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1 Objectives

This experiment is dedicated to measuring the flux ” of cosmic muons reaching the surface of the
earth. Cosmic muons originate in decays of secondary cosmic ray shower particles like charged
pions. A series of sub-experiments was performed using a setup consisting of two detector tiles and
a coincidence module. Initially, measurements were conducted to assess the shape of the underlying
probability density function, as well as the rate of random coincidences. After this, the zenith angle
dependence of the incoming particle flux was analysed at three di!erent locations in the buildings,
corresponding to varying levels of shielding. Di!erent statistical and systematic uncertainties were
taken into account and from the measurements the total flux through a horizontal detector was
estimated. Finally, the shielding e!ect of lead blocks brought between the two detector tiles was
examined.

2 Setup and Procedure

In this experiment, an experimental kit of CAEN Educational [Edua] was used, which consists of
two encased plastic scintillator tiles, SiPM diodes working in Geiger-Müller regime and a coinci-
dence module, which can be read out and controlled via a software on a computer. The photodiodes
as well as some electronics are enclosed in the detector tiles and their settings and bias voltage
cannot be changed. When operating in coincidence mode, the two tiles can be mounted onto a
metal arm which can be rotated around its point of suspension in the direction of the zenith angle
#, forming a ”muon telescope”. A picture of this telescope setup can be found in fig. 1.

Figure 1: Setup of the muon telescope, indicating the procedure for measuring the distance d
between the tiles.

For determining the underlying probability distribution, the number of coincidences detected within
a time interval of 1min and 5 s was measured repeatedly in order to obtain a statistical significance
and a histogram of the results was obtained and analysed.

At three chosen locations, namely the highest floor on the physics highrise (at around 218m of
altitude), a laboratory on the first floor (→ 186m) as well as the second basement (→ 174m), the
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dependence of the rate of measured coincidences on the zenith angle # was examined by measuring
the coincidence rate Rc at a few di!erent angles and taking into account the geometry of the setup,
which determines the solid angle $. An especially long measurement for the flux at # = 0 ° was
conducted over night in the lab.
For estimating the rate of random coincidences, an additional measurement was performed at all
the above named locations, during which the two tiles were removed from the telescope arm and
placed on opposite ends of a table. The rates measured in the individual tiles at any measurement
were taken into account as well.
On the highrise, a further measurement was performed, during which the distance between the
two detector tiles was decreased step-wise at a constant angle and the resulting coincidence rate
was noted.
Finally, we performed a few measurements during which we placed increasing thicknesses of lead
blocks between the two detector tiles and observed the e!ect this had on the measured coincidence
rate.

3 Observations & Data Analysis

3.1 Analysis: Probability Distribution

The raw data from this part of the experiment can be found in Table 1 and Table 6 of the lab
notes in Appendix A section 6. The experiment was performed twice, first with an integration
time of 1min and later with an integration time of 5 s.
As the cosmic muons detected on earth stem from particle decays with characteristically low count
rates, one would typically expect their detection rates to follow a Poisson distribution. When
looking at the histogram obtained from a repeated measurement of the number of coincidences
during a 5 s interval (see fig. 3), this reassembles indeed the expected slightly asymmetric shape,
however it looks more like a Gaussian curve for the measurement with the longer integration
time (fig. 2). In order to confirm the underlying probability density distribution, we fit a Poisson
distribution

PPoisson(N) = A · µ
N

N !
· e→µ (1)

to the histograms, where N is the number of detected events, µ the average value and A a scaling
factor. A and µ are the free parameters of the fit.
Additionally, we also fit a Gaussian distribution of the shape

PGauß(N) = A · 1↑
2ω ε2

· e→
(N→µ)2

ω2 , (2)

where the three free parameters are the standard deviation ε, the central value µ and again a
scaling factor A. The fits were performed in python using the module scipy.optimize.curvefit and
assuming an error of

↑
P on the number of counts in each bin. The results of the fits are shown in

figs. 2 and 3.

As a mean of assessing the goodness of the fits, the reduced ϑ2

ϑ2

dof
=

∑
i
(Pi→Pfit)

2

s2i

dof

was calculated and quoted in the legends of the plots, along with the best fit parameter values and
their uncertainties.

As one can see from the reduced ϑ2, which has an expectancy value of 1, in the measurement with
the longer integration time the data can be described just as well by a Gaussian function as by a
Poisson function. This made us think that we had potentially chosen the integration time a bit
too long. We know that in the limit of very high count rates, a Poisson distribution is expected
to transition into a Gaussian distribution. Consequently, we decided to repeat the measurement
with a shorter integration time, the result of which can be seen in fig. 3. This second histogram is
described much better by a Poisson than by a Gaussian distribution, thus confirming the general
expected statistical character of the muon detection.
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Figure 2: Probability distribution of the coincidence counts. Measured in the first floor lab with
79 measurements, 1min each.

Figure 3: Probability distribution of the coincidence counts. Measured in the top floor with 239
measurements, 5s each.
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In all future measurements, we will therefore assume the statistical uncertainty on the number N
of events detected to be

↑
N , corresponding to a Poisson distribution.

According to the scintillator data sheet [Edub], the detectors work with a detection e%ciency of
99%, leading to a systematic error of 1% on the number of detected events N . This is, however,
negligible in comparison to the much higher statistical uncertainty.

3.2 Analysis: Random Coincidences

When working in coincidence mode, such events are recorded separately which result in both of
the detector tiles firing within a short time span, which is determined by the electronic settings of
the detector. This improves the signal to noise-to-noise ratio significantly, by getting rid of a large
number of spurious and background events, which have nothing to do with the muon flux we are
trying to measure. However, it is to be expected that random coincidences occur as well and it
is important to know how high the expected rate of such is, in order to be able to subtract it in
further measurements.

According to the lab instructions [Edua], the rate of random coincidences Rrandom is given by

Rrandom = 2 ·RA ·RB · ϖ, (3)

where RA and RB are the rates detected in tiles A and B individually and ϖ = 700 ns is given in
the manual as the gate width of the coincidence unit.

We compared the rates of random coincidences obtained with this formula with the rates resulting
from the measurement in which the two tiles are placed far away from each other on the table,
making it extremely unlikely for a muon to actually pass through both of them. With this setup,
we performed a few repeated short-time-measurements (total time 7 ↓ 10min and 3 ↓ 5min, see
Tables 2 and 8 in Appendix A) in the lab and the high-rise, as well as a single longer-time-
measurement (20min) in the basement. For this analysis, though, we treat them like three long-
time-measurements à 70min, 15min and 20min by summing up the counts and assuming a Poisson
uncertainty on the total count number. The rates are then given by

R = Ntot/ttot, εR =
√

Ntot/ttot,

and we calculate

ϖe! =
Rc

2 ·RA ·RB
, (4)

εω,e! = ϖe! ·

√(
εc

Rc

)2

+

(
εA

RA

)2

+

(
εB

RB

)2

,

which turns out to be several orders of magnitude higher than the ϖ given in the instructions.

The exact values vary for the three chosen locations:

ϖe!, highrise = 2.2(6) · 10→4 s

ϖe!, lab = 6(2) · 10→5 s

ϖe!, basement = 7(5) · 10→5 s

This at the first look surprising finding can be explained by taking into account the showers of
particles created between the point in the atmosphere where primary cosmic radiation first interacts
and the point at which muons are created in the decay of pions. Muons themselves do dot cause
further cascading, as they hardly interact electromagnetically. If two muons coming from di!erent
”branches” of the particles showers hit the detector tiles placed at a distance from each other, they
will create a coincidence detected in the setup. Even though such two muons are not completely
unrelated, we need to take them into account as a second source for random coincidences.
Assuming the influence of showers to be about the same across the area of the tiles, we use a
modified version of the above given formula eq. (3) for the random coincidence rate, substituting
ϖ for ϖe!. Furthermore, we make the simplifying assumption, that Rrandom does not show an
additional dependence of the detector angles.
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In all further data analysis, we calculate the corrected rate R of events detected from the measured
value Rmeas =

N
t via:

R = Rmeas ↔ 2 ·RA ·RB · ϖe!. (5)

The corresponding uncertainty is calculated using the following error propagation:

εR =
√
ε2
meas + (2εA RB ϖe!)2 + (2RA εB ϖe!)2 + (2RA RB εω,e!)2.

3.3 Analysis: Zenith Angle Dependence of Muon Flux

For each chosen angle #, the number of coincidences NC as well as the number of events detected in
the individual tiles NA and NB during the time span t are recorded and the corrected coincidence
rates R are calculated as described in the above paragraph. The statistical uncertainty on the
angle # is estimated taking into account the precision with which the scale on the telescope arm
can be read o! and assuming a triangular distribution:

εε =
0.5 °↑

6
→ 0.2 °.

In order to eliminate any systematic error on the angle # as far as possible, a spirit level is used to
precisely align the telescope arm and the two detector tiles before the start of any measurement.

The flux ” of muons is given by

” =
R

a2 · $ , (6)

where R is the rate of coincidences measured, a2 is the area of the detector and $ the solid angle
between the two tiles. The dimensions of the scintillator are given in the manual [Edua] as 15 x
15 x 1 cm, with a = 15 cm being the side length of the rectangle. We assume the uncertainty on a
to be negligible.
The solid angel $ depends crucially on the distance d between the two detector tiles, which is why
this distance is chosen and measured carefully each time when the muon telescope is assembled for
a new measurement.

We do not know where exactly in the casing the scintillator tiles are positioned. Assuming the
two tiles to be identical in structure, we measure d from the top of the upper detector tile to the
bottom of the lower detector tile, as shown in fig. 1. Using this method should prevent a systematic
error on d due to the unknown exact position. The distance d was measured using a ruler with a
millimetre scale division, from which a statistical uncertainty of

εd, stat1 =
0.5↑
6
mm

results. Additionally, we need to take into account that the scintillators both have a thickness
of 1 cm, which gives us another statistical uncertainty component, as the detection can happen
anywhere within the thickness of the detector materials:

εd, stat2 =
1↑
6
cm → 0.4 cm

As this second component is much larger, we can neglect the first one and simply assume a statistical
uncertainty of 0.4 cm on all distances d.

In [Mat22], a formula is given for the solid angle that spans from the centre of the lower tile:

$centre(a, d) = 4 · arctan
(

a2

4 d
√
1 + 2 ( a

2 d )
2

)
. (7)

We use the graphs given in [Advb]. From the right graph one can see that for a/d ↗ 0.3, the
deviation between the integrated curve over all positions and the centre curve is less than 2%. We
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take this into account when choosing the distance d in all of the measurements and make sure that
this is fulfilled, so that we can use the above given formula as an acceptable approximation for
calculating the solid angle $.

The statistical uncertainty on d propagates into a statistical uncertainty on $ as follows:

ε”,stat =
8 a2 εd

(a2 + 4 d2) · d ·
√
1 + a2

2 d2

. (8)

Additionally, there is a systematic uncertainty on $ from using the ”centre-formula-approximation”
described above:

ε”,syst = 0.02 · $.

In our case, ε”,stat and ε”,syst are both around 10→3 sr. In order to be able to further propagate
the error on $, we combine the two uncertainties into a total uncertainty:

ε” =
√

ε2
”,stat + ε2

”,syst.

From the solid angle $ and the measured coincidence rate R, we can calculate the flux ” through
the detector using eq. (6). The uncertainty on the flux is then obtained via the following error
propagation:

ε# = ” ·
√(εR

R

)2
+

(ε”

$

)2

The exact dependence of the muon flux ” on the zenith angle # is complicated, as it is given by the
convolution of the creation distribution with the e!ects of decay and interactions [PDG18]. Near
sea level, which is an acceptable simplification for our case, the angular dependence can, however,
be estimated to have the shape

”(#) = A · cos2(#). (9)

We plot the flux ” measured as a function of the zenith angle # and fit functions of the form given
in eq. (9) to the data points. The data points and fit results for the three locations are given in
fig. 5 - fig. 7 respectively. The legends include the best-fit values as well as the reduced ϑ2 as a
measure for the goodness of the fits.

3.3.1 Highrise

On the top floor of the physics highrise, the zenith angle measurement was performed at a corner
of the building, with glass at two sides and thus a fairly symmetric shielding on both sides of the
setup (see fig. 4 ). As one can see in fig. 5, the data points follow the expected cos2 behaviour
quite well within the limit of their uncertainties. The fit parameter A is a measure of the total flux
at this location, which can already roughly be compared to the values for the other two locations.
We will later see that it is in fact directly proportional to the integrated flux through the positive
semi-sphere.

3.3.2 First Floor Lab

The data from the first floor lab, as shown in fig. 6, show a clear asymmetry, with the flux at
negative angles tending to be higher than the flux at the respective positive angles. The geometry
of the laboratory brings about a much more asymmetric shielding than the setup on the first floor,
with a wall on one side and a big window on the other side of the muon telescope. We defined
positive angles as the direction in which the upper tile was moving away from the window and
thus facing the inside of the building. It thus makes absolute sense that the flux is lowered on this
side.

Furthermore, the amplitude A in the fit is also lowered in comparison to the measurement on the
lop floor, corresponding to a lower overall flux.
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Figure 4: Setup of the muon telescope on the top floor of the physics highrise.

Figure 5: Angular distribution of the muon flux (coincidences versus zenith angle) with a cos²#
fit. The uncertainties on the flux have been considered in the fit, but not the uncertainties on the
angle #, which are also too small to be visible.
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Figure 6: Angular distribution of the muon flux (coincidences versus zenith angle) with a cos²#
fit. The uncertainties on the flux have been considered in the fit, but not the uncertainties on the
angle #, which are also too small to be visible.

The two results for the vertical orientation # = 0 ° are:

short-time-measurement (10min): ”(0 °) = (63± 7)
1

s m² sr

long-time-measurement (12h): ”(0 °) = (61.9± 1.4)
1

s m² sr
,

so as expected, they are well compatible with each other, but the long measurement results in a
much lower uncertainty. Looking at the error contributions to the flux, we noted that the flux
uncertainties are all dominated by the Poisson count uncertainty, whereas the contribution of ε”

is multiple orders of magnitude lower at ↘ 10→5 sr. This also indicates that the statistical part of
ε” is essentially negligible, and the systematic part also has only an influence of around 10→5 sr
on the fit results.

3.3.3 Basement

In the basement we took less measurements due to the fact that each measurement took longer to
account for the overall reduced flux. This lower flux is also reflected in the value of the amplitude
A resulting from the fit in fig. 7. The reduced ϑ2 is also highest in this case, in consistency with
the visually reduced quality of the fit. Still, the rough cos2 shape can be seen.

3.4 Analysis: Flux Through Horizontal Detector

There are three ways to calculate the mean muon flux ”̂ through each of the detectors. First, we
can just use the counts NA,B that the detectors measured in a certain time and calculate

”̂A,B =
NA,B

t a2 2ω
. (10)

Specifically, we use the values NA,B(0 °) from the zenith-angle-measurement for each of the three
locations. In the laboratory, we have one short (10min) and one long-time measurement (12 h),
and we only use the value from the long-time measurement here. The statistic uncertainty is again
given by a Poisson-error:

ε#̂ =

√
NA,B

t a2 2ω
.

The resulting values ”̂ are given in the first and second row of table 1.
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Figure 7: Angular distribution of the muon flux (coincidences versus zenith angle) with a cos²#
fit.The uncertainties on the flux have been considered in the fit, but not the uncertainties on the
angle #, which are also too small to be visible.

Another method to determine ”̂ is to use the coincidence flux measured in section 3.3 at di!erent
angles, assume rotational symmetry around the vertical axis and integrate over the solid angles in
the upper half sphere $+:

”̂ =
1

$+

∫

”+

”(#)d$ =
1

2ω

∫ 2ϑ

0

∫ ϑ/2

0
”(#) sin(#)d#dϱ

=

∫ ϑ/2

0
”(#) sin(#)d# =

∫ ϑ/2

0
A cos(#)2 sin(#)d# = A/3

(11)

with the amplitude A determined in the fits of section 3.3. The results from this calculation are
given in the third row of table 1.

Finally, in the high-rise, we also performed an additional measurement of the coincidence flux at
varying detector distances that we can extrapolate to the distance d = 0m:

”̂ = lim
d↑0

”coincidence. (12)

Since we had to measure at small distances d, we can’t use the large-distance-approximation for
the solid angle that we have used before. Instead, we determine $ from the plot in [Advb], that is,
we read the values for each individual distance o! from the plot. Additionally to the measurement
uncertainty of d, this produces a statistical uncertainty in reading the plot that we assume to be
around εread → 0.01 sr. For the uncertainty contribution of d, we use the centre-approximation-
formula from before (eq. (8)) as an approximation. The total statistic uncertainty is then calculated
via

ε” =
√
ε2
read + ε2

stat,

where the contribution εstat is nearly negligible for large distances (↘ 10→3 sr at d → 48 cm), but
becomes dominant at small distance (↘ 0.1 sr at d → 8 cm).

The flux is then calculated like before in eqs. (5) and (6). The resulting plot is shown in fig. 8.

Even though the statistical uncertainties are rather large, it is visible that with decreasing distance,
the flux also decreases. For small distances, it should converge to the single detector flux ”̂. The
data converge approximately to a linear decrease in the small-distance-range d < 0.3m. We
therefore perform a linear fit ” = a d+ b in this interval and use the resulting optimal parameter
b = (41± 11) 1

s m² sr as an estimation for ”̂.
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Figure 8: Coincidence flux at # = 0 ° for di!erent distances between the detectors. A linear fit
was performed on the values at d < 0.3m, taking into account the uncertainties on the flux, but
not the uncertainties on d.

”̂ [1/(s m² sr)] top floor first floor basement
single detector A 40.6± 1.0 32.92± 0.07 26.2± 0.5
single detector B 39.7± 1.0 31.66± 0.07 24.1± 0.5
coincidence integral 33± 2 19.8± 0.8 15.1± 1.2
coincidence extrapolation 41± 11

Table 1: Results for the flux ”̂ through a horizontal detector, calculated with di!erent methods
(eqs. (10) to (12)) and for di!erent places in the building.

3.5 Analysis: Shielding E!ect of Lead

In this part of the experiment, we placed di!erent amounts of lead blocks on a table between the
two detector tiles and measured the rate of coinciding events. A picture of this setup can be found
in fig. 9, the measured data are listed in Table 4 in Appendix A.

The lead blocks were placed on a foam cushion in order to accommodate for the height di!erence
towards the base at which the telescope arm was fixed. The thickness L of the heap of lead blocks
was measured using a ruler. The statistical uncertainty resulting from how precise it was possible
to determine this thickness was estimated with a triangular distribution:

εL =
1.5↑
6
mm → 0.6mm

The flux is again calculated from the corrected coincidence rates like in the previous analysis parts.
The resulting values ” are plotted against the lead thickness L in fig. 10. One can see that there is
a general tendency for the flux to decrease for increasing L, but there is a great deal of fluctuations
and it is hard to see a clear pattern.
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Figure 9: Setup for the measurement of the absorption in lead

Figure 10: Measured flux through lead blocks of di!erent thickness.
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4 Discussion

4.1 Discussion: Probability Distribution

In the first part of this series of experiments, we investigated the underlying probability distribution
behind the detection of cosmic muon by repeatedly measuring the number of coincidences in the
muon telescope within a short time interval. This was conducted twice with di!erent integration
times. The main takeaway from this part is probably the insight of how important it is to choose
a sensible integration time. Upon first choosing a time interval of 1min, the number of detected
events was so high that the obtained histogram had already transitioned quite far into the direction
of a Gaussian curve. Only by choosing a much shorter integration time were we able to confirm the
expected Poisson distribution character of the muon detection. This nicely illustrates the di!erent
realms of application of the two discussed distributions and how a Gaussian distribution can be
seen a limit case of a Poisson distribution for high event rates .
In order to obtain an even higher statistical significance, it would have been advantageous to sample
even more data. This might have further improved the fit quality.
Another point worth discussing is the question of which range should be considered in the fit. In
fig. 3, for instance, one can see that during the chosen time span of 5 s, we obtained a few time
0, 1, 2, 3, 4, or 5 coincidences respectively, but never 6 or more. Theoretically, one would need to
take all those higher numbers (with a respective bin count of 0) also into account when performing
the fit, which was neglected in this work.
Similarly, it is a bit questionable how correct the choice of assigning the number of counts in each
bin a Poisson distribution is. Even though this is the standard procedure, it seems a bit illogical
to take into account a Poison error in performing both the Gaussian and the Poisson fits, when
the aim is to confirm the underlying probability distribution.

4.2 Discussion: Random Coincidences

By measuring the rate of coincidences and single tile events for a detector configuration in which
the two detector tiles lie at a distance from each other, we were able to find out that the formula
eq. (3) as given in the manual [Edua] was not actually accurate, as it does not take into account
the e!ect that muons from di!erent branches of a shower are reaching the detector at the same
time. From the performed measurements a new e!ective factor ϖe! was calculated and used in all
subsequent data analysis to correct the obtained muon rates for the expected rate of random (and
shower) coincidences.
Interestingly, this ϖe! was found to vary significantly for the three di!erent locations at which the
experiment was conducted. The reasons for this are not quite clear to us, as it makes little sense
that the e!ect of showers should be so strongly dependant on the shielding or the altitude. One
would expect most of the showers to emerge at a large distance above ground and as soon as pions
have decayed into muons there should not be much new shower behaviour emerging, as muons
hardly interact electromagnetically. One possible explanation for the observed di!erences might
be di!erent rates of background radiation (from the walls or other experiments in the lab) at the
di!erent locations. As we did not investigate this any further, this is therefore only a speculation.
The occurrence of showers and how they are a!ected by the location of the experiment is something
that would definitely be an interesting topic for further experiments.

Something that was however not taken into account here, due to the limited resources and time,
is the angular dependence of the rate of random coincidences, which was simply assumed to be
proportional to the product of the detected rates RA and RB at any given angle. If one was
interested in taking such a potential additional dependence into account as well, one could for
example repeat the measurement with the two separated tiles and fix them on a board which can
be tilted.

4.3 Discussion: Zenith Angle Dependence on Muon Flux

In this part of the experiment, we examined the dependence of the muon flux on the zenith angle #,
taking into account the geometry of the setup in the form of the scintillator tile area and the solid
angle between the two detector tiles. This experiment was performed at three di!erent locations
and in all three cases, functions of the form
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”(#) = A · cos2(#)

were fitted to the data points, in accordance with the theoretical expectations (see figs. 5 to 7).
As mentioned before, the data points showed varying degrees of asymmetry and goodness of fit,
depending on the location in which the data was taken. This is mainly due to the di!erent amounts
of shielding that the setup was surrounded by. The curve looks smoothest and has the highest
amplitude A for the measurements performed on the top floor of the highrise.

It is worth pointing out that we did not take into account any angular dependence in the ϱ↔direction
into the fit. According to theoretical considerations (compare e.g. [PDG18]), such a dependence is
assumed to be negligible close to the surface of the earth, but in our case the asymmetric shielding
in the di!erent rooms makes it obvious that this is not the case. If we were able to redo the
measurement on a day with great weather, it would be advisable to actually do it outside and
as far from shielding influences as possible. Alternatively, one could repeat the whole experiment
several times and rotate the whole setup between each execution to get a handle on the rotational
symmetry.

We can try to estimate the amount by which the flux is expected to decrease after passing through
the amount of material between the highrise location and the basement location, in the extreme
case. Taking into account the plan of the building [Adva] provided on Ilias, we make the rough
estimation that the basement location is shielded by 2.4 m of standard rock (or concrete) in vertical
direction. Assuming the average energy of muons reaching us to be 4GeV [PDG18], we obtain a
range of around r = 8 m, using the CSDA range and density given in [PDG10]. If we now assume
the amplitude Ahigh to be proportional to the total flux we measured on the top floor, assume that
it is approximately the same as the unshielded flux, and make the simplifying assumption that the
reduction of flux happens linearly as a function of shielding depth x, we can write

A(x) = Ahigh ↔ Ahigh

r
· x

which yields us

Abase, expected(x = 2.4m) → 70
1

sm2 sr
,

which is in fact quite a bit more than the actually obtained amplitude for the basement from the
fit in fig. 7 of around 45(4) 1

sm2 sr .

It is not very surprising that the above described rough estimation did not produce a value that is
actually compatible with the experimental value, as we did some considerable simplifications. One
of the most significant simplifications is the fact that we only considered one mean muon energy.
In reality, cosmic muons reach the earth with a very wide range of energies, even up to a few TeV,
which is also the reason why it is so hard to shield them away completely and why many big scale
particle physics experiments are located many kilometres deep under ground.
Secondly, we might have underestimated the amount of material above the basement location, or
miss-interpreted it as standard rock. Potentially higher concentrations of more strongly absorbing
materials, like certain metals, might have been present as well. The amount of shielding is also
di!erent for di!erent angles and tends to be higher for larger zenith angles, which means that the
fit amplitude possibly underestimates the actual vertical flux. Similarly, the assumption of a linear
decrease might have been to strong of a simplification.
Finally, the amplitudes obtained in the fits might not have been as accurate as possible, due to
the limited time spend on each measurement. Performing longer measurements and at more finely
spaced angles might help to improve the experimental results.

4.4 Discussion: Flux Through Horizontal Detector

We have estimated the flux through a single horizontal detector with three di!erent methods.
Results are given in table 1. For all of the locations where we performed measurements, the
first method (based on the total event rate at one of the detectors, eq. (10)) gave significantly
larger results than the second method (based on the solid-angle-integral over the coincidence flux,
eq. (11)). This di!erence was expected since the first method doesn’t exclude internal noise in the
detector - accidental discharges that were not induced by a particle and that are thus not present
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in the coincidence measurements. Furthermore, since the detector e%ciency ς is not exactly 100%,
the combined e%ciency ς2 of both scintillators in the coincidence measurement is slightly decreased
compared to the single tile e%ciency. Finally, it is also possible that a small fraction of the incoming
muons get fully absorbed, get scattered or lose enough energy in the first detector that they can
not be detected by the second detector anymore, which will further decrease the coincidence flux.

This last e!ect could also be one reason for the di!erence between the di!erent detectors A (which
was always above) and B (below): In the results of method 1, detector A always has a slightly larger
flux than B. We do not know for certain, though, whether this di!erence does indeed depend on
the positioning of the detectors or whether it is an inherent di!erence between the two scintillators.
For example, detector A could be more sensitive to low energy particles or to electric noise. This
question could potentially be examined in another experiment by exchanging the detector positions.

The extrapolation of coincidence flux at small distances (method 3, eq. (12)) gives approximately
the same values as the first method, but it has a large statistical uncertainty (ε#̂/”̂ → 27%)
and is hence not significantly deviating from any of the other top-floor-results. This statistical
uncertainty is mainly originating from the Poisson uncertainty on the coincidence counts, as we
can see comparing the error contributions throughout the error propagation. Besides, we have a
potentially important systematic error from the fact that we have assumed and fitted a simple
linear extrapolation line. Longer measurement times and measuring at smaller distances would
enable us to choose a more suitable fit function and perform a better fit.

Finally, we can compare the results at di!erent places in the building: As expected, the highest
flux was measured in the top floor and the lowest in the basement. This is true for each of the
employed methods.

4.5 Discussion: Shielding E!ect of Lead

As lead is a material with a high atomic number and density, which is known for strongly absorbing
particles, one would in general expect the flux to decrease when increasing the thickness of lead
shielding. This e!ect is only as a rough tendency visible in fig. 10. There are several possible
explanations for why this might be the case.
One idea is that the amount of lead piled up in this experiment was simply not thick enough to
result in a significant shielding of the muon flux. We can make a rough estimation of the range of
muons in lead using the Continuous Slowing Down Approximation (CSDA) and the values given in
[PDG16]. Assuming the mean energy of muons reaching the lab to be 4GeV (compare [PDG18]),
the CSDA range is approximately

2.946 · 103, g

cm2

and with an average density of 11.350 g
cm3 [DNS01] this corresponds to a range of approximately

2.6m.

Even though this is obviously only a rough estimation as the actual energy distribution of the
muons is not known to us, it indicates that the layer of lead shielding of maximum 18 cm was
indeed not enough to significantly dampen the muon flux. A second aspect to consider is the fact
that the experimental setup was not exactly ideal for investigating the shielding of radiation, as
the lead blocks were only placed central on top of one of the detector tiles and nothing prevented
radiation from entering the telescope at a slight angle or next to the lead blocks, which did not
cover the whole detector surface. If one were to repeat the experiment, it would be advisable to
come up with a way of actually covering the full surface of the detector with lead and to do so
as evenly as possible. In the here performed experiment it was also an issue that the lead blocks
were not lying completely flat, thus leaving air between them and making it hard to measure their
thickness overall. Besides, it would be better to use a much larger volume of lead in general, in
order to obtain a more significant e!ect. In order to obtain a better statistical significance and to
take into account the fluctuations in the measured flux, repeated and longer measurements would
have been necessary.

Another factor that we only indirectly took into account is the altitude. In order to obtain reliable
measurements on the e!ect of the altitude on the muon flux, one would, however, need to eliminate
the problem of having di!erent degrees of shielding in di!erent locations and to include larger
altitude di!erences. One idea for how this could be realised would be to use a hot air balloon or
other airborne vessel.
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5 Conclusion

This series of experiments was dedicated to measuring the flux ” of cosmic muons at di!erent
locations, with di!erent degrees of shielding, di!erent detector configurations and at di!erent
zenith angles #.
In a preparatory experiment, the nature of the probability distribution governing the detection of
muons was investigated. It was confirmed that this process can indeed be modelled as a Poisson
distributed, but it was also observed how this transitions into a Gaussian distribution for larger
event rates.
Secondly, measurements were performed to get an estimation on the expected rate of random
coincidences. The e!ect of showers of particles creating semi-random coincidences was observed
and discussed and a correction to the originally assumed linear relationship between the rate
of random coincidences and the product between the single tile rates RA,B was calculated. All
experimentally obtained rates were corrected for random coincidences via

R = Rmess ↔ 2RA RB ϖe!.

In the third part of the experiment, the flux ” through the detector was measured as a function
of zenith angle # and the resulting data was fitted with functions of the form

”(#) = A · cos2(#)

in accordance with the theoretical expectation. The di!erence in the asymmetry of the results
obtained for the di!erent locations was discussed, as well as the di!erent amplitudes as a result of
the varying amount of shielding present at the locations.

Based on these previous measurements and with an additional measurement series, we used and
compared three methods to determine the mean flux through a horizontal detector. Between the
methods, there were significant deviations for which we o!ered several explanations, but they all
follow the expectation that the flux is highest in the top floor of the high-rise and lowest in the
basement, reflecting the shielding from the building.

In a final series of measurements, lead blocks of di!erent thickness were brought between the two
detector tiles and the e!ect on the measured flux was observed. This did, however, not result in
any significant change apart from a tendency to decrease with increasing lead thickness. Some
reasons for this and potential for improvement were discussed.
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6 Appendix A: Signed Lab Notes

Figure 11: Labnotes Page 1
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Figure 12: Labnotes Page 2
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Figure 17: Labnotes Page 7
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