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1 Physical Background

1.1 Decay Law and Activity

The radioactive decay of a given sample is a statistical process and cannot be predicted
deterministically. But since it is a statistical process it is possible to formulate a probability
model to describe the phenomenology of decays. This model is the decay law

dN
dt = −λ ·N, (1)

which is a first order differential equation. The solution to this differential equation is

N(t) = N0 exp(−λt) (2)

where N0 is the number of nuclei at the time t = 0 and λ the decay constant. In relation
to the decay constant is the mean life time τ = 1/λ. Considering eq. (2) it can be seen
that the time after which half of the nuclei should be decayed can be calculated by

T1/2 = ln(2)
λ

. (3)

To describe the decay properties of a given sample the activity A is defined by

A = N

τ
= ln(2) ·N

T1/2
. (4)

The activity is therefore the expected number of decays per time unit. Another quantity
which is going to be referred a lot is the counting rate

n = N

∆t (5)

1.2 Different Types of Radiation

α-Decay
The first and most energetic type of radiation being discussed is the α-Radiation. When
a nucleus of an atom X decays the process can be described by

A
ZX −→ A−4

Z−2Y +4
2 He. (6)

So the α-particle is a helium nucleus which due to quantum tunneling can leave the mother
nucleus. Since only 2 particles take part in this decay the energy spectrum of α decay is
discrete.
β-Decay
The β-decay is less energetic than the α-decay. There are two different types of β-decays.
The first and for the experiment relevant type is the β−-decay which can be described by

A
ZX −→ A

Z+1Y + e− + ν̄e. (7)

In detail one of the nucleus’ neutrons decays into a proton an electron and an anti-electron-
neutrino. Since considering the β-decay three particles interact with each other the spec-
trum of the β-decay is continuous. The β+-decay is the same mechanism with the difference



1 PHYSICAL BACKGROUND 2

that this time a proton of the nucleus turns into a neutron by emitting a positron and a
electron-neutrino. So it can be described by

A
ZX −→ A

Z−1Y + e+ + νe. (8)

Electron Capture (EC)
The electron capture describes the process when one of the electrons of an inner layer of
the atom is captured by the nucleus. So in detail it can be described by

A
ZX −→ A

Z−1Y + νe. (9)

Electron capture is possible because there is a not vanishing probability that the electrons
position is inside the nucleus – especially for the inner shell electrons. Inside of the nucleus
the electron combines with a proton to a neutron emitting an electron neutrino.

1.3 Correction of the Counting Rates

Samarium – α-decay
Since α-decay is absorbed very easy it has to be considered that some of the radiation
is absorbed by the sample itself. To take this into account some further corrections have
to be made. α-particles can be detected if the trajectory is shorter than the maximum

θ

R

x

Sample

Figure 1: Visualisation of the used parameter for the correction of the counting rate of
samarium.

reach R of the radiation in samarium. So looking at fig. 1 one can see that the solid
angle Ω in which α-particles can be observed is given as

Ω(x) =
2π∫
0

dφ
θmax.∫
0

sin θdθ = 2π ·
(

1− x

R

)
, (10)

where θmax. = arccos(x/R) since R is the maximum reach. Considering that solid angle
the pulsing rate can be calculated by

n = A

d

R∫
0

Ω(x)
4π dx = AV FR

4 (11)

where d is the thickness of the sample, A the activity and F the surface. So AV is the
samples activity per volume not considering the correction due to self absorption. Because
the maximum reach in samarium is not known it is necessary to use the Bragg-Kleeman
relation

R · ρ = C
√
mA = C

∑
i

pi
√
mA,i (12)
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where mA is the effective atom mass, C is a proportional constant and pi is the elements
relative mass fraction of the used substance. So using eq. (3) and eq. (4) we get for the
half-lifetime of a nucleus of the given sample

T1/2 = ln(2) N

AV V
= ln(2)NR4nd (13)

One will recognize that the initial number of radioactive nuclei is unknown, but can easily
calculated by

N = 2hNmol. = 2hρRFNA

2nMmol.
(14)

where Mmol. is the molar mass of the sample, h is the relative abundance of the isotope
and ρ the density of the sample. We now get for the corrected half-life time

T1/2 = ln(2)RρhNAF

2nMmol.
(15)

Potassium – β-decay
Even though β-radiation is not blocked as easy as α-radiation self absorption has to be
considered. So the pulsing rate per surface depending on the mass is defined. So at first
the change dx of a layer x of the sample as shown in fig. 2 is taken into account. Using

ddx

x
Sample

Figure 2: Visualisation of the used parameters to derive the correction needed caused by
self absorption for β-radiation

the absorption law we can formulate

n ∝ ASFρ · (1− exp(−µx))dx (16)

where AS = A/m is the mass specific activity. Neglecting the energy dependency of µ so
assuming that µ is not dependent of x and using m = ρFd one can formulate the pulsing
rate in dependency of the mass by integrating eq. (16) to the thickness d of the sample.
The so received equation for the pulsing rate n is

n(m) = ASFρ

µ

(
1− exp

(
−µm
ρF

))
. (17)

To also take backscattering into account we need to add a factor dependent on a reflection
factor fB and the solid angle Ω. Potassium is not only decaying via β-decay it also has to
be considered that electron capturing occurs so the total decay constant has to be

λtot. = λβ + λEC = 1.12 · λβ (18)

even though only β-decay is observable in this experiment. So to calculate the half-life
time properly the equation

T1/2 = ln(2) N
1.12 A(β−) (19)

should be used.
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Figure 3: In die figure a schematic picture of a counting tube is shown.

2 Setup and Implementation

2.1 Setup

The setup used to perform the experiment consists of a proportional counting tube using
floating methane gas for the ionisation, different electronic devices to process the meas-
ured signal and an oscilloscope. The measurement can be controlled via LabView on a
computer.

2.2 The Proportional Counting Tube

In this experiment a proportional counting tube is used. Inside of the tube there is
methane gas which gets ionised when an energetic particle passes through. The methane
gas is floating through the tube because the structure of the molecules changes as the
get ionised so to guarantee a constant measure behavior the gas is changed constantly. A
picture of a counting tube is displayed in fig. 3.
The sample is placed in a turnable wheel so it can be changed easily. A voltage is applied
to the tube and the counting wire so that the charge carriers drift to the counting wire.
So a current is detected when a energetic particle passes through. When used in the
proportionality mode the outlet amplitude of the tube signal is proportional to the detected
particles energy loss.

2.3 Implementation

The experiment consists of three parts. In the first part the tube characteristic was
measured using a 238U sample which decays by α-decay. The initial voltage was set to
1000 V while the end voltage was set to 4000 V. For the step length a voltage step of 100 V
while the measuring time was set to 50 s. For this measurement a noise measurement was
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done. This measurement is used to correct the other characteristic measurements. For
the noise measurement the initial voltage was set to 2000 V and the end voltage was set
too 4000 V, with a step voltage of 100 V and a measurement time per step of 100 s.
To determine the half lifetime of samarium at first a measurement of the α-plateau was
made. To do so a small aluminium bowl was filled with Sm2O3. To flatten the surface of
the samarium oxide powder a small stamp was used, since for the analysis a perfect surface
is assumed. It is important to turn of the gas flow before changing the sample because if
the sample is changed while the gas is still flowing the powder could be blown into the gas
tube which leads to a pollution of the tube which makes later measurements impossible.
After that a voltage in the middle of the plateau was chosen to measure the pulsing rate
in a time period long enough to guarantee that the relative error on that measurement
is below 2%, which can be easily approximated because a counting experiment implies a
poisson error.
The last measurement was made to determine the half-life time of potassium. This time the
β-plateau was measured. Afterwards a voltage in the middle of the plateau was chosen to
measure the pulsing rate. This measurement was repeated 10 times with different masses
of the sample. The sample was weighted with an analytic scale and noted down. Also the
mass of the small aluminium bowl was measured.
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3 Analysis

3.1 Counting Tube Characteristics

To find a sensitive voltage for the α- and β-decay the counting tube characteristics of
the proportional counting tube was measured with an uranium sample. In fig. 4 the
counting tube characteristic is displayed. In the shown counts N the background has
already been subtracted. To correct the data of the background the measured counts per
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Figure 4: The measured data for the counting tube characteristics has already been sub-
tracted by the measurement of the background. As the raw data of the counting tube
measurement covers the displayed data due to the logarithmic plot it is not displayed in
the graph.

second are simply subtracted by the background-counts. As the error on the background
measurement is extremely small due to the small number of counts it is not taken into
account to calculate the total error. Therefore the error can be calculated with

sN =
√
Nmeasured (20)

The used error on the counting is given by the square root of the total counts as the counts
are scattered by a poisson distribution.
With use of fig. 4 and the more accurate measurements of the plateau that are mentioned
in section 3.2 and section 3.3 the voltage for measuring the α- and β-decay have been
chosen to

Vα = 2400 V
Vβ = 3700 V.

(21)

These values have been chosen during the experiment with the use of a short interim
evaluation.
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3.2 Determination of the Half-Lifetime of Samarium

To determine the half-lifetime of samarium a long measurement of the α-decay has been
made. As the relative error of the measurement was supposed to be under 2 % a meas-
urement of the plateau appendix A was made and evaluated during the experiment. Due
to the results of the interim evaluation the test time was chosen to 6250 s as for a roughly
determined average rate of 0.4 counts/s the error should be small enough.
Besides the long measurement of the decay a short background measurement with the
same voltage applied to the counter tube has been made. Using the background data the
long measurement was corrected by subtracting and as the error on the background is
extremely small it was neglected to the error is just determined by the square root of the
measured counts.
To calculate the surface area of the sample the diameter of the small bowl was measured.
The estimated error on the diameter is sd = 0.01 cm. With the mean of the measurements
and a gaussian error for the surface area F we find

F = (6.375± 0.018) cm2. (22)

To calculate the half-lifetime of samarium eq. (15) was used. The counts per second n
are determined as the mean of the counts per second over all measurement periods 1

of the corrected data. As the error using a poisson error would be extremely small it
was decided to use the standard deviation over all measurement periods instead. For the
overall counting rate we find:

n = (0.49± 0.11) 1
s . (23)

Furthermore the value for the relative frequency has been taken from [Source 1] as h =
99.75 % and the molar mass has been calculated to MSm

mol = 348.8 g
mol .

Now everything that is needed to determine the half-lifetime has been calculated and we
get

T Sm
1/2 = (1.457± 0.004) · 1011 years, (24)

where gaussian error propagation was used to calculate the error

sF = πdsd

sT =

√( ln(2)RρhNAsF
2nMmol.

)2
+
( ln(2)RρhNAFsn

(2nMmol.)2

)2
.

(25)

Also, as already seen the value was transformed from seconds to years.

3.3 Determination of the Half-Lifetime of Potassium Chloride

To determine the half-lifetime of potassium chloride a voltage of 3700 V was chosen. Same
as for samarium first a measurement of the plateau appendix A was done to determine a
sensitive measuring time. As the rate is much higher than it was for samarium a measuring
period of 700 s is long enough for a relative error under 2 %. Afterwards ten measurements
with 700 s and different weights have been made.

1During the measurement every 50 s a value was saved, so for 6250 s measuring time 125 values were
saved
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As it was only possible to weight the sample in the small aluminium bowl, we also weighted
the bowl itself and its weight has been subtracted. The error on the scale has been
estimated to sscale = 0.0001 g and the error on the sample can be calculated by simple
gaussian error propagation.
To determine the half-lifetime of potassium chloride the counts are subtracted by their
background and plotted against the mass. The error on the counts is same as in section 3.2
given by the standard derivation over the measuring periods. Then a fit of the form

f(m) = a(1− exp(−bm)) (26)

has been made with scipy.optimize.curve_fit and also the error on the counts were
given to the function to optimize the result. The result of the fit is shown in fig. 5. The
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Figure 5: Measured counts per second without the background for the different masses
of the sample. The line shows the fit that was made to determine the half-lifetime of
potassium chloride.

errors that are shown in the plot were calculated the same way as for samarium. The error
on the fit in form of a covariance matrix is also given by the fit program. To evaluate the
fit a χ-square was calculated with

χ2 =
(
Nmeas. −Nfit

sN

)2
(27)

and the reduced χ-square simply follows by dividing by the free parameters so for the
reduced value we get

χ2
red. = χ2

8 = 1.13. (28)
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To find the half-lifetime the slope at m = 0 is calculated with

Z = df
dm

∣∣∣∣
m=0

= a · b. (29)

The error on this is calculated with the covariance matrix by

s2
Z =

(
∂Z
∂a
∂Z
∂b

)
·
(

0.13 1
s2 0.12 1

s g
0.12 1

s g 0.13 1
g2

)
·
(
∂Z
∂a

∂Z
∂b

)
. (30)

The specific activity can now be calculated with

AS = 2Z
g

= 2ab
g
, (31)

where g = 1.12. The error is given with gaussian error propagation to

sAS
= 2sZ

g
. (32)

Last the relative frequency h = 0.0118 percent and the molar mass of potassium chlor-
ide Mmol. = 74.55 g

mol are needed. With use of the specific activity the half-lifetime can
be calculated with

TK
1/2 = ln(2)NAh

1.12ASMmol.
= (1.33± 0.17) · 109 years

sT = ln(2)NAhsAS

(1.12ASMmol.)2 .

(33)
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4 Discussion

In this experiment it was possible to determine the half-life times of potassium and
samarium to

T Sm
1/2 = (1.457± 0.004) · 1011 years and

TK
1/2 = (1.33± 0.17) · 109 years.

To determine the quality of the measurement the results can be compared to the literature
values [Source 1] which are

T Sm
1/2 = 1.06 · 1011 years and

TK
1/2 = 1.28 · 109 years.

Comparing these values one can see that it was possible to determine the half-lifetime of
potassium within a 1σ range. Even tough the relative error on that value is 13% it shows
that the error was calculated properly and to a reasonable value. For a more sensitive
error propagation one would need to do a lot more measurements for one mass as well as
for more different masses. More measurements for one mass would give the opportunity to
calculate a mean and a bigger variation in different masses would optimize the fit. So the
combination of both would hopefully lead to a more accurate value with a smaller error.
The measurement using samarium was not that accurate since the difference between the
measured value and the literature value is 37% of the literature value. Considering that
the error was calculated in a reasonable way there might be some systematics which are
affecting the measurement:
One possibility is that we did not choose the working voltage properly because this affects
the measured pulsing rate to a not quite neglectable extend. Furthermore the backscat-
tering was chosen as constant but it should depend on the hight of the powder in the
aluminium bowl. For a thicker layer of samarium the backscattering gets is higher and
calculation the half-lifetime with a constant value anyway would lead to an underestim-
ated value. As we did not consider this during the experiment a quite thick layer was
chosen as it was easier to flatten the surface for a thick layer of potassium.
But it is still a possibility that it was just statistical ”badluck” since the decay of a nucleus
is a strictly statistical process.
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A Appendix
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Figure 6: Measurement of the α-plateau, the background has already been substracted
what also lead to some rates dropping under zero. As this does not make sense these
rates have been set to zero manually, nevertheless due to the logarythmic axis they are
not displayed.
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Figure 7: Measurement of the β-plateau, the background has already been substracted in
this graph. The shown errorbars come from the poisson-errors for each value.
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