so lange justiert, bis sich ein möglichst scharfes Signal mit möglichst kleinem Rauschen erkennen lässt, die gefundenen sind in Tabelle 4 im Anhang zusammengestellt. In Abbildung 5 ist der für diesen Versuchsteil verwendete Aufbau dargestellt.

Abb. 5: Blockschaltbild für Versuchsteil 5 aus der Versuchsanleitung [1].

4 Datenanalyse und Fehlerbetrachtung

4.1 Vermessung des Magnetfeldes und Überprüfung der Homogenität

Bevor die eigentlichen Vermessungen der Kernspin-Proben beginnen kann, soll zunächst die Homogenität des permanenten Magnetfeldes B_0 mit einer Hall-Sonde überprüft werden. Dazu wird die Eintauchtiefe x der Sonde variiert und das zugehörige Magnetfeld B gemessen. Die Unsicherheit wird bei der analogen Skala zum Ablesen der Eindringtiefe über Dreiecksverteilung als $\Delta x = 1/\sqrt{6}$ mm abgeschätzt, während für das digitale Teslameter eine Unsicherheit von $\Delta B = 1/\sqrt{3}$ mT über Rechtecksverteilung geschätzt wird [5]. Die Messwerte sind in Abbildung 6 in einer 2D-Darstellung aufgetragen:

Abb. 6: Aufgetragen sind die gemessenen Werte für das Magnetfeld B in mT gegen die Eintauchtiefe der Hallsonde x in mm.

Man kann gut erkennen, dass ab einer Eindringtiefe von etwa 8 mm ein sehr homogenes Magnetfeld vorliegt. Bis auf einen kleinen Ausreißer bei 20 mm kann mit der gegebenen Genauigkeit des Messgeräts in einem großen Bereich Homogenität nachgewiesen werden. Die Proben werden im Folgenden alle so platziert, dass sie im homogenen Bereich des Magnetfeldes liegen.

4.2 Untersuchung des ¹⁹Fluor-Kerns in Teflon und Bestimmung des kernmagnetischen Moments

Zur Berechnung des kernmagnetischen Moments muss zunächst die Resonanzfrequenz ν zum angelegten Magnetfeld B_0 bestimmt werden. Dieses wird sowohl vor, als auch nach der Messung gemessen, um Schwankungen zu erkennen. Es wird folgender Wert für das *B*-Feld bestimmt, wobei die Unsicherheit aus den Schwankungen während der Messung abgeschätzt wird:

$$B_0 = (452, 0 \pm 1, 0) \,\mathrm{mT}.$$

Zur Bestimmung der Resonanzfrequenz ν wird dieses Magnetfeld nun, wie in Unterunterabschnitt 2.3.2 beschrieben, sinusförmig moduliert und dann der Abstand der erkennbaren Absorptionspeaks gesucht. In Abbildung 7 ist eine der aufgenommenen Messungen zusammen mit dem zugehörigen Sinussignal dargestellt, bei der die Frequenz sehr nah an der Resonanzfrequenz liegt und die Peaks dadurch nahezu äquidistant sind. In Abbildung 15 bis Abbildung 28 im Anhang sind die weiteren Messungen mit anderen Frequenzen zu finden.

х

Abb. 7: Zu sehen sind die Resonanzkurve des ¹⁹Fluors bei 18,1386 MHz und die Sinusmodulation des Magnetfelds. Dabei wird die Spannung U in V gegen die Zeit t in saufgetragen. Die Sinusmodulation wurde hierbei um den Faktor 35 gestaucht.

Zunächst werden nun die Abstände der Peaks bestimmt um anschließend durch eine lineare Regression die Frequenz zu finden, bei der die Peaks äquidistant sind. Es wird sowohl der Abstand zwischen den ersten beiden, als auch zwischen den nächsten beiden Peaks bestimmt, sodass sich später zwei Geraden ergeben, deren Schnittpunkt bei der Resonanzfrequenz liegt. Zur Bestimmung der Peak Positionen x_i wird durch np.argmin die Position der Minima gefunden und dann über die Werte der benachbarten Messdaten die Unsicherheit abgeschätzt. Für Abbildung 7 ergeben sich folgende Peak Positionen:

$$x_1 = (-13.8 \pm 0.3) \text{ ms},$$

 $x_2 = (1.6 \pm 0.3) \text{ ms},$
 $x_3 = (17.0 \pm 0.3) \text{ ms}.$

Die Abstände ergeben sich dann einfach aus der Differenz und die Unsicherheit aus quadratischer Addition der Unsicherheiten [5]. Nach Runden ergeben sich dabei in diesem Fall die gleichen Werte:

$$x_{12} = (15, 4 \pm 0, 4) \text{ ms},$$

 $x_{23} = (15, 4 \pm 0, 4) \text{ ms}.$

Dieses Vorgehen wird nun für alle Messreihen wiederholt, sodass sich für beide Abstände lineare Verläufe in Bezug auf die jeweiligen Frequenzen mit unterschiedlicher Steigung ergeben. Durch lineare Regression, durchgeführt mit scipy.optimize.curve_fit, kann anschließend der Schnittpunkt bestimmt werden. Es ergeben sich die folgenden Werte für Steigung a und y-Achsenabschnitt b mit Unsicherheiten:

> $a_{12} = (88,7 \pm 1,1) \text{ ms MHz}^{-1},$ $b_{12} = (-1,595 \pm 0,019) \text{ s},$ $a_{23} = (-88,5 \pm 1,1) \text{ ms MHz}^{-1},$ $b_{23} = (1,622 \pm 0,019) \text{ s}.$

Die lineare Regression ist in Abbildung 8 abgebildet.

Abb. 8: Aufgetragen sind in blau die Peakabstände in
s zwischen Peak 1 und 2 und in rot zwischen Peak 2 und 3 des ¹⁹Fluors gegen
 die gemessenen Frequenzen ν in MHz. Zusätzlich sind für die jeweiligen Datensätze line
are Regressionen mit Konfidenzbändern eingezeichnet.

Durch Gleichsetzen der Geraden lässt sich der Schnittpunkt finden. Durch Gaußsche Fehlerfortpflanzung unter Berücksichtigung der Korrelation Cov [6] wird die Unsicherheit bestimmt:

$$a_{12} \cdot \nu_{\text{Fluor}} + b_{12} = a_{23} \cdot \nu_{\text{Fluor}} + b_{23},\tag{6}$$

$$\Rightarrow \nu_{\rm Fluor} = \frac{b_{23} - b_{12}}{a_{12} - a_{23}},\tag{7}$$

$$\Delta \nu_{\text{Fluor}} = \left[\left(\frac{\Delta b_{23}}{a_{12} - a_{23}} \right)^2 + \left(-\frac{\Delta b_{12}}{a_{12} - a_{23}} \right)^2 + \left(\frac{b_{12} - b_{23}}{(a_{12} - a_{23})^2} \cdot \Delta a_{12} \right)^2 + \left(\frac{b_{23} - b_{12}}{(a_{12} - a_{23})^2} \cdot \Delta a_{23} \right)^2 + 2 \left(-\frac{1}{a_{12} - a_{23}} \cdot \frac{b_{12} - b_{23}}{(a_{12} - a_{23})^2} \right) \cdot \text{Cov}(a_{12}, b_{12}) \quad (8)$$
$$+ 2 \left(\frac{1}{a_{12} - a_{23}} \cdot \frac{b_{23} - b_{12}}{(a_{12} - a_{23})^2} \right) \cdot \text{Cov}(a_{23}, b_{23}) \right]^{\frac{1}{2}}.$$

Einsetzen liefert folgenden Wert:

$$\nu_{\rm Fluor} = (18, 1470 \pm 0, 0008) \,\mathrm{MHz}$$

Mit Gleichung 4 lässt sich nun das gyroskopische Verhältnis γ bestimmen. Erneut wird die Unsicherheit mit Gaußscher Fehlerfortpflanzung bestimmt [5]:

$$\gamma_{\rm Fluor} = \frac{\nu_{\rm Fluor} 2\pi}{B_0},\tag{9}$$

$$\Delta \gamma_{\rm Fluor} = 2\pi \sqrt{\left(\frac{\Delta \nu_{\rm Fluor}}{B_0}\right)^2 + \left(-\frac{\nu_{\rm Fluor}\Delta B_0}{B_0^2}\right)^2}.$$
 (10)

Zuletzt kann mit Gleichung 1 auch noch der Kern-g-Faktor ermittelt werden:

$$g_{I,\text{Fluor}} = \frac{\gamma_{\text{Fluor}}\hbar}{\mu_K},\tag{11}$$

$$\Delta g_{I,\text{Fluor}} = \frac{\hbar \Delta \gamma_{\text{Fluor}}}{\mu_K}.$$
(12)

Folgende Werte ergeben sich durch Einsetzen in obige Formeln:

$$\gamma_{\text{Fluor}} = (2,523 \pm 0,006) \cdot 10^8 \, \text{rad} \, \text{T}^{-1} \, \text{s}^{-1},$$

 $g_{I,\text{Fluor}} = (5,267 \pm 0,012) \cdot 10^{-6}.$

4.3 Untersuchung eines Protons in Wasser

Zur Bestimmung des gyroskopischen Verhältnisses γ eines Protons kann nun bei der Untersuchung der Wasser-Probe exakt analog verfahren werden. Erneut wird das Magnetfeld B_0 vor und nach der Messung gemessen und folgender Wert zur Verwendung in der Auswertung bestimmt:

$$B_0 = (451, 0 \pm 1, 0) \,\mathrm{mT}.$$

Auch hier wird zunächst die Resonanzfrequenz durch Analyse der Peaks bei Modulation des Magnetfeldes mit einer Sinusspannung gesucht. In Abbildung 9 ist eine der aufgenommenen Messungen zusammen mit dem zugehörigen Sinussignal dargestellt. Auch hier sind alle weiteren Messungen im Anhang in Abbildung 29 bis Abbildung 42 zu finden.

Abb. 9: Zu sehen sind die Resonanzkurve des Wassers bei 19,2145 MHz und die Sinusmodulation des Magnetfelds. Dabei wird die Spannung U in V gegen die Zeit t in s aufgetragen. Die Sinusmodulation wurde hierbei um den Faktor 30 gestaucht.

Die Bestimmung der Peaks und derer Abstände erfolgt exakt analog wie im vorherigen Teil, die Fehler auf die Peak-Positionen werden jedoch bei dieser Messung größer geschätzt, da sowohl Ausschläge nach oben als auch nach unten erkennbar sind und damit die exakte Position nicht mit der gleichen Sicherheit bestimmt werden kann. Auch die Auftragung in einem gemeinsamen Diagramm und das Ausführen einer linearen Regression mit scipy.optimize.curve_fit, die in Abbildung 10 zu finden ist, wird genau gleich durchgeführt. In diesem Fall ergeben sich die folgenden Werte für Steigung a und y-Achsenabschnitt b mit Unsicherheiten:

 $\begin{aligned} a_{12} &= (89, 3 \pm 1, 9) \, \mathrm{ms} \, \mathrm{MHz}^{-1}, \\ b_{12} &= (-1, 70 \pm 0, 04) \, \mathrm{s}, \\ a_{23} &= (-88, 9 \pm 1, 9) \, \mathrm{ms} \, \mathrm{MHz}^{-1}, \\ b_{23} &= (1, 72 \pm 0, 04) \, \mathrm{s}. \end{aligned}$

Abb. 10: Aufgetragen sind in blau die Peakabstände in
s zwischen Peak 1 und 2 und in rot zwischen Peak 2 und 3 des Wassers gegen die gemessen
en Frequenzen ν in MHz. Zusätzlich sind für die jeweiligen Datensätze line
are Regressionen mit Konfidenzbändern eingezeichnet.

Analog zu Gleichung 6 kann nun der Schnittpunkt der Geraden und damit die Resonanzfrequenz bestimmt werden. Auch das gyroskopische Verhältnis γ und der Kern-g-Faktor g_I werden wie in Gleichung 9 bzw. Gleichung 11 ermittelt. Es können die folgenden Werte bestimmt werden:

$$\nu_{\text{Wasser}} = (19,2163 \pm 0,0012) \text{ MHz},$$

$$\gamma_{\text{Wasser}} = (2,677 \pm 0,006) \cdot 10^8 \text{ rad } \text{T}^{-1} \text{ s}^{-1},$$

$$g_{I,\text{Wasser}} = (5,590 \pm 0,012) \cdot 10^{-6}.$$

4.4 Untersuchung eines Protons in Glykol

Erneut soll das gyroskopische Verhältniss γ eines Protons bestimmt werden. In diesem Teil wird jedoch anstatt der Wasser-Probe eine Glykol-Probe verwendet. Ansonsten entspricht das Vorgehen exakt den beiden vorangegengenen Teilen. Die Bestimmung des Magnetfeldes B_0 vor und nach der Messung liefert in diesem Fall den folgenden Mittelwert mit geschätzter Unsicherheit:

$$B_0 = (449, 0 \pm 1, 0) \,\mathrm{mT}.$$

Eine Messung mit Glykol findet sich in Abbildung 11, alle weiteren Messungen sind im Anhang in Abbildung 43 bis Abbildung 56 zu finden. Erneut wird der größere Fehler bei der Bestimmung der Peaks verwendet, da wieder ein Ausschlag in beide Richtungen erkennbar ist.

Abb. 11: Zu sehen sind die Resonanzkurve des Glykols bei 19,1968 MHz und die Sinusmodulation des Magnetfelds. Dabei wird die Spannung U in V gegen die Zeit t in s aufgetragen. Die Sinusmodulation wurde hierbei um den Faktor 30 gestaucht.

Mithilfe von scipy.optimize.curve_fit kann auch hier eine lineare Regression zur Bestimmung der Resonanzfrequenz durchgeführt werden, die in Abbildung 12 zu finden ist. In diesem Fall ergeben sich die folgenden Werte für Steigung a und y-Achsenabschnitt b mit Unsicherheiten:

$$a_{12} = (98 \pm 2) \text{ ms MHz}^{-1},$$

 $b_{12} = (-1,86 \pm 0,04) \text{ s},$
 $a_{23} = (-98 \pm 2) \text{ ms MHz}^{-1},$
 $b_{23} = (1.89 \pm 0.04) \text{ s}.$

Abb. 12: Aufgetragen sind in blau die Peakabstände in
s zwischen Peak 1 und 2 und in rot zwischen Peak 2 und 3 des Glykols gegen die gemessen
en Frequenzen ν in MHz. Zusätzlich sind für die jeweiligen Datensätze line
are Regressionen mit Konfidenzbändern eingezeichnet.

Nach erneuter Bestimmung der Resonanzfrequenz mit Gleichung 6 wird das gyroskopische Verhältnis γ und der Kern-g-Faktor g_I bestimmt:

$$\nu_{\text{Glykol}} = (19,1977 \pm 0,0011) \text{ MHz},$$

 $\gamma_{\text{Glykol}} = (2,686 \pm 0,006) \cdot 10^8 \text{ rad } \text{T}^{-1} \text{ s}^{-1},$
 $g_{\text{I,Glykol}} = (5,609 \pm 0,012) \cdot 10^{-6}.$

Ein qualitativer Vergleich dieses Wertes mit dem Ergebnis aus dem vorherigen Teil kann mithilfe eines t-Wertes angestellt werden [5]. Der t-Wert wird dabei aus der Differenz der beiden Messwerte berechnet und anschließend durch die quadratisch addierte Unsicherheit dividiert. Ein t-Wert von kleiner als zwei deutet dabei auf eine gute, ein größerer t-Wert auf eine schlechte Verträglichkeit hin [5]. Für das gyroskopische Verhältnis γ der beiden Messwerte erhalten wir den folgenden t-Wert:

$$t = 1, 1.$$

Die Werte sind somit sehr gut miteinander verträglich, was bei einer relativen Unsicherheit von 0,2% auf eine konsistente Messung hindeutet. Ein Vergleich mit einem Literaturwert, bei dem auch systematische Fehler in der Messung erkannt werden können, erfolgt in Unterabschnitt 5.2.

4.5 Erneute Untersuchung des Wassers mithilfe der Lock-in-Methode

Eine erneute Vermessung der Wasser Probe soll nun mithilfe der in Unterunterabschnitt 2.3.3 beschriebenen Lock-in-Methode durchgeführt werden. Dazu werden sowohl das differenzierte

Absorptionssignal, als auch das mit einer hochfrequenten Sinusspannung überlagerte niederfrequente Sägezahnsignal aufgezeichnet, um jeweils die Nullstellen und deren Differenz zu bestimmen. Für eine genauere Nullstellenbestimmung wird jeweils an den annähernd linearen Teilen der beiden Signale eine lineare Regression mithilfe von scipy-optimize.curve_fit durchgeführt. In Abbildung 13 ist eine der Messungen mit den beiden linearen Regressionen zu sehen, alle weiteren Messung finden sich in Abbildung 57 bis Abbildung 69 im Anhang. Es wurde eine Messung augewählt, bei der die Frequenz sehr nah an der Resonanzfrequenz liegt, was daran erkennbar ist, dass sich die Geraden sehr nahe bei der Null schneiden.

х

Abb. 13: Aufgetragen sind die Spannungen U der Sägezahnmodulation des Magnetfelds, sowie die Signalkurve des Wassers in V gegen die Zeit t in s. Zusätzlich sind für beide Datensätze lineare Regressionen eingezeichnet.

Für die linearen Regression ergeben sich in dieser Messung die folgenden Parameter für Steigung a und y-Achsenabschnit b:

$$a_{\text{Säge}} = (0.868 \pm 0.005) \,\text{V s}^{-1}$$
$$b_{\text{Säge}} = (0.17 \pm 0.05) \,\text{V s}^{-1},$$
$$a_{\text{Signal}} = (24.0 \pm 1.6) \,\text{V s}^{-1},$$
$$b_{\text{Signal}} = (2.2 \pm 0.8) \,\text{V s}^{-1}.$$

Die Nullstelle kann nun jeweils durch Nullsetzen der Geraden gefunden werden, die Unsicherheit wird über Gaußsche Fehlerfortpflanzung unter Berücksichtigung der Korrelation [6] durchgeführt:

$$a \cdot x_0 + b = 0, \tag{13}$$

$$\Rightarrow x_0 = -\frac{b}{a},\tag{14}$$

$$\Delta x_0 = \sqrt{\left(-\frac{\Delta b}{a}\right)^2 + \left(\frac{b\Delta a}{a^2}\right)^2 - 2\frac{b}{a^3}\operatorname{Cov}(a,b).}$$
(15)

Einsetzen liefert für die Werte aus Abbildung 13 folgende Nullstellen, wobei der Abstand direkt aus der Differenz berechnet wird und sich dessen Unsicherheit aus der quadratischen Summe der beiden Einzelunsicherheiten ergibt [5]:

$$x_{\text{Säge},0} = (-0.20 \pm 0.06) \text{ s},$$

 $x_{\text{Signal},0} = (-0.09 \pm 0.03) \text{ s},$
 $\Rightarrow \Delta x_0 = (0.11 \pm 0.07) \text{ s}.$

Dieses Vorgehen wird nun auch für alle anderen Messreihen durchgeführt. Es ergeben sich für jede Frequenz unterschiedliche Abstände der Nullstellen. Durch lineare Regression mithilfe von scipy.optimize.curve_fit kann dann unter Berücksichtigung der Unsicherheiten die Nullstelle und damit die Resonanzfrequenz gefunden werden. Die lineare Regression zwischen Abständen Δt in s und Frequenzen ν in MHz ist in Abbildung 14 zu finden:

Lineare Regression bei der Lock-in-Methode zur Frequenzbestimmung

Abb. 14: Aufgetragen sind die Abstände Δt in s der Nulldurchgänge der Sägezahnmodulation und der Signalkurve bei der Messung mit dem Lockin-Verfahren gegen die gemessene Frequenz ν in MHz. Zusätzlich ist eine lineare Regression mit einem Konfidenzband eingezeichnet. Dieses ist allerdings sehr klein und daher nur schwer erkennbar.

Offensichtlich sind die Fehler hier etwas zu klein geschätzt, da die Ausgleichsgerade eindeutig nicht in einem 2σ Intervall aller Messwerte liegt. Auf diese Problematik wird in Unterabschnitt 5.3 eingegangen. Folgende Werte für Steigung *a* und *y*-Achsenabschnitt *b* werden gefunden:

$$a = (216.8 \pm 0.4) \,\mathrm{s \, MHz^{-1}},$$

 $b = (-4137 \pm 8) \,\mathrm{s}.$

Die Resonanzfrequen
z ν kann dann mit Gleichung 14 über die Nullstelle der line
aren Regression gefunden werden:

$$\nu = (10,\!080\,07\pm0,\!000\,09)\,\mathrm{MHz}$$

Erneut wird das zugrundeliegende Magnetfeld B_0 vor und nach der Messung gemessen, gemittelt und der Fehler über die Schwankung abgeschätzt:

$$B_0 = (448,5 \pm 1,0) \,\mathrm{mT}.$$

Analog zu den vorherigen Teilen wird die Frequenz erneut in ein gyromagnetisches Verhältnis γ und einen Kern-g-Faktor g_I umgerechnet werden:

$$\gamma = (2,673 \pm 0,006) \cdot 10^8 \text{ rad } \text{T}^{-1} \text{ s}^{-1},$$

 $g_I = (5,581 \pm 0,012) \cdot 10^{-6}.$

Ein erneuter Vergleich mit der vorherigen Messung an Wasser kann über den t-Wert der beiden Messwerte für das gyromagnetische Verhältnis γ angestellt werden [5]. Es wird folgender t-Wert bestimmt:

$$t = 0, 5$$

Erneut sind die Werte sehr gut verträglich, was auf eine in sich konsistente Messung schließen lässt.

5.1 Zusammenstellung der Ergebnisse

х

Im ersten Versuchsteil konnte die Homogenität des Magnetfeldes innerhalb der Spule bis auf wenige, vernachlässigbare Schwankungen nachgewiesen und damit ein guter Arbeitsbereich für die folgenden Versuchsteile ausgewählt werden.

In den weiteren Versuchteilen konnten erfolgreich jeweils gyromagnetisches Verhältnis γ und Kern-g-Faktor g_I aus der Resonanzfrequunz ν für die Proben ¹⁹Fluor, Wasser und Glykol bestimmt werden. Dabei wurden die Proben zunächst durch Sinusmodulation des Magnetfeldes untersucht und anschließend eine weitere Messung an Wasser mithilfe der Lock-in-Methode vorgenommen. Die Ergebnisse sind alle in Tabelle 2 zusammengestellt.

Tab. 2: Zusammengestellt sind die gemessenen Werte für Magnetfeld B_0 in mT und Frequenz ν in MHz, sowie die berechneten Werte für das gyroskopische Verhältnis γ in $10^8 \operatorname{rad} \mathrm{T}^{-1} \mathrm{s}^{-1}$ und der Kern-g-Faktor in 10^{-6} .

Stoff	B_0 in mT	Frequenz ν in MHz	$\gamma \text{ in } 10^8 \text{rad } \text{T}^{-1} \text{s}^{-1}$	g_I in 10^{-6}
Fluor	$452,0\pm1,0$	$18,1470\pm 0,0008$	$2,523\pm0,006$	$5,267\pm0,012$
Wasser	$451,0\pm1,0$	$19,2163\pm 0,0012$	$2,677\pm0,006$	$5,590\pm0,012$
Glykol	$449,0\pm1,0$	$19,1977\pm 0,0011$	$2,686\pm0,006$	$5,609\pm0,012$
Wasser (Lock-in)	$448,5\pm1,0$	$19,08007\pm0,00009$	$2,673\pm0,006$	$5,581\pm0,012$

Ein Vergleich von Messung 4 und 5 mit Messung 3 konnte dabei mit t-Werten von 1,1 beziehungsweise 0,5 eine gute Konsistenz der Werte untereinander belegen. Ein Vergleich mit Literaturwerten wird im folgenden Abschnitt angestellt.

5.2 Vergleich mit Literaturwerten

In diesem Abschnitt sollen die eben zusammengefassten Messergebnisse mit Literaturwerten verglichen werden. Es wird sich dabei auf das gyromagnetische Verhältnis γ beschränkt, da sich der Kern-g-Faktor über Konstanten direkt in γ umrechnen lässt. Als Quelle für die Literaturwerte wird für das Proten [7] und für das ¹⁹Fluor [8] verwendet:

$$\gamma_p = 2,675 \cdot 10^8 \,\mathrm{rad} \,\mathrm{T}^{-1} \,\mathrm{s}^{-1},$$

 $\gamma_F = 2,517 \cdot 10^8 \,\mathrm{rad} \,\mathrm{T}^{-1} \,\mathrm{s}^{-1}.$

Ein Vergleich wird erneut über t-Werte angestellt. In folgender Tabelle 3 ist für jede Probe der t-Wert im Vergleich zum Literaturwert sowie der relative Fehler angegeben.

Tab. 3: Ein Vergleich mit Literaturwerten ist in dieser Tabelle zusammengestellt. Für das gyromagnetische Verhältnis γ in 10⁸ rad T⁻¹ s⁻¹ sind sowohl Messwert als auch Literaturwert angegeben. Zusätzlich sind der *t*-Wert und der relative Fahler aufgelistet.

Stoff	$\gamma_{\rm Mess}$ in $10^8 {\rm rad} {\rm T}^{-1} {\rm s}^{-1}$	$\gamma_{\rm Lit} \text{ in } 10^8 \text{rad } \text{T}^{-1} \text{ s}^{-1}$	$t ext{-Wert}$	relativer Fehler
Fluor	$2,523\pm0,006$	2,517	1, 0	0,22%
Wasser	$2,677\pm0,006$	2,675	0, 4	0,22%
Glykol	$2,686\pm0,006$	2,675	1,9	0,22%
Wasser (Lock-in)	$2,673\pm0,006$	2,675	0,3	0,22%

Alle Werte sind trotz des extrem kleinen relativen Fehlers von 0,22% sehr gut mit ihrem Literaturwert verträglich.

5.3 Fehlerdiskussion und Erörterung der Ergebnisse

Die Justierung für die Lock-in Messung gestaltet sich als etwas schwierig, da die Optimierung für ein sehr deutliches rauschfreies Signal von vielen Parametern abhängt, wie der Amplitude der Sinus- und der Sägezahnschwingung, sowie deren Frequenz, dem Delay und den verschiedenen Zeitkonstanten. Die letzte Messung musste deshalb zweimal durchgeführt werden, da erst bei feiner Nachjustage ein sehr gutes, rauschfreies Signal erkennbar war. Da jedoch die ausgewertete Messung ein sehr gutes Ergebnis liefert, kann von einer guten Justage am Ende ausgegangen werden.

Bei der linearen Regression zur Bestimmung der Resonanzfrequenz des Wassers aus der Lockin-Methode in Abbildung 14 fällt auf, dass die Werte etwas stärker von der Regressionslinie abweichen und zusätzlich noch extrem kleine Fehler haben. Allerdings stammen die Fehler aus der Fehlerfortpflanzung der zuvor durchgeführten linearen Regressionen des modulierten Sägezahnsignals und des Messsignals. Trotzdem ist der mit Hilfe dieser Regressionslinie bestimmte Wert für das gyromagnetische Verhältnis γ sowohl mit dem Literaturwert verträglich, als auch mit dem mit der Sinusmodulation bestimmten Wert konsistent. Daraus lässt sich auf einen unterschätzten Fehler, aber trotzdem gute Messwerte schließen.

Ein wichtiger Aspekt dieses Versuchs ist die Verwendung zweier unterschiedlicher Methoden zur Bestimmung des gyromagnetischen Verhältnisses γ . Während in der Versuchsanleitung [1] davon ausgegangen wird, dass mit der Lock-in-Methode ein deutlich besseres Ergebnis erzielt werden kann, da hier das Rauschen reduziert ist und die Nullstelle des Absorptionssignals für eine genauere Auswertung sorgt, konnten in dem Versuch keine großen Unterschiede in der Genauigkeit der beiden Methoden festgestellt werden. Dies lässt sich nicht durch genaueres Arbeiten bei den Messungen im ersten Versuchsteil erklären, sondern hat insbesondere zwei Gründe: Zum einen wird in der Versuchsanleitung davon ausgegangen, dass in der ersten Messung keine lineare Regression durchgeführt wird, was zu einer erheblich schwierigeren Bestimmung der Resonanzfrequenz führt. Zum anderen überwiegt bei der Bestimmung des gyromagnetischen Verhältnisses γ eindeutig der Fehler bei der Messung auf das Magnetfeld, womit sich auch erklären lässt, dass die Fehler hier in allen Messungen nahezu identisch sind. Dies führt dazu, dass selbst bei genauerer Messung der Resonanzfrequenz durch das Lock-in-Verfahren keine nennenswerte Verbesserung der Genauigkeit erzielt werden kann. Es müsste also auch die Messung des Magnetfeldes genauer

Literatur

- A. Ortner, M. Köhli, K. Köneke: Kernspinresonanz Versuchsanleitung Fortgeschrittenen Praktikum Teil 1, (Freiburg im Breisgau: 2013)
- [2] Alfred Klett: Zum Versuch Kernspinresonanz, (Freiburg im Breisgau: 1990)
- [3] James G. Kushmerick: The NIST Reference on Constants, Units and Uncertainty https: //physics.nist.gov/cgi-bin/cuu/Value?mun (aufgerufen am: 31.08.2022)
- [4] James G. Kushmerick: The NIST Reference on Constants, Units and Uncertainty https: //physics.nist.gov/cgi-bin/cuu/Value?hbar (aufgerufen am: 31.08.2022)
- [5] Dr. Christof Bartels, Dr. Lukas Bruder, Dr. Thomas Pfohl: Datenanalyse Teil A Skript zur Vorlesung am 06.09.2021, (Freiburg im Breisgau: 2021/22)
- [6] Dr. Christof Bartels, Dr. Lukas Bruder, Dr. Thomas Pfohl: Datenanalyse Teil B Skript zur Vorlesung am 28.02.2022, (Freiburg im Breisgau: 2021/22)
- [7] W.M.Haynes: CRC Handbook of Chemestry and Physics 95th Edition, (Boca Raton: CRC Press, 2014), p. 27
- [8] J. Nelson: Nuclear Magnetic Resonance Spectroscopy, (London: Prentice Hall, 2003)

7.1 Technische Parameter

Tab. 4: Zusammengefasst sind die technischen Einstellungen, die bei den Verschiedenen Versuchteilen verwendet werden. Die Unsicherheit kann über Rechtecksverteilung abgeschätzt werden, da ausschließlich digitale Messgeräte verwendet werden und beträgt damit jeweils $1/\sqrt{3}$ auf die letzte Stelle [5].

Parameter	Teil 1	Teil 2	Teil 3	Teil 4	Teil 5
Magnetfeld					
Messung B in mT davor	-	453	451	450	446
Messung B in mT danch	-	451	451	448	445
Spannung in V	8,3	8,7	8,7	8,7	8, 6
Stromstärke in A	3, 49	3, 43	3,40	3,39	3,49
Messungen der Proben					
Eintauchtiefe in mm	-	30	30	30	30
kleinste Fequenz in MHz	-	18,0211	19,1022	19,0908	19,0160
größte Fequenz in MHz	-	18,2893	19,3477	19,3075	19,1648
Technik für Teil 5					
Gain Vorverstärker	-	-	-	-	100
Delay in ms	-	-	-	-	5
Time constant in s	-	-	-	-	1
Sinusamplitude V_{ss} in V	-	-	-	-	0, 34
Sägezahnamplitude V_{sz}	-	-	-	-	$2, 8 \cdot V_{ss}$
Frequenz Sinusmodulation in Hz	-	-	-	-	70
Sägezahn Periodendauer in s	-	-	-	-	30

7.2 Messwerte des ¹⁹Fluors

Abb. 15: Messdaten und Sinusmodulation des Magnetfeldes bei 18, 2893 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 17: Messdaten und Sinusmodulation des Magnetfeldes bei 18,2604 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 19: Messdaten und Sinusmodulation des Magnetfeldes bei 18, 2388 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 16: Messdaten und Sinusmodulation des Magnetfeldes bei 18,2721 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 18: Messdaten und Sinusmodulation des Magnetfeldes bei 18,2522 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 20: Messdaten und Sinusmodulation des Magnetfeldes bei 18,2246 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 21: Messdaten und Sinusmodulation des Magnetfeldes bei 18,2004 MHz für 19 Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 23: Messdaten und Sinusmodulation des Magnetfeldes bei 18, 1602 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 25: Messdaten und Sinusmodulation des Magnetfeldes bei 18,0906 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 22: Messdaten und Sinusmodulation des Magnetfeldes bei 18, 1817 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 24: Messdaten und Sinusmodulation des Magnetfeldes bei 18,1142 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 26: Messdaten und Sinusmodulation des Magnetfeldes bei 18,0654 MHz für ¹⁹Fluor. Die Sinusmodulation ist um den Faktor 35 kleiner.

Abb. 28: Messdaten und Sinusmodulation des Magnetfeldes bei 18,0211 MHz für $^{19}\mathrm{Fluor}.$ Die Sinusmodulation ist um den Faktor 35 kleiner.

7.3 Messwerte des Wassers

Abb. 29: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3477 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 31: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3282 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 33: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3081 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 30: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3375 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 32: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3161 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 34: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2912 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 35: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2717 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 37: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2355 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 39: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1719 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 36: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2545 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 38: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1920 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 40: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1569 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 42: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1022 MHz für H_2O . Die Sinusmodulation ist um den Faktor 30 kleiner.

7.4 Messwerte des Glykols

Abb. 43: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 3075 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 45: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2848 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 47: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2558 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 44: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2938 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 48: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2392 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 49: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2283 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 51: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1814 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 53: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1550 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 50: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 2155 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 52: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1704 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 54: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 1363 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

Abb. 56: Messdaten und Sinusmodulation des Magnetfeldes bei 19, 0908 MHz für die Glykol Probe. Die Sinusmodulation ist um den Faktor 30 kleiner.

7.5 Messwerte mit dem Lock-in-Verfahren

Abb. 57: Messdaten und Sägezahnmodulation bei 19, 1648 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 59: Messdaten und Sägezahnmodulation bei 19, 1482 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 61: Messdaten und Sägezahnmodulation bei 19, 1214 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 58: Messdaten und Sägezahnmodulation bei 19, 1564 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 60: Messdaten und Sägezahnmodulation bei 19, 1326 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 62: Messdaten und Sägezahnmodulation bei 19, 1082 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 63: Messdaten und Sägezahnmodulation bei 19,0932 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 65: Messdaten und Sägezahnmodulation bei 19,0615 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 67: Messdaten und Sägezahnmodulation bei 19,0352 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 64: Messdaten und Sägezahnmodulation bei 19,0826 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 66: Messdaten und Sägezahnmodulation bei 19,0488 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 68: Messdaten und Sägezahnmodulation bei 19,0211 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

Abb. 69: Messdaten und Sägezahnmodulation bei 19,0160 MHz für die H_2O Probe. Es sind lineare Regression für Signal und Sägezahn dargestellt.

7.6 Laborbuch

Abb. 70: Laborbuch - Seite 1

Abb. 71: Laborbuch - Seite 2

Abb. 72: Laborbuch - Seite 3

Abb. 73: Laborbuch - Seite 4