
Contents

1 Theoretical background 1
1.1 Law of radioactive decay . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Different types of decays . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 α – decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 β− – decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Electron capture . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Setup and execution 4
2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Methane flow-counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Detection regions of the counter . . . . . . . . . . . . . . . . . . . . . . 5

3 Data analysis 6
3.1 Counter characteristics with 238U . . . . . . . . . . . . . . . . . . . . . 6
3.2 Determination of the half-Life of 147Sm . . . . . . . . . . . . . . . . . 8
3.3 Determination of the half-life of 40K . . . . . . . . . . . . . . . . . . . 11

4 Summary and discussion of results 14

5 Appendix 15
5.1 Derivation of the half life formulas . . . . . . . . . . . . . . . . . . . . 15

5.1.1 T1/2 of 147Sm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 T1/2 of 40K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

References 17

List of Figures

1 Feynman diagram of the β−–decay. . . . . . . . . . . . . . . . . . . . . 2
2 Feynman diagram of electron capture. . . . . . . . . . . . . . . . . . . 3
3 A schematic view of the inside of the counter . . . . . . . . . . . . . . 4
4 Characteristic of a counter . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Measured counter characteristics with 238U and background measure-

ment. The count rate n is displayed on a logarithmic scale. The
background measurement did not show any counts for U < 2300V. . . 6

6 Corrected counter characteristics curve with 238U. . . . . . . . . . . . 7
7 Measurement of the α plateau for 147Sm. The count rate n is displayed

on a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Measurement of the β plateau for 40K. . . . . . . . . . . . . . . . . . . 11
9 plot of the ncorr values as a function of m with exponential fit. The

mass uncertainties sm are too small to be seen in the diagram. . . . . 12
10 Relation between solid angle Ω and the range R inside the sample . . 15
11 Relation between the volume elements dx, the thickness d and the

distancex to the surface of the sample. . . . . . . . . . . . . . . . . . . 16

List of Tables

1 Mesaurements of the inner diameter d of the aluminium tray . . . . . 9
2 Corrected average ncorr for each mass m . . . . . . . . . . . . . . . . . 12

I



1 Theoretical background

All equations in the following chapter can be found in [1]

1.1 Law of radioactive decay

Most elements and their isotopes are stable, but neither the less some are unstable
and decay over time. This phenomenon is called radioactive decay. This process is
a statistical process, where the number of atoms N over time can be described with
the following relation:

dN

dt
= −λ ·N (1)

Here is λ the specific decay constant for an isotope. Through integration this results
in the Law of radioactive decay

N(t) = N0 · e−λ·t, (2)

N0 describes the number of atoms at the time 0 (N0 = N(0)). The most interesting
quantity of Radioactive decay is the so called Half-life T1/2. it indicates the time,
after which half of the beginning atoms have decayed.

N(T1/2) =
N0

2
⇐⇒ T1/2

τ = 1
λ

↓
= τ ln 2 (3)

Another important quantity is the so called activity A, it is the negative change rate
in the number of atoms.

A = −dN
dt

= λ ·N(t) =
ln 2

T1/2
N(t) (4)

Another quantity we will look at and also measure in this experiment is the so called
rate of counts n where the number of counts is divided by the time passed:

n =
N

∆t
. (5)

1.2 Different types of decays

There are many types of radioactive decay. The ones relevant for this experiment are
α−, β−-decay and the so called electron capture. Those will be explained shortly in
the next sections.

1.2.1 α – decay

A parent nucleus X decays over time into its so called daughter nuclei Y. The common
notation for nuclei and their compositions is A

ZX where X is the element, A is the
number of protons plus the number neutrons in the nucleus and Z Gives the number
of protons without the neutrons. An α particle consists of two protons and two
neutrons and therefore a twice positively charged He nucleus (4

2He). This kind of
decay mainly occurs in heavy nuclei.

The example in this experiment is the α−decay of 147
62Sm which decays by emitting

α-particles: 147
62Sm → 143

60Nd+4
2He. if the count rate is known, the Half-life can be
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calculated with the method explained in the following paragraphs. Considering the
surface area F of a radioactive sample, one expects the rate of counts as the following:

n = AV
F

4
RSm2O3 , (6)

RSm2O3 is the range of the active sample and AV = A
V the activity per volume. If

we now assume that V =
↑

d = thickness

F · d and substitute Equation 4 we obtain after solving for

T1/2:

T1/2 =
ln 2 ·N ·RSm2O3

4 · n · d
(7)

T1/2 =
ln(2) ·NA · hrel · F ·Rair · ρair

2 · n ·MSm2O3

·
√
mA,Sm2O3

mA,air
(8)

The calculations between Equation 7 and 8 can be found in the appendix subsec-
tion 5.1

1.2.2 β− – decay

The β–emitter of this experiment is 40
19K. β consists of electrons and anti electron

neutrinos.

40
19K−→ 40

20Ca + e−+ν̄e

The Weak interaction changes with a W−boson one down-quark into one up-quark,
and therefore the neutron into a proton.

Figure 1: Feynman diagram of the β−–decay. This picture was taken from [2]
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1.2.3 Electron capture

The phenomenon of the electron capture is another way of a β− –decay. Instead of
a neutron which becomes a proton, the opposite is the case. An electron from the
lower k-shell is being absorbed in the nucleus and an electron neutrino emitted. A
Feynman diagram can be seen in Figure 2

40
19K+e−−→ 40

18Ar+νe

Figure 2: Feynman diagram of electron capture. This picture was taken from [3]

The process of electron capture in potassium is only 12% as likely as the β−–decay.
Therefore the decay constants need to be added up: λ = λβ− + λec. Because the
proportionality counter we use, can not detect electron capture so we need to make
additions to our formulas:

λ = 1.12 · λβ− A = N · λβ− T1/2 =
ln 2

1.12 ·A
. (9)

With N = m·NA
MKCL

· hrel and AS = A
m the specific activity we obtain for the half life

the followig:

T1/2 =
ln (2)A · hrel

1.12 ·AS ·MKCL
(10)

The specific activity AS can be fitted with the measured data of the count rate with
the following fit formula:

n(m) = α(1− s−β·m) (11)

a detailed derivation of those formulas can be found in the appendix subsection 5.1
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2 Setup and execution

2.1 Experimental setup

The radioactive samples, which are located in aluminium trays, are placed on a
turntable in the methane flow counter. The recorded pulses are processed in various
amplifiers and finally counted by the computer. The single channel analyser is used
to remove noise from the actual signal.

2.2 Methane flow-counter

The counter is in a cylindrical shape and covered with lead inside, to minimise the
background noise. A Molybdenum-wire is used as anode, to attract the particles.
Methane is used as counter gas, it has nice counting properties and is cheap. It
flows permanently through the counter to ensure that the gas keeps its counting
properties. The methane flow counter works in the proportionality region (explained
in subsection 2.4).

Figure 3: A schematic view of the inside of the counter, taken from [1]

2.3 Execution

At first we measured the counting characteristics of the counter with a 238U in
the range of 1000 V to 4000 V with steps of 100 V every 50 s and afterwards the
background count rate nb in steps of 100 V every 100 s from 1700 V to 4000 V we
changed the range here, because there were no measurable counts of background
beneath 2300 V.

Secondly we measured the diameter of the aluminium tray with a caliper seven
times at different positions and filled it up with 147Sm. We tried to make it a
smooth and even surface. Afterwards the characteristics of the counter for Sm near
the α−plateau was measured between 1700 V and 3400 V. The steps where chosen
as 100 V and 200 s per step. Then we estimated a good Voltage of the α−plateau
as 2300 V and measured the 147Sm sample for 6000 s.

For KCL we made a similar measurement with a mass of (0.6123 ± 0.0005) g
between 2800 V and 4000 V and set our working voltage to 3500 V because the
count rate was significantly higher we measured only for 800 s for everyone of ten
different weights. Which we measured by a precision scale with 4 digits after the
comma.
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2.4 Detection regions of the counter

Counters have different properties in different regions. In general a counter detects
emitted radioactivity with ions, which are being released in the counting gas (in this
case methane). The ionised particles are then being attracted by an anode which
then sends an electric signal to the computer. A schematic setup of the used counter
can be seen in Figure 3. The detection regions are mainly dependent on the voltage
applied and can be split in six parts. The following picture gives an overview of those
regions:

Figure 4: Characteristic of a counter Picture taken from [4]

I Is the recombination region. In this re-
gion the ions in the gas recombine before
they reach the counter wire due to the
low voltage.

II This region is called ionisation chamber
in which the number of ions reach the
saturation limit.

III The proportional region, in which our
counter is working in. It comes to a
higher rate of counts, due to secondar-
ily produced ions. The amplitude of the
signal is proportional to the primarily
ionised ions.

IV In the so called Geiger Müller region,
the positive ions produce an avalanche
of ion-pairs. The field strength is so
high, that the discharge, once ignited,
continues to spread until amplification
cannot occur, due to the high density of
positive ions around the anode.

V Here the discharge process is not able to
stop by itself. only organic gasses like
methane or ethanol are able to stop the
this discharge process. Its called
discharge region.
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3 Data analysis

3.1 Counter characteristics with 238U

The characteristical n(U) curve of the counter with the 238U sample and the back-
ground measurement with the empty aluminium tray are displayed in figure 5

Figure 5: Measured counter characteristics with 238U and background measurement.
The count rate n is displayed on a logarithmic scale. The background measurement
did not show any counts for U < 2300V.

The measurement time ∆t for each data point of the 238U count rate was set
to ∆t = 50s and for the background measurement ∆tB = 100s. The respective
uncertainties are:

sn =

√
n

∆t
(12)

snB =

√
nB

∆tB
(13)

The counter characteristics curve is corrected by the background measurement:

ncorr = n− nB (14)

sncorr =
√
s2
n + s2

nB (15)

The corrected curve is shown in fig. 6.
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Figure 6: Corrected counter characteristics curve with 238U.

The α plateau is identified at ∼ 1900V to ∼ 2400V, the β plateau at ∼ 3100V to
∼ 3800V.
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3.2 Determination of the half-Life of 147Sm

To determine the Voltage that has to be applied to operate the detector in the
proportional counting region, we measure the counter characteristics curve at the
region of the α plateau, and correct it analogously to section 3.1. The data obtained
is shown in fig. 7.

Figure 7: Measurement of the α plateau for 147Sm. The count rate n is displayed on
a logarithmic scale.

We identify the α plateau at ∼ 1900V to ∼ 2400V. Therefore the Voltage applied
to the counter for the measurement of the count rate of 147Sm is set to 2300V.

To determine the half-life of 147Sm according to equation 8,

T1/2 =
ln(2) ·NA · hrel · F ·Rair · ρair

2 · n ·MSm2O3

·
√
mA,Sm2O3

mA,air
,

we first have to calculate the surface area F . We average our measurements of the
inner diameter of the aluminium tray (cf. table 1),

8



Measurement Nr. d [cm]

1 2.88± 0.05
2 2.88± 0.05
3 2.83± 0.05
4 2.88± 0.05
5 2.88± 0.05
6 2.83± 0.05
7 2.88± 0.05

Table 1: Mesaurements of the inner diameter d of the aluminium tray

which leads to an arithmetic mean of

d = (2.87± 0.02)cm , (16)

where sd = sd√
7
.

d is used to calculate the surface area F of the 147Sm sample:

F = π

(
d

2

)2

. (17)

The count rate n is averaged over the measurements taken at a constant measurement
time interval ∆t = 30s and counter voltage 2300V, where we weigh the n-values
by their respective uncertainty sn =

√
n

∆t and the count rate of the background
measurement nB likewise. The weighted mean n is corrected with the weighted
mean nU of the background measurement, which yields

ncorr = n− nB = (0.45± 0.16)s−1 , (18)

The uncertainty is calculated as follows:

sn =

√
n

t
(19)

snB =

√
nB
tB

(20)

sncorr =
√
s2
n + s2

nB , (21)

where t = 6000s and tB = 1200s are the overall measurement times, hence the sum
of all time intervals ∆t of the respective measurement (∆tb = 30s).

With equation 8 and the corrected count rate ncorr, we obtain:

T1/2, Sm = (0.95± 0.03) · 1011 years , (22)

where

sT1/2, Sm
= T1/2

√(sF
F

)2

+

(
sncorr
ncorr

)2

. (23)
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and the constants used in eq. 8 are

NA = 6.022 · 1023mol−1 (24)

hrel = 0.1487 (25)

Rair = 1.13cm (26)

ρair = 0.001226
g

cm3
(27)

√
mA, air = 3.833

√
u (28)

√
mA, air = 11.125

√
u, (29)

MSm2O3
= 2MA,Sm + 3MA,O = 2 · 150.6

g

mol
+ 3 · 15.999

g

mol
= 348.717

g

mol
(30)
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3.3 Determination of the half-life of 40K

To determine the half-life of 40K, we follow the same procedure as in section 3.2 to
calculate ncorr for each mass. We set the relevant parameters to ∆t = 100s, t = 800s,
∆tB = 30s and tB = 1200s. The region of the β plateau of the counter characteristics
curve with the 40K sample is shown in fig. 8.

Figure 8: Measurement of the β plateau for 40K.

We identify the β plateau at ∼ 2900V to ∼ 3700V. The Voltage applied to the
counter for the measurement of the count rate of 40K is set to 3500V.

The uncertainty on the mass is estimated to 5 digits: sm = 0.0005√
3

g to take into

account that the scale, which had been gauged to zero before every measurement,
often showed values slightly different from zero after the measurement which is possi-
bly caused by dust on the scale. The mass is corrected by the mass of the aluminium
tray (m = muncorr −mtray) and the errors of the two weighs quadratically add up

to sm =
√

2
3 · 0.0005g = 0.0004g. The values obtained are:
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muncorr[g] m [g] ncorr [s−1]

1.4681± 0.0005 0.1790± 0.0004 1.39± 0.05
1.5351± 0.0005 0.2460± 0.0004 1.77± 0.05
1.6415± 0.0005 0.3524± 0.0004 2.31± 0.04
1.7456± 0.0005 0.4565± 0.0004 2.88± 0.04
1.8944± 0.0005 0.6053± 0.0004 3.24± 0.04
1.9802± 0.0005 0.6911± 0.0004 3.80± 0.04
2.1826± 0.0005 0.8935± 0.0004 4.02± 0.04
2.3484± 0.0005 1.0593± 0.0004 4.13± 0.04
2.4645± 0.0005 1.1754± 0.0004 4.45± 0.04
2.0956± 0.0005 0.8065± 0.0004 3.64± 0.04

Table 2: Corrected average ncorr for each mass m

Figure 9 shows a plot of these data points and an exponential fit of the form of
eq. 11

n(m) = α (1− exp{−βm}) .

0.2 0.4 0.6 0.8 1 1.2
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    β  0.08103± 1.836 

KCL Exponential Fit

Figure 9: plot of the ncorr values as a function of m with exponential fit. The mass
uncertainties sm are too small to be seen in the diagram.

The fit yields the following parameters:

α = (4.94± 0.11)s−1 (31)

β = (1.84± 0.08)g−1 (32)

cov =

(
0.01207 −0.008436
−0.008436 0.006566

)
(33)
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The fit parameters α and β kan be inserted into the formula for the half-life of
Potassium (Equation 10):

T1/2, K =
ln (2)A · hrel

1.12 ·AS ·MKCL
=
fB · log(2) ·NA · hrel
1.12 · 2 · α · β ·MKCl

(34)

= (1.33± 0.03) · 109 years , (35)

where

sT1/2, K
=

√(
∂T1/2, K

∂α
,
∂T1/2, K

∂β

)
· cov ·

(
∂T1/2, K

∂α
,
∂T1/2, K

∂β

)T
(36)

and

∂T1/2, K

∂α
= −

T1/2, K

α
(37)

∂T1/2, K

∂β
= −

T1/2, K

β
. (38)

and the constants used in the formula are

hrel = 0.000188, fB = 1.29, MKCl = 74.55, NA = 6.022 · 1021mol−1 (39)
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4 Summary and discussion of results

In this experiment, we first obtained the characteristic curve of the gaseous ionisation
counter using a 238U sample which led to the expected result. We then operated the
counter in its proportional counting region to measure the count rate of the α decay
of the 147Sm isotope in Sm2O3 and the count rate of the β decay of the 40K isotope
in KCl. We then exploited the constant range of α radiation and the dependence
of the activity A of α radiation sources of the surface area of the Sm2O3 sample to
determine the half-life T1/2 of 147Sm. To determine the half-life of 40K we exploited
the mass dependence of the activity A.

We obtained the following values:

147Sm : T1/2, 147Sm = (0.95± 0.03) · 1011 years (40)

40K : T1/2, 40K = (1.33± 0.03) · 109 years (41)

The value for 147Sm coincides with the reference value T1/2, 147Sm = 1.06·1011 years[1]

within 4σ. The value for 40K coincides with the reference value T1/2, 40K = 1.28 · 109

years [1] within 2σ.

We suspect the high discrepancy of the result for 147Sm to be caused by contami-
nation of the Sm2O3 with foreign substances since the same bottle is used by every
group and the material is put back into the bottle every time. Another reason for
the too small result for 147Sm could also be the measurement of the surface area,
which does not consider the uneven surface of the crystalline Sm2O3. Furthermore,
a longer measurement time could help to average out even more statistical events
during the measurement.
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5 Appendix

5.1 Derivation of the half life formulas

The pictures are taken from [1] and also derivation is inspired by [1].

5.1.1 T1/2 of 147Sm

Because α-emitters have a small range, the Equation 7 has to be corrected by a
specific factor, which we try to derive here. Due to the small range, not all α
particles reach the outside of the sample. The geometrical correlation between the
range and thickness of the sample is as shown in Figure 10 the following and limits
the the solid angle dΩ:

θmax = arccos
( x
R

)
(42)

dΩ(x) =

∫ 2π

0

ϕ

∫ θmax

0

sin (θ)dθ = 2π
(

1− x

R

)
(43)

Figure 10: Relation between solid angle Ω and the range R inside the sample

The rate of counts can then be obtained by the following integral as:

n =
A

d
·
∫ R

0

Ω

4π
dx = Av

F

4
RSm2O3

(44)

But as sadly RSm2O3
is not known, we have to use a ralation by Bragg and Kleemann

which states:a

R · ρ =
√
mα (45)

hereby is mα the effective atomic weight and ρ the density. If we want to calculate
the half life of 147

62Sm only with known quantities, we need to introduce more relevant
relations. such as the trivial ones

m

d
=
V ρ

d
= F · ρ (46)

N = 2 ·NSm2O3·hrel . (47)

where hrel gives the relative amount of 147Sm in Sm2O3 and the number of samarium(III)-
oxid nuclei is given through:

NSm2O3
=

m ·NA
MSm2O3

(48)

15



Hereby stands NAfor the Avogardo-constant and MSm2O3
the Molar mass. Therefore

we obtain the following:

T1/2 =
ln (2) ·NSm2O3

· hrel ·RSm2O3

2 · n · d
(49)

=
ln (2) ·NA · hrel ·RSm2O3

· ρSm2O3
· F

2 · n ·MSm2O3

(50)

=
ln(2) ·NA · hrel · F ·Rair · ρair

2 · n ·MSm2O3

·
√
mA,Sm2O3

mA,air
(51)

5.1.2 T1/2 of 40K

For a infenitessimal small element of mass, which sits in a depth x the rate of cou
nts dn is equal to:

dn = As · e−µ·xdm (52)

= As · ρe−µ·xdV
= As · ρF · e−µ·xdx

Figure 11: Relation between the volume elements dx, the thickness d and the
distancex to the surface of the sample.

Integrating over the thickness results in:

n =
As · ρ · F

µ

(
(1− e−−µ·d

)
(53)

Now one can substitute d with d = m
ρ·f then we end up with the following:

n =
fB · jAS · ρ · F

2µ

(
1− e−

µ·m
ρ·F

)
(54)

The factor fb
2 (fB=1.19) is a constant for the reflecting properties of the aluminium

tray. the unknown quantities AS and µ can be calculated with the fit function
Figure 9.

AS =
2 · µ · α
fB · ρ · F

=
2α · β
fB

(55)
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