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1 Abstract
During this experiment the halflifetimes of the radioactive isotops of 147Sm
and 40K is determined. The examined samples are Samariumoxide as a
α-radiator and Kaliumchloride as a β-radiator. Therefore the decay law
A= ln2

T1/2
N is used and for Samarium the range of radiation in material, and

the dependency of mass for Kalium. The results of T1/2 = (2,53± 0,03) ·
1011years for Samarium and T1/2 = 0,13 ·109 for Kalium are in the expected
range of the halflifetimes but make obvious, that not all the experimental
setup is good to determine halflifetimes.

2 Theory

2.1 Decay Law

The decay law for radioactive nuclei describes how many of the nuclei in the
given material have already decayed after a time t.

N(t) =N0e
−λt (1)

N0 =N(0) is the number of nuclei at the beginning of the decay process and
λ is the decay constant which is correlated with the half life time T1/2.

λ= ln2
T1/2

(2)

Another important value of the used sample is its activity. It is given as
the negative time derivative of the number of nuclei which are available.

A=−Ṅ = λN = ln2
t1/2

N (3)

Because during this experiment the used samples have large halflifetimes
[T1/2(40K) = 1,28 ·109years and T1/2(147Sm) = 1,06 ·1011years] it is possible
to set the activity and the number of nuclei as a constant. Therefore they
are given as

A= λN (4)

2.2 α-Radiation

Mostly, the decay of α-radiation occurs in heavy nucleids. The characteristic
of an α-decay is the release of a Helium-nucleus, which is also called a α-
particle. Because of the release the mass number is reduced by 4 and the
proton number by two.

A
ZX →A−4

Z−2 Y +4
2He (5)
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This effect happens as soon as a Helium-nucleus is able to tunnel through
the Coulomb-potential of the mother nucleus. As it is a two-particle decay
the α-particle has a discrete energy spectrum. The used samples in this
experiment decay as the following:

147
62 Sm→143

60 Nd+4
2He

238
92 U →234

90 Th(∗) +4
2He (6)

2.3 β-Radiation

There are three different types which are registered as β-decays.

a β−-decay:
In this process one of the nucleus neutrinos is changed into a proton
with an emission of an electron and an anti-electronneutrino.

n→ p+e−+ ν̄e (7)

b β+-decay:
With this process a proton in the nucleus is changed into a neutron
with the emission of a positron and a electronneutrino. This effect is
only possible inside of a nucleus as the binding energy can provides
sufficient amount of energy for the process. While the positron is
surrounded by matter it can not exist alone, that’s why it’s reuniting
with an electron and becomes a positriniumatom which then decay
into two gammas with an energy of 0,511Mev.

p→ n+e+ +νe (8)

c Electron Capturing:
The nucleus is catching an electron from a close shell (mostly the K-
shell) and it is uniting with a proton of the nucleus. A neutron and a
electronneutrino are released.

p+e−→ n+νe (9)

The gap produced by the captured electron is refilled with electrons
from higher shells which release the energy difference by gamma radi-
ation or inner conversion.

2.4 Derivation of the Equations for the Half life

2.4.1 Samarium

For the lifetime it has to be taken in account that not all α-particles actually
leave the sample and can be detected. Some have a too big distance to the
surface and are self-absorbed by the sample before they can reach the surface
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Figure 1: Connection between x, R, θ

and therefore can’t be detected. In figure 1 one can see that the connection
between the thickness and the distance is limited by the solid angle Ω.

θmax = arccos x
R

(10)

Thus, the solid angle is given by

Ω(r) =
∫ 2π

0
dΦ
∫ Φmax

0
sinΦdΦ = 2π

(
1− r

R

)
(11)

For the surface F of a radioactive sample a counting rate of

n=AV
F

4 RSm2O3 (12)

is expected. RSm2O3 is the range of the released radiation of the sample,
AV = A

V is the activity per volume without self-absorption. The number
of 147Sm nucleids is given by N = 2 ·NSm2O3 · hrel where hrel is the rela-
tive number of 147Sm in the Samariumoxide and NSm2O3 is the number of
Samariumoxide nucleids which is given by

NSm2O3 = m ·NA

mrel,Sm2O3

(13)

With the relation of Bragg and Kleemann

R ·ρ= C
√
ma (14)

where ma is the effective atommass, ρ is the density and C is a propotional
constant (independent of the material) and further transformation where C
is eliminated and m

d = V ρ
d = F ·ρ the final result becomes:

T1/2 = ln2 ·NA ·hrel ·Rair ·ρair ·F
2 ·n ·mSm2O3

·
√
mA,Sm2O3

mA,air
(15)
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Figure 2: Infinitisimal mass element at position x

2.4.2 Kalium

Looking at an infinitesimal small mass element dm which can be found at a
depth of x inside of the material, the counting rate dn is given as

dn=AS ·e−µxdm=AS ·ρ ·F ·e−µxdx (16)

Continuing with the assumption that n(x=0)=0, integration over a thick-
ness of d= m

ρ·F the result becomes

n= fb ·AS ·ρ ·F
2µ

(
1−e−

µm
ρF

)
(17)

The number fB = 1,29 gives a factor of fB
2 takes the backscattering of the

electrons at the aluminium plate into account. Also it is taken into account,
that only the radiation which is emitted at the top of the sample can be
detected. The unknown values of AS and µ can be eliminated with the help
of a fit where the parameters are a and b.

n(m) = a(1−e−bm) (18)

With this fit it is possible to determine AS and therefore the halflifetime.

AS = 2µa
fBρF

= 2ab
fB

(19)

2.5 Measurement times

In order to get a relative error of 2% the measurement time to achieve this
uncertainty has to be estimated. I can be used, that the counting rate is
already known from the characteristics of the counting device. With n being
the counting rate at the working point, the time can be approximated using
the underlying Poisson-statistics. Therefore the uncertainty on the counting
rate can be approximated as

√
N

0,02 = sn
n

=

√
N
t

n
= 1
√
n
√
t

(20)

t= 1
0,0004 ·n (21)
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Figure 3: Common charakteristik of a Counting tube

2.6 Counting device

The Counter tube consists of a thin Anode wire and a Kathode mantle.
The inside is filled with an ionizable gas. Based on the applied Voltage, the
Counter tube works differently. Its characteristic can therefore be separated
in different sections, based on how the count rate changes at a given voltage.
A typical characteristic is shown in figure 3. The detection of particles with
the counting tube is based on the fact, that radiation separates atoms in the
gas into electron and ions. Due to the electric field, the ions and electrons
drift towards the Kathode and Anode.
For low Voltages, the electrons recombine before they reach the anode. No
current or just the current from electrons close to the anode wire can be
detected (section 1).
Higher voltages result in currents for all electron ion pairs that were created
by primary ionisation. (section 2).
In section 3, the voltage is high enough to create secondary ions. Secondary
electron ion pairs are created when the primary ions have enough energy to
ionise gas molecules themselves. This increased rate of counts is still pro-
portional to the amount of primary ionisations (gas amplification).
By leaving the proportional section, the gas amplification, the amplification
becomes independent from the primary Ionisation (section 4).
In section 5 the electric field is strong enough to ionise the whole gas if a
photon ionises an atom.
In section 6 the photon is not needed anymore to ionise the gas. The electric
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field is strong enough to ionise the gas on its own.
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3 Experimental Setup
In the experiment a 2π counting tube is used. With voltages between 0 and
1 kV, the operation mode of the tube is the proportionality mode.
The used samples are Uranium (U), Samarium (Sm) and Kalium (K). Emit-
ting mainly α- and β- radiation, the risk of loosing radiation while entering
the tube is very high. That’s why the sample is put directly inside the
Methan-Counting-tube. The exact setup can be seen in figure ??.
When a α or β particle gets detected, a current that is proportional to the
energy can be measured. The signal is transfered to a Preamplifier (VV)
where it gets split up. One part goes to a linear gate and the other one to
the Single Channel Analyser (SCA). To separate decay events from back-
ground noise, the lower level of the SCA can be adjusted. Only Energies
above the lower level of the SCA pass the linear gate and are detected with
the computer.
To see the signals, an oscilloscope is connected with the amplifier.

In the first part of the experiment, the characteristic of the counting
device is measured with uranium. To improve the quality of data, a back-
ground measurement is taken for the same voltages.

7



4 Execution
Looking at the behaviour of the oszilloscope, it is determined, that the
lower gate should be set to a level of 0,48 units on the scale of the lower
level potentiometer to seperate background noise from relevant data. The
shaping amplifier is set to 6 µs.

4.1 Characteristic

To verify the α− and β-plateau of the counting device, a characteristic
measurement is taken with uranium as a sample. Voltages from 1 kV to
4 kV are measured in steps of 100 V with a measurement time of 50 s
and a delay of 100s before the measurement for a certain voltage starts to
ensure that the voltage is stable in the experimental setup. Furthermore
a background measurement is taken for the same voltages. This time, the
uranium is removed from the counter and the measurement time is set to
100s.

4.2 Half-life period of Sm

To measure the Half-life period of Sm, the α- plateau of the characteric is
measured once more with Samarium as sample. At a voltage in the middle
of the plateau, the Counts are measured for a 4200 s.

4.3 Half-life period of Kalium

To measure the Half-life period of Ka, the β- plateau of the characteric is
measured once more with Kalium as sample. For 10 different masses, the
Counts in 560 s are measured at a voltage in the middle of the plateau.
To reduce the impact of background radiation, two background measure-
ments with 7 hours each are taken at the two chosen voltages in the plateaus.
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5 Data Analysis

5.1 Characteristic of the counting device

The counts per second n are measured with the counting device. For the
characteristic, the rates of voltages in range of 1000 V - 4000 V are measured
in steps of 100 V. For each voltage the time of measurement is t= 50s. The
error on the total amount of counts N can be approximated due to the
underlying Poisson distribution as sN =

√
N . The uncertainty on the count-

rate can therefore be calculated as

n= N

t
→ sn =

√
N

t
=
√
n

t
(22)

The measurement time for the background measurement is 100s for each
Voltage. The improved data can therefore be calculated as

N =Nm−
tm
tb
·Nb =Nm−

1
2Nb (23)

Nm are the counts of the main measurement, Nb are the counts on the
background measurement. Because Nm >> Nb, the uncertainty on Nb can
be ignored, as it is given as

√
N .

The improved characteristic is shown in figure 5. The original data from the
main- and backgroundmeasurement are shown in figure 4.

Figure 4: Characteristic with background
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Figure 5: Characteristic without Background

Based on this characteristic, the working points are selected for the α-
plateau (U=2300V) and the β- plateau (3400 V). Unfortunately, the highest
step that can be selected during the background measurement is 1000 V.
Therefore, we couldn’t measure the background at the exact same points of
the plateau. Instead the background at U = 2350 V and U = 3350 V were
measured. Looking at figure 4, one can see that the counting rates are not
very different for small surroundings of the correct Voltage. Therefore, this
shouldn’t influence our results. If the influence was underrated, we would
be able to see a systematic offset on the counting rate in the plot of the
Kalium analysis.

5.2 Half-life period of Samarium

In order to calculate the half-life period of Samarium, it has to be secured,
that the voltage of the counting device is set to the middle of the α- plateau.
Therefore a measurement of the count rates n is taken in range of 1500V to
3000V in steps of 100 V.

As a working voltage the middle of the α-plateau was approximated
and set at U = 2300V . For the following measurement a measuring time of
∆t= 2100s is set. which results in a counting rate of

n′ = 0,4711
s

sn′ =
√

1
n′ ·∆t = 0 (24)

The error on the counting rate is not existent because in the background
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Figure 6: α-plateau

measurement there is no count at a voltage of U = 2300V. For more details
the background datas can be found in the attachment 4.

The background measurement is taken overnight and results in a count-
ing rate of

nB = 0,026s−1 ∆t= 7h snB = nB ·
√

1
nB ·∆tB

= 1,016 ·10−3 (25)

As the error on the background counting is neglectable the counting rate is
given by

n= n′−nB = 0,391s−1 (26)

The diameter of the used aluminium plate is measured five times with
the following results:

measurement diameter in [cm] sd

1 2,9 0,01
2 2,9 0,01
3 2,9 0,01
4 2,9 0,01
5 2,89 0,01

average 2,898 4,47 ·10−3

Table 1: Diameter of the Aluminium Plate
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The error on the average is calculated by

sd = sd(seperate)√
5

= 4,47 ·10−3 (27)

With this result it is now possible to determine the surface of the plate.

F = π

(
d

2

)2
= (6,6±0,09)cm2 sF = d ·π ·sd (28)

With the equation already given in the theory and the error on it, it is
now possible to determine the halflifetime.

T1/2 = ln2 ·NA ·hrel ·Rair ·ρair ·F
2 ·n ·mSm2O3

·
√
mA,Sm2O3

mA,air
sT1/2 = T1/2 ·

√(
sF
F

)2
+
(
sn
n

)2

(29)

For this calculation the following constants are needed:

• NA = 6,022 ·1023mol−1

• hrel = 0,1487

• RAir = 1,13cm

• ρAir = 0,001226 g
cm3

• √mA.Air = 3,833
√
u(due to the relation between Bragg and Kleemann)

• √mA,Sm2O3 = 11,125
√
u

The molare mass of the Samariumoxide can be determined by

MSm2O3 = 2MA,Sm+ 3MA,O = 348,717 g

mol
(30)

Finally, the halflifetime results as

Samarium:T1/2 = (2,53±0,03) ·1011years (31)

5.3 Half-life period of Kalium

Being a β-radiator, a working point in the approximated middle of the β-
plateau is selected.

The measured counting rates have to be validated with the background
measurement and the mass of the sample holder.
For each measurement with the weigh scale, an error of 0,0003 g is taken
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due to the fluctuation of the value.
The sample holder has a mass of

m0 = (2,3922±0,0003) g (32)

Therefore the mass is

m=mmess−m0 sm = 0,0003G (33)

The statistical uncertainty sm is not increased, because the uncertainty on
m0 is a systematic uncertainty as the mass of the object holder doesn’t
change during the experiment.

The counting rate n has to be improved with the knowledge of the back-
ground measurement

n= nmess−n0 (34)

The uncertainty of the background measurement can be ignored, because it
is more than one magnitude smaller than the one of the main measurement.
This is because of the longer measurement time and smaller counting rate

sn =
√
n

t
(35)

The improved values can be seen together with their uncertainties in figure
7. A Fit is made for the values. As explained in the theory, it is useful to
fit the function

n(m) = a · (1−e−b·m) (36)

For the analysis, the value at m= 1,2 g is ignored because it doesn’t fit in
the trend of the other values.
The fitting results are shown in table 2.

a sa b in [1/g] sb Kor. R square
4,81 0,12 1,87 0,11 0,98637

Table 2: Caption

A systematic offset can not be seen. Also the Kor. R square value shows
that the chosen fit function is very likely to fit to the results. This shows
that the slightly different voltage of the underground measurement doesn’t
influence the result significantly. The halflifetime can be calculated

Kalium: T1/2 = fB · ln(2) ·NA ·hrel
1,12 ·2 ·a · b ·MKCl

= 0,13 ·109years (37)
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Figure 7: Dependence of counting rate and mass for Kalium

The error is calculated by

sT1/2 = T1/2 ·

√(
sa
a

)2
+
(
sb
b

)2
+ 2 · sa

a
· sb
b
·ρ (38)

and the final solution becomes

Kalium:T1/2 = (0,13±0,01) ·109years (39)

with hrel = 0,0000118, fB = 1,29 and MKCl = 74,55 g
mol .

14



6 Discussion

Isotop T1/2 in years Literature Value
147Sm (2,53±0,03) ·1011 1,06 ·1011

40K (0,13±0,01) ·109 1,28 ·109

Table 3: Caption

Looking at the received halflifetimes for Samarium and Kalium it be-
comes obvious, that both values could not be determined correctly. It can
be seen that the value for the Samarium is bigger than the literature value
and that the value for Kalium is smaller than the expected value. This seems
strange as the same electronical setup was used for both measurements.
A possible reason for the too big value of the Samarium sample could be
a wrong measurement of the surface of the Aluminium plate. As the mea-
surement should be quite accurate as it was taken with a calliper, another
reason could be that the Samarium was not spread very well inside of the
plate. Therefore the counting rate could be decreased as not all the radia-
tion could leave the sample because it was reabsorbed before.
Other possible problems could have been caused be wrong setups of the elec-
tronic. If the Lower Level for the discriminator is too big, actual signals that
should be detected will be filtered and don’t add into our counting rate. As
the result for the Kalium is smaller and because the same setup was used,
this also seems unlikely (as already mentioned).
The most likely reason for the shifted value is the age of the sample itself.
As the powder is already used since quite a while and is put back into the
box after each group, it is possible that the measurement was not taken with
pure Samariumoxide and pure Kaliumchloride. Also, for the measurement of
the Kalium it is an act of balance to weigh the sample and transport it from
the scale to the measuring device. It is possible that the sample dropped
several times with other groups. When collecting the powder from the table,
dirt and dust can be collected as well and therefore ruin the sample step by
step. Thus, it is very likely that the activity is decreased.
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7 Attachment

1800,000 0,000
1900,000 0,020
2000,000 0,010
2100,000 0,020
2200,000 0,010
2300,000 0,000
2400,000 0,000
2500,000 0,030
2600,000 0,010
2700,000 0,040
2800,000 0,130
2900,000 0,120
3000,000 0,260
3100,000 0,320
3200,000 0,530
3300,000 0,640
3400,000 0,770
3500,000 0,640
3600,000 0,620
3700,000 0,610
3800,000 0,770
3900,000 0,770
4000,000 0,870

Table 4: Background measurement
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