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1 Objectives

In this experiment, a Michelson Interferometer was set up and subsequently used to perform two
di”erent measurements. The objective of the first measurement was to determine the wavelength
ω of a laser, and during the second part the thermal expansion coe!cient ε of an aluminium rod
was determined.

2 Equipment used

The experiment was conducted using components from the THORLABS EDUMINT2 Michelson
Interferometer Kit [THO]. More specifically, both parts of the experiment used the same green
laser, a beamsplitter, one plain adjustable mirror, a convex lens and a screen. All the components
in their respective holders were positioned on a breadboard. For the first part, a translatable
mirror was used in addition. During the second part of the experiment, this mirror was replaced
by an aluminium rod with a heating foil attached to it. Moreover, a digital rod thermometer as
well as a laboratory power supply unit were used.

3 Procedure

Before any measurements could be taken, the Michelson Interferometer had to be set up and
adjusted. This was done by following the recommended steps explained in the Kit Manual [THO].
The interference pattern was observed on a screen. As the convex lens, with the task of diverging
the laser beam, was placed between the laser and the beamsplitter, the resulting interference
pattern consisted of concentric rings.

During the first part of the experiment, a mirror which could be translated in the direction of
the interferometer arm by turning a micrometer screw was positioned opposite to the laser on
the breadboard at approximately the same distance to the beamsplitter than the adjustable, but
stationary, second mirror. A picture of the setup for this part can be found in fig. 1.

Figure 1: Setup for part 1 of the experiment
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Once the interference pattern on the screen appeared clearly and steady, a series of measurements
was taken during which the micrometer screw was turned by a bit, thus changing the length of
the corresponding interferometer arm, and the number N of light-dark-light transitions was noted.
This was performed for 9 di”erent N and after reaching the desired number of transitions, the
distance #x of translation in µm was noted. Before the next measurement, the screw was turned
back to 0 to make it easier to read o” #x of the next measurement. Throughout the entire series
of measurements it was made sure that the table and the interferometer components were touched
as little as possible by, for example, turning the micrometer screw from the top, without resting
the hand anywhere on the setup. The full set of data taken can be found in Table 1 of the lab
notes in the appendix (section 8).

Before the second part of the experiment could be started, the interferometer setup had to be
modified by exchanging the translatable mirror for the Al rod component. This consisted of an
aluminium rod around which a foil heater was already wrapped and taped. On one of the sides of
the rod, a plain mirror was attached and on the other side, there was an indentation in the rod,
into which the touch probe of a digital thermometer could be inserted. The two outer cables of
the heating foil were connected to a power supply unit via banana plugs. In fig. 2, a picture of the
setup for this part can be found.

Figure 2: Setup for part 2 of the experiment

After the interferometer was readjusted to obtain a clear interference pattern on the screen, the
power supply was turned on and the current was set to 2A.
The voltage was originally set to around 1V. First, a start temperature Tstart was taken. This
was done exactly at the point in time, when the display of the digital thermometer showed a first
temperature increase and at the same time the counting of the light-dark-light transitions on the
screen was started. After each temperature increase by one °C, the temperature Tend as well as the
number of so far occurred transitions N was noted. The voltage was increased a bit whenever the
motion of the interference pattern had slowed down exceedingly. In total, the voltage was varied
between 1V and 7.8V, corresponding to a temperature change from 26 °C to 46°C. The total set
of data taken during this part can be found in Table 2 in the lab notes in section 8.

4 Observations, Data and Analysis

4.1 Analysis Part 1: Determining the Wavelength ω of the Laser

As the screw on the translatable mirror is turned, the length of one of the interferometer arms
changes, resulting in a varying phase shift between the two beams recombining after the beam-
splitter and thus a change in the observed interference pattern. Each light-dark-light transition
corresponds to a change in the optical path length of one wavelength ω, but since the distance
between the translatable mirror and and the beamsplitter is crossed twice, the expected linear

3



relationship ([Dem17]) between the observed number N of transitions and the distance #x is given
by:

#x =
ω

2
·N. (1)

From the performed measurements it is thus possible to determine the laser wavelength ω.

While performing the measurement series, the interference rings were, overall, moving inwards,
which means that we were increasing the di”erence between the partial beams’ path lengths by
moving the mirror. However, the interference pattern was often fluctuating and very sensitive to
external influence such as movement of the table or the optical components whenever we were
touching them. This made it more di!cult to count the light-dark-transitions, so we assume a
relative uncertainty of 5% on N . We also observed that the pattern was often going in the opposite
direction (rings moving outwards) for a short time (→ 1-2 transitions) when we were beginning to
turn the screw before it started moving in the expected direction. This might probably be due
to the same reasons (sensitivity to touch), and we just ignored these transitions. It is however
possible that there remains a systematical o”set in N due to this anomaly.

Finally, at the end of the measurement series, we conducted two additional measurements after a
short break, but those deviate so clearly from the data taken before that we suppose some external
factors have changed and we decided not to include them in the analysis.

For the distance #x, we assume an uncertainty ϑ!x = 1µm/
↑
6 → 0.4 µm, based on a triangular

distribution of width 2µm. We justify this by the fact that even if the scale on the screw theoret-
ically had a 1µm division, it was not quite realistic to stay within that scale uncertainty, due to
factors like the human reaction time when stopping to turn after a certain number N was reached
or involuntary tiny movements with the hand.

The resulting data is listed in table 1 in section 8 and plotted in fig. 3. As implied by eq. (1), we
could fit the data with a model #x = aN . In order to exclude a possible systematical error like
the one noted above, we perform instead a two-parameter linear fit using the model #x = aN + b
with an additional o”set b. This results in optimal parameter values

a = 0.347(8)

b = 0.7(3) .

The wavelength can then be calculated as

ω = 2a = 0.694(16) µm (2)

4.2 Analysis Part 2: Determining the Thermal Expansion Coe!cient ε
of Al

The linear thermal expansion coe!cient ε of a solid is defined by the following di”erential equation
[THO]:

ε =
1

L

dL

dT
,

where dL is the relative linear expansion, dT the change in temperature and L the total length
of the expanding object. Solving this di”erential equation gives the expected relationship between
the length L after a change in temperature by #T :

L = L0 exp(ε#T ), (3)

where L0 denotes the original length.

In this experiment, the change in length #L was determined using the knowledge from part 1 and
the relationship between the number N of observed light-dark-light transitions as well as using the
reference wavelength ωref = 532 nm, as given in the manual [THO]:

#L =
N · ωref

2
. (4)
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Figure 3: Data and fit: distance #x versus number N of light-dark-light transitions

Assuming the uncertainty on the reference wavelength to be negligible, the error on #L was
obtained by the following error propagation:

ϑ!L =
ϑN · ωref

2

The counting error on N was again estimated to be around 5%.

For the uncertainty on the start and end temperatures, the accuracy of the digital thermometer
display was used. This was estimated to be distributed with a rectangular distribution with a
width of 1 °C, resulting in a standard deviation of

ϑTstart = ϑTend =
1 °C
2 ·

↑
3
.

According to simple Gaussian Error Propagation, this resulted in an uncertainty on the tempera-
ture di”erence #T = Tend ↓ Tstart of around 0.4 °C.
The length L0 of the aluminium post prior to heating above room temperature was given in the
kit manual as

L0 = 9 cm, (5)

and was assumed to have a negligible uncertainty. It was noticed, however, that the heating foil
did not cover the full length of the rod, and that it was not specified in the manual at which exact
temperature this length was measured, which gives rise to a potential systematic error.

The diagram in fig. 4 shows the change in rod length #L as a function of temperature change #T .
The data points are shown with their errorbars in both directions. From the naked eye, it does
not seem as though a linear first order approximation for a fit would hold in this case. Therefore,
an exponential fit of the form

#L = L0 · exp(ε#T )↓ L0 (6)
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was performed, in which L0 was assumed to be the constant given reference value and ε being the
only fit parameter. The fit was performed in python using scipy.optimize.curvefit, which is based
on least-square-optimization and resulted in the following best parameter value:

ε = 2.79(7) · 10→5 1

K
. (7)

The fit is illustrated as well in fig. 4.

Figure 4: Data and fit: length increase #L versus temperature di”erence #T

To assess the goodness of the fit, a ϖ2- test was performed, resulting in

ϖ2

dof
→ 105

19
,

corresponding to a p-Value of

p → 6.2 · 10→14.

5 Discussion

5.1 Discussion Part 1: Determining the Wavelength ω of the Laser

The quality of the fit we used to determine the laser wavelength is acceptable with a reduced ϖ2

value of ϖ2/dof → 1.5, corresponding to a p-value of → 15%. This matches also the impression one
gets when looking at fig. 3: all the data points touch the linear fit or at least the confidence band
with their error bars.
The o”set b = 0.7(3) µm that we found indeed implies a systematical uncertainty as we suspected,
though it could also be due to simple statistical fluctuation. The result for the laser wavelength,
however, di”ers from the expectation:

According to the manual [THO], the true laser wavelength is ωref = 0.532 µm. The value that we
calculated in section 4.1, ω = 0.694(16) µm, strongly deviates from this reference value:

t =
ω↓ ωref

ϑω
→ 4.5.
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At a confidence level of 0.05, the result of this t-test would indicate that our result is not compatible
with the reference value.

The relative di”erence in the values is

ω↓ ωref

ωref
→ 30%.

As mentioned before, the setup was extremely sensitive to all kinds of unwanted external influences.
The thereby caused fluctuations in the interference pattern are probably the main reason for why
the result di”ers quite significantly from the expectation. A second strongly limiting factor is
the fact that the distance was changed by hand with the micrometer screw, which was almost
impossible to do very accurately without a”ecting the setup.

5.2 Discussion Part 2: Determining the Thermal Expansion Coe!cient

ε of Al

The goal of this part of the experiment was to determine the thermal expansion coe!cient ε of
Al, which was obtained here as the best fit value of the exponential fit in fig. 4. In the kit manual
[THO], a reference value of

εref = 2.31 · 10→5 1

K
(8)

was given. This value can be compared with the here obtained value (eq. (7)) via a t-test:

t =
ε↓ εref

ϑε
=

2.79↓ 2.31

0.07
→ 6.5.

At a significance level of 0.05, this would imply a rejection range of t > 2 and one would thus need
to conclude that our obtained result is not compatible with the reference value.
The relative di”erence is

ε↓ εref

εref
→ 21%.

Taking into account the simple means and many ambient influences out of the control of the
experimenters, one might say that this is is nevertheless an acceptable result. The accuracy could
probably be improved by performing the experiment in a more controlled environment and with
more acurate measuring devices (e.g. thermometer).

Besides this result, it is important to discuss the quality of the fit attempted. As one can see
from the naked eye, the exponential fit in fig. 4 does not really seem to describe the data very
well, especially at higher temperatures. This is also confirmed by the ϖ2-test. At a confidence
level of 0.05, the obtained p-value is extremely low and suggests that the data cannot be described
su!ciently accurate by the proposed exponential shape.

It is also interesting to see, that the exponential best fit result is so shallow, that it almost can be
mistaken for a linear fit.

One alternative approach would have been to fit the same exponential function, but without
assuming the original rod length L0 to be fixed and using this instead as a second free parameter.
This was attempted, but did however not result in an improvement of the overall quality of the fit.
It seems as though an additional unknown component to the model might have been necessary to
describe the data more accurately.

As mentioned before, it is noticeable that the deviation from an exponential behaviour seems
to increase with increasing temperature. One possible explanation could be that more complex
processes are beginning to happen at this regime. One can speculate that this might have to do
with the heating foil then actually also heating the surrounding air, thus changing the density along
the path of the laser. Similarly, the observed a”ect might have something to do with the general
conditions (temperature, pressure) in the lab changing over the course of the heating process.
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6 Improvements and Suggestions

One big source of uncertainty during this experiment was the fact that the setup was extremely
sensitive to all kinds of unwanted influences, from changes in density and ambient temperature
to potential errors caused by someone touching the optical components of the board. One way of
increasing the stability of the interference pattern would be to place the whole setup on a higher
quality optical table. Besides, it might have been a good idea to close window shutters: both to be
able to see the interference pattern better at lower ambient light and also to prevent temperature
in the room to fluctuate as much due to sunlight entering the lab at varying intensities.
If one strives after obtaining clearer more highly resolved interference patterns, it would be advis-
able to use a better collimated and stronger laser of higher quality. A higher coherence length in
the laser would also make it easier to find an interference pattern during the setup, as this would
not require the lengths of the arms to be as closely the same.

Another major source of uncertainty was the fact that the micrometer screw of the translatable
mirror had to be turned by hand. This implied on the one hand a limited accuracy with which the
distance could be changed, as well as a considerable uncertainty in reading o” the moved distance
on the micrometer scale. One suggested improvement could be to use a piezo crystal instead of a
mechanical screw for changing the distance in one of the interferometer arms.

In part 2 of the experiment, a rod thermometer was used, which was only loosely inserted into the
hole of the aluminium probe. An alternative and possibly a bit more reliable way of measuring
the temperature would have been to use the thermistor sensor of the foil heater by connecting the
two respective cables to a multimeter and by reading o” the temperature on this. In addition to
the aspect of reliability, this might also o”er a more finely resolved digital display.

In order to obtain a value for the original length L0 of the Al rod at the start temperature, other
than the one given in the manual, one could have measured the length using a caliper gauge with a
precise Vernier scale. In the here presented case this was, however, not really feasible, as the plain
mirror was glued permanently to one end of the rod, making it rather challenging to measure the
actual length.

7 Conclusion

In this experiment, a Michelson Interferometer was set up and subsequently used to perform two
partial experiments. In the first part, the laser wavelength ω was determined by fitting the linear
relation between the number N of light-dark-light transitions and the corresponding distance #x,
by which a translatable mirror had been moved (see fig. 4). This resulted in a best value of

ω = 694(16) nm, (9)

which was later compared with the reference value of

ωref = 532 nm. (10)

The relative di”erence is around 30%. A t-test indicates a significant deviation.

In the second part, the thermal expansion coe!cient ε of an Al rod was determined by heating
the rod by temperature di”erences #T and observing the number N of light-dark-light transitions,
from which a corresponding change in length #L was calculated. An exponential model was fitted
to the data according to the theoretical expectation (see fig. 4), resulting in the following best fit
value:

ε = 2.79(07) · 10→5 1

K
, (11)

which was within 21% of the reference value

εref = 2.31 · 10→5 1

K
, (12)

resulting in a t-value of around 6.5.
In this case the quality of the fit was rather unsatisfactory, especially for higher temperatures.
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Di”erent reasons for the deviations of the experimental results from the expectations were discussed
and some suggestions for possible improvements were made.

The biggest limiting factor and potential source of errors was identified to be the high sensitivity
of the whole setup towards di”erent environmental conditions and fluctuations, like temperature,
pressure or unavoidable touching of the micrometer screw.
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8 Appendix A: Signed Lab Notes

10

-

·



9 Appendix B: Python code

In [12]:  import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
import scipy.optimize
 
# part 1: determining the wavelength of the laser
 
# data
lambda_ref = 532/1000 #µm
 
N = np.array([10,20,30,40,50,60,70,5,15]) # (25,35)
Nerr = 0.05 * N # error on N: 5 % von N
 
x = np.array([4.5,7,10.5,14,18, 21.5,25.5,3,6]) # in µm (11.5,15.5)
xerr = np.array([1 / np.sqrt(6)] * len(x))
# triangular distribution (2a = 2µm) read out + reaction time
 
# potential error in last two measurements
 
 
# performing a linear fit y = ax + b
def Linear(x, a, b):
    return a*x + b
 
p0 = (0.5, 0)
 
popt, pcov = scipy.optimize.curve_fit(Linear, N, x, p0, xerr)
 
# best fit values and their uncertainties
# uncertainties are square roots of diagonal of covariance matrix
 
print("Optimal parameters:")
 
print("a = %g +- %g" %(popt[0], np.sqrt(pcov[0][0])))
print("b = %g +- %g" %(popt[1], np.sqrt(pcov[1][1])))
 
values = np.linspace(0, 75) # xvalues for fit
fit1 = Linear(values, *popt)
phi = np.array([values, 1], dtype=object)
fit1err = np.sqrt(phi @ pcov @ phi.T)
 
# performing a chisquare test to assess goodness of fit
# degrees of freedom = # data points - # fitted parameters
dof = len(x) - 2
 
print("\nManual chi^2 test:")
chi2m = ((x-Linear(N,*popt))**2 / xerr**2).sum()
p = scipy.stats.distributions.chi2.sf(chi2m, dof)
print("chi2/dof = %g / %d = %g" %(chi2m, dof, chi2m/dof))
print("p-value = %g" %p)
 
print("\nCalculated wavelength:")
lambda_calc = popt[0] * 2
lambda_calc_err = np.sqrt(pcov[0][0]) * 2
t_value = (lambda_calc - lambda_ref)/lambda_calc_err
print("lambda_calc = %g +- %g µm" %(lambda_calc, lambda_calc_err))
print("lambda_ref = %g µm" %(lambda_ref))
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In [13]: 

Optimal parameters:
a = 0.346667 +- 0.00777845
b = 0.666667 +- 0.309513

Manual chi^2 test:
chi2/dof = 10.8 / 7 = 1.54286
p-value = 0.147584

Calculated wavelength:
lambda_calc = 0.693333 +- 0.0155569 µm
lambda_ref = 0.532 µm
t-value: 10.3705

print("t-value: %g" %(t_value))

plt.figure(figsize=(8,6))
plt.errorbar(N, x, xerr=Nerr, yerr=xerr, fmt="k.", capsize=2, 
             label="data", zorder=5)
plt.plot(values, fit1, label=f"linear fit $\Delta x = a N + b$\n"
         "$a = (%g \pm %g)$ µm\n $b = (%g \pm %g)$ µm\n"
         "$\chi^2/$dof$ = %g / %d$" %(popt[0], np.sqrt(pcov[0][0]), 
         popt[1], np.sqrt(pcov[1][1]), chi2m, dof))
plt.plot(values, fit1 + fit1err, 'C0--', label="confidence interval")
plt.plot(values, fit1 - fit1err, 'C0--')
plt.xlabel("N") 
plt.ylabel(f"$\Delta x$ [$\mu$m]")
plt.legend()
plt.savefig("plotPart1.png")
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In [14]:  # part 2: determining the thermal expansion coefficient of Al
 
L0_ref = 90 #mm original length of aluminium rod according to manual
alpha_ref = 2.31e-5 #1/K Al expansion coefficient according to manual
 
N2 = np.array([9,18,26,35,43,52,61,69,78,88,101,112,124,139,157,176,
               193,210,228,246])
N2err= N2*0.05 # 5% on N-value
 
Tstart = 26 #° celsius
Tstarterr = 0.5/np.sqrt(3) # rectangular distribution, 2a = 1°C
 
Tend = np.array([27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
                 44,45,46])
Tenderr = 0.5/np.sqrt(3)
 
DeltaT = Tend - Tstart
DeltaTerr = np.array([1/2 * np.sqrt(2) / (np.sqrt(3))] * len(DeltaT)) 
# gaussian error propagation of Tend-Tstart
 
DeltaL = lambda_ref * N2 / 2000 #mm
DeltaLerr = lambda_ref * N2err / 2000
 
# exponential fit
def Exponential(x, alpha):
    return L0_ref * np.exp(alpha*x) - L0_ref
p02 = 0.1
 
popt2, pcov2 = scipy.optimize.curve_fit(Exponential, DeltaT, DeltaL, 
                                        p02, DeltaLerr)
 
# best fit values and their uncertainties
# uncertainties are square roots of diagonal of covariance matrix
 
print("Optimal parameters:")
 
print("alpha = %g +- %g" %(popt2[0], np.sqrt(pcov2[0][0])))
print("t = %g" %((popt2[0] - alpha_ref)/np.sqrt(pcov2[0][0])))
print("rel = %g" %((popt2[0] - alpha_ref)/alpha_ref))
 
values2 = np.linspace(0, 20)
fit2 = Exponential(values2, *popt2)
fit2max = Exponential(values2, popt2[0] + np.sqrt(pcov2[0][0])) 
# upper border of confidence interval
fit2min = Exponential(values2, popt2[0] - np.sqrt(pcov2[0][0])) 
# upper border of confidence interval
 
# performing a chisquare test to assess goodness of fit
# degrees of freedom = # data points - # fitted parameters
dof = len(DeltaT) - 1
 
print("\nManual chi^2 test:")
 
chi2m2 = ((DeltaL-Exponential(DeltaT,*popt2))**2 / DeltaLerr**2).sum()
p2 = scipy.stats.distributions.chi2.sf(chi2m2, dof)
print("chi2/dof = %g / %d = %g" %(chi2m2, dof, chi2m2/dof))
print("p-value = %g" %p2)
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In [15]: 

Optimal parameters:
alpha = 2.79105e-05 +- 7.38834e-07
t = 6.51099
rel = 0.208249

Manual chi^2 test:
chi2/dof = 105.145 / 19 = 5.53392
p-value = 6.20526e-14

plt.errorbar(DeltaT, DeltaL, xerr=DeltaTerr, yerr=DeltaLerr, fmt="k.", 
             capsize=2, label="data", zorder=5)
plt.plot(values2, fit2, label="exponential fit "
        "$\Delta L = L_0 $exp$(a \Delta T) - L_0$\n"
        "$a = (%g \pm %g)\cdot 10^{-5}$ 1/K\n $\chi^2/$dof$ = %g / %d$"
        %(popt2[0]*10**5, np.sqrt(pcov2[0][0])*10**5, chi2m2, dof))
plt.plot(values2, fit2max, "C0--", label="confidence interval")
plt.plot(values2, fit2min, "C0--")
plt.xlabel(f"$\Delta T$ [°C]")
plt.ylabel(f"$\Delta$ L [mm]")
plt.legend()
plt.savefig("plotPart2.png")
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