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1 Physical Background

1.1 Superconductivity

Materials in which superconductivity can be observed are called superconductors.
The best known property of superconductors is that the resistance of the conductor
drops to almost zero for a temperature T below the critical temperature Tcrit. Super-
conductors are also perfect diamagnets, meaning that when an external, changing
magnetic field is applied to the conductor, it will induce an electric current in the
conductor which leads to a magnetic field that exactly cancels the external field. This
effect is known as the Meissner-Ochsenfeld effect and also leads to superconductors
levitating above magnets.
In its superconductive state a material has a temperature dependent energy gap
with

Egap = Efermi ±∆E (1)

with the fermi-energy Efermi and the temperature dependent energy ∆E. Further-
more for T < Tkrit the electrons change into a macroscopic quantum state and form
cooper pairs.
Apart from a temperature higher than the critical temperature there are different
reasons superconductivity breaks or cannot be achieved. A strong magnetic field,
as well as a high electric current can have this effect. Also an electromagnetic
alternating field with an approximate frequency of ∆E/h̄ has this effect.
There are two different types of superconductors that are distinguished by the mag-
netic field inside the conductor.

Superconductors Type I For an external magnetic field below the critical mag-
netic field strength, the magnetic field inside the conductor abruptly drops to 0.
Only a thin layer is penetrated by the magnetic field.

Superconductors Type II (high-temperature superconductors) There are
two critical field strengths, H1 where the magnetic field is partially displaced and H2
where it is completely displaced. Between these two field strengths isolated points,
so-called vortices are formed.

1.2 London Equations

The London equations are used to calculate the penetration depth of a magnetic
field. First of all it is assumed that the electrons are only accelerated by an electric
field ~E so that m~̇v = −e ~E applies. This assumption together with ~j = nee~ve and
the Maxwell equations leads to

∂

∂t

(
~∇×~j + nee

2

mc2
~B

)
= 0. (2)

As we have said in the previous section a superconductivity does not hold a magnetic
field inside so the expression in brackets has to be time independent and zero which
leads to the London equation

~∇×~j = −nee
2

mc2
~B. (3)
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Additionally the two equations

∇2 ~B = 4πnee2

mc2
~B (4)

∇2~j = 4πnee2

mc2
~j (5)

can be found. These equations are solved by exponential functions with range Λ =√
mc2

4πnee2 . So a magnetic field can penetrate a superconductor to a certain range and
will also create a shielding current orthogonal to the magnetic field.

1.3 BCS-Theory

In a conductor usually free electrons cause conductivity. In a superconductor con-
ductivity is caused by cooper pairs. Cooper pairs are electron pairs that are formed
because of interactions between electrons and the crystal lattice. When an elec-
tron moves through a material positive charges of the lattice, so the protons, are
attracted. Attraction of protons causes the deformation of the lattice which makes
another electron move into the area of higher positive charge density. The second
electron hat opposite spin and the two electrons correlate. In a superconductor
many electron pairs will form and create a condensed state. In this condensed state
one cannot break a single pair, but to break one pair all connections have to be
killed. So the energy barrier to break a connection has increased and all the coupled
electrons move as a whole which is essential for superconductivity.
Mostly same but said in other words electrons are fermions and for a tempearture
close to 0 K most of the electrons are in the same state and it is likier to find
another electron to pair with as it would be at higher temperatures. The bond of
two electrons makes them one boson system and because of the bose-statistics cooper
pairs can go to a lower energetically state. Furthermore for the created cooper pairs
there is only one wave function and the conductor becomes superconductive.

1.4 Flux Quantization

The SQUID is a circular superconductivity so we know∮
~j d~l = 0. (6)

As the phase is an unambigous parameter it is only allowed to change in multiples
of 2π. Moreover we know Stokes theorem so∮

~A d~l = ΦB and
∮
~∇Θ d~l = 2πn (7)

can be written down. Using these equations and Londons equation (eq. (3)) we find
a relation for the magnetic flux through the ring which is quantized in multiples of
h̄/2e:

|ΦB| = n
h̄

2e = nΦ0

with Φ0 = (2.067 833 667± 0.000 000 052) · 10−15 Wb.
(8)
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Figure 1: Josephson contact (black hatched) between two equal superconductors

1.5 Josephson Effect

The Josephson effect describes the tunneling of cooper pairs through a thin isolating
layer between two superconductors fig. 1.
Comparably to the tunneling of electrons through potential barriers copper pairs
can tunnel through isolating layers. Even if the layer is not superconductive the
pair does not loose energy. As the layer is not superconductive it can be interfused
by a magnetic field which changes the phase shift. This concludes in the Josephson
direct current

I = I0
sin(πΦ/Φ0)
πΦ/Φ0

. (9)

1.6 The SQUID

The SQUID is used to measure small changes of magnetic fields. It does so by
using superconductivity and flux quantisation. There are different implementations
of SQUIDs an easy one is used here, the RF-SQUID.
A RF-SQUID fig. 2 consists of a superconductive ring which can be put into liquid
nitrogen. At one point the ring has a weak link that functions as a Josephson
contact. The second component of the RF-SQUID is a oscillating circuit which can
generate a magnetic field. Also with help of the oscillating circuit the voltage can
be measured.

Figure 2: Setup of a RF-SQUID consisting of a superconductive ring and an oscil-
lating circuit, [Source 1]
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1.7 Lock-In Method

The SQUID that is used in the FP is amplified by a Lock-In-Amplifier. It detects
weak signals even if there is a strong background. The signal that is measured is
combined with a reference signal and integrated. The orthogonality of sine and
cosine is used to filter all parts of the signal that do not match the reference signal
and eliminate the background.

1.8 Calculating the Magnetic Field of a Conductor Loop

As the measured magnetic field of the conductor loop can be compared to a theor-
etical value it is calculated. To do so the formula

Bz = µ0p

2πz3 with p = AI = A
U

I
where p : dipole moment,

z : z distance between probe and SQUID

(10)

can be used.
With the SQUID there is another possibility to calculate the magnetic field. With
use of the feedback-resistor si[V/Φ0] a voltage ∆V can be converted to a magnetic
flux. To calculate the magnetic field one would need the area that is penetrated
by the flux. As in the superconductive state just a part of the area actually is
penetrated an effective area should be used. Instead of this we use the field-flux-
coefficient 9.3 nT/Φ0 that is given in the manual. With the coefficient the magnetic
field can be calculated with

Bz = F
∆V
si

. (11)
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2 Task Definition

1. Calibrate the SQUID with help of the control-panel and find the best values
to optimize and maximize the SQUID-pattern.

2. Determine the dipole moment and the field intensity of the conductor loop for
the five different resistances and compare it the calculated values.

3. Determine the dipole moment and the field intensity of various other probes.

4. Make a polar plot of the intensity of the magnetic field depending on the angle.

3 Setup and Implementation

3.1 Setup

The SQUID that is used in the FP is a RF-SQUID.

Figure 3: Photo of the setup, 1)SQUID-RING, 2)electric parts of the SQUID, 3)ves-
sel with liquid nitrogen, 4)sleigh and engine with mounting, 5)switch for the engine,
[Source 1]

The main part (fig. 1) that can be submerged into liquid nitrogen where it reaches
the critical temperature. The superconductive ring is intermitted by a thin weak
link at one point. The weak link works as the Josephson contact. The second part
of the experiment is the oscillating circuit that can generate a magnetic field and is
used to measure voltage. These two components form the measuring device.
For measuring the magnetic field it is indispensable that the probe is turning directly
under the SQUID. To do so there is an engine that can be set to different angular
velocities. A mounting for the probe can be attached to the engine and the whole
part is located on a sleigh so the probe can be moved under the SQUID.
To analyse the measurements the experiment is connected with an oscilloscope that
can be read out with a computer. On the computer the are two different programs
tu use while calibrating and measuring.
In order to achieve a large variety of measurements different samples are available
and can be put into the mounting. Besides a mounting with a conductor loop with
different resistances exists.
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3.2 Implementation

As the experiment has already been built up by people that tried to make it work the
implementation started right away with the measurements. First of all the distance
between probe and the SQUID was measured. After that the SQUID was inserted
in the vessel and cooled down.

3.3 Implementations in the Test-Mode

To calibrate the experiment the test-mode is used. The probe is taken out of the
vessel and in the computer program JSQ Duo Sensor Control is set into test-mode.
The test-mode couples a triangle voltage in the oscillating circuit to realise a con-
trollable change in the magnetic flux. On the oscilloscope the triangle signal and the
SQUID signal were displayed and the SQUID signal was triggered on the triangle
signal.
To calibrate the SQUID the parameters VCA (amplitude of current) was set to about
1000 and the second parameter VCO (frequency of current) was changed until the
maximum amplitude could be observed. Now both parameters were slowly variated
until the pattern looked like the characteristic SQUID-pattern that was given in
the manual. The third parameter was used to set the offset around zero. These
three parameters as well as the chosen values for the integration capacity and the
resistance were noted. With the second program the data was exported as a .csv-file
and saved.
In the following measurements the chosen parameters were not changed.

3.4 Implementations in the Measure-Mode

In the JSQ Duo Sensor Control the measure-mode was selected. In this mode the
parameters from the test-mode are saved and the triangle voltage is switched off.
To measure a probe it is attached to the mounting, moved into the vessel and
turned with help of the engine. Done so a sine-like signal should be observed on the
oscilloscope.
The first day of the experiment this was not possible. As we have not built up the
experiment we can not say if there was a problem with loose contacts or a strong
external magnetic field. The experiment has been moved to another room that was
expected to have less external magnetic fields but this did not help.
The second day the implementations in the test-mode were repeated and the para-
meters noted and saved. The control was changed to measure-mode and a fist probe
was inserted. Nothing was done differently to the day before nevertheless we were
able to get analysable signals so a complete series of measurements was done.
First of all a small iron stick was put into the mounting and measured on angular
velocity 10. As it did not give a good sine the iron stick was not measured with
other velocities.
Secondly the conductor loop was measured with five different resistances and as
long as it made sense (as long as we got a good looking signal) with three different
angular velocities (10, 6, and 2). The stronger the resistance got the worse the sine
was visible, so for the stronger resistances only the fastest velocity was chosen.
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The third probe was a small piece of magnetic material, a magnetic flake that was
measured at velocities 10 and 5.
An iron flake was the last probe to be measured and it was only done at velocity 10.
For all of the measurements mentioned above the voltage-range of the oscilloscope
was noted and the data was saved as a .csv-file.
Furthermore the angular velocity of the modes 10, 5 and 2 was measured with a
phone but only to compare if the measured one is on the right scale.
With these measurements done the experiment was finished, the experimental setup
was cleaned, sorted and the SQUID was taken out of the vessel and blow-dried.
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4 Analysis

4.1 Theoretical Calculation of the Magnetic Field

To test the Quality of the measurement later on some theoretical calculation was
made. For the calculation of the magnetic field of the conductor loop the following
equation was used:

B(z) = µ0
2
Ur2

Rz3

In this equation z represents the distance between sample and the SQUID-Sensor
and U the voltage applied on the resistor with resistance R and r the radius of the
conductor loop. The error of the magnetic field is calculated with gaussian error
propagation.

sB = µ0
2

√(
r2

Rz3 sU

)2
+
(2Ur
Rz3 sr

)2
+
(
Ur2

R2z3 sR

)2
+
(3Ur2

Rz4 sz

)2

The measured radius is r = (1.8± 0.3) mm with estimated error. The measurement
of the voltage was repeated after several times because we noticed that the voltage
seemed to be quite unstable. For the calculation of the magnetic field we calculated
the mean value for the voltage and the unbiased standard deviation because it
was higher then the given error for the used voltmeter. We measured the voltages
Ui = 2.66, 2.73, 2.69, 2.81 and 2.81 V. Therefore the used value for the voltage is
U = (2.74± 0.07) V. So the expected values of the magnetic field for the given
resistors are shown in table 1.

Resistor Resistance [Ω] Magnetic Field [nT]
R1 51.47± 0.05 1.3± 0.5
R2 100.8± 0.1 0.7± 0.3
R3 300.8± 0.3 0.22± 0.08
R4 501.6± 0.5 0.13± 0.05
R5 1000± 1 0.07± 0.02

Table 1: In this table the theoretical magnetic fields for the different resistors are
listed. The calculation of the errors was done as described earlier.

It should be mentioned that the relative errors of the so calculated magnetic fields
are quite high. But the measurement of the distance z was not as accurate as it
probably should have been. And as the magnetic field is dependent to the inversed
cubic of z the error of that measurement has a strong impact on the overall error.
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4.2 Theoretical Calculation of the Magnetic Dipole Moment

The dipole moment of a conductor loop is given by

pmag. = A · U
R
,

where A represents the area which is limited by the conductor loop. The used
voltage and resistances where the same as in the previous section. Using gaussian
error propagation the error was calculated with the following formula:

spmag. =

√(
U

R
sA

)2
+
(
A

R
sU

)2
+
(
AU

R2 sR

)2
. (12)

A is calculated with A = πr2 so the error of the area is given as sA = 2πrsr. The
calculated errors are displayed in table 2.

Resistor Resistance [Ω] Magnetic Dipole Moment [µA m2]
R1 51.47± 0.05 0.5± 0.2
R2 100.8± 0.1 0.26± 0.09
R3 300.8± 0.3 0.09± 0.03
R4 501.6± 0.5 0.05± 0.02
R5 1000± 1 0.026± 0.009

Table 2: In this table the theoretical magnetic dipole moments are displayed. The
calculation of the values and their errors was done as mentioned before.

4.3 Analysis of the Measured Data

To analyse the measured data a sine fit of the following form was made:

f(x) = a+ b · sin(cx+ d),

where a represents the offset of the measurement, b the amplitude, ∆U c the rotation
speed of the probe and d the phase of the sine wave when the measurement was
started. For the calculation of the magnetic field we use the fit parameter b so the
amplitude of the sine wave. So we get the magnetic field in z direction which we
calculated before on a theoretical basis. The data and the sine fit are displayed in
the appendix. The formula for the calculation is

Bz = F · b
si
.

F = 9.3 nT/Φ0 is the field flux coefficient and si = 1.9 V/Φ0 which is a parameter
caused by the experimental settings. Thus the error is calculated by

sBz = F · sb
si
.

For the conductor loop we repeated the measurement for different resistances and dif-
ferent rotation speeds the final results of this measurements are displayed in table 3.
For a later discussion we also calculated the magnetic dipole moments. The calcu-
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Resistor Rotation Setting Magnetic Field [nT] Magnetic Dipole Moment [µA m2]
R1 ω10 1.263± 0.009 0.50± 0.07
R1 ω5 1.217± 0.009 0.48± 0.07
R1 ω5 1.21± 0.01 0.48± 0.07
R1 ω2 1.21± 0.01 0.48± 0.07
R2 ω10 0.662± 0.006 0.26± 0.04
R2 ω5 0.610± 0.007 0.24± 0.03
R2 ω2 0.612± 0.006 0.24± 0.03
R3 ω10 0.221± 0.004 0.09± 0.01
R3 ω5 0.186± 0.004 0.07± 0.01
R3 ω2 - -
R4 ω10 0.100± 0.004 0.040± 0.006
R5 ω10 - -

Table 3: In this table the measured values of the magnetic field and the magnetic
dipole moment for a conductor loop with different settings are displayed. The cal-
culation of the listed values where executed as described before. The measurements
of the empty spots gave data where no sinus fit was possible the data is shown in
the appendix.

lation was done as shown in the following equations:

pmag. = 2π · z
3Bz
µ0

smag. = 2π
µ0

√
(z3 · sBz )2 + (3Bzz2 · sz)2.

The so calculated values for the magnetic dipole moment are displayed in table 3.
For comparing purposes the mean of the measured values for both the magnetic field
and the magnetic dipole moment where calculated and are shown in table 4. There

Resistor Magnetic Field [nT] Magnetic Dipole Moment [µA m2]
R1 1.225± 0.005 0.49± 0.04
R2 0.628± 0.004 0.25± 0.02
R3 0.204± 0.003 0.08± 0.01
R4 0.100± 0.004 0.040± 0.006
R5 - -

Table 4: This table displays the mean values of the magnetic field and the dipole
moment for each resistor. Since for R5 no sine fit was possible there were no values
calculated.

where also different given samples to measure. The calculation for their magnetic
field and their magnetic dipole moment where the same as for the conductor loop.
The results to these measurements are displayed in table 5
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Sample Magnetic Field [nT] Magnetic Dipole Moment [µA2 m]
Iron Stick 52.27± 0.05 21± 3
Iron Flake 0.032± 0.006 0.013± 0.003

Magnet Flake (ω10) 47.5± 0.2 19± 3
Magnet Flake (ω5) 47.8± 0.2 19± 3

Table 5: In this table the magnetic fields and the dipole moments for different
samples are listed.

4.4 Polar Plot of the Magnetic Field

For the polar plot the angle and the absolute value of the magnetic field was cal-
culated. The function pyplot.polar from the matplotlib package was used. The
angle was calculated with the fit parameters c and d in the following way

α = c · t+ d,

where t is the time when the voltage was measured. The polar plots are shown in
the appendix.
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5 Discussion

To discuss the quality of the measurement the theoretical values can be compared
to the measured values of the magnetic field and the magnetic dipole moments of
the conductor loop. For comparison these results are displayed in table 6. Looking

Resistor Btheo. [nT] pmag.,theo. [µA m2] Bmeas. [nT] pmag.,meas. [µA m2]
R1 1.3± 0.5 0.5± 0.2 1.225± 0.005 0.49± 0.04
R2 0.7± 0.3 0.26± 0.09 0.628± 0.004 0.25± 0.02
R3 0.22± 0.08 0.09± 0.03 0.204± 0.003 0.08± 0.01
R4 0.13± 0.05 0.05± 0.02 0.100± 0.004 0.040± 0.006
R5 0.07± 0.02 0.026± 0.009 - -

Table 6: In this table all results for the conductor loop are displayed for comparison

at the table one can see that the theoretical values for the magnetic field have a
much bigger uncertainty than the measured ones. The reason for this lies as we
already said in the analysis in the big error on the measured distance z. With the
given setup and the measuring methods it was not possible to measure the distance
properly and we tried to make it more accurate by measuring three distances and
adding them up. As we determined the error with gaussian error propagation it got
even bigger because of this, even if the measured value probably got better. For the
measured values the distance z was irrelevant so the error got a lot smaller here.
Nevertheless we can say that all measured values are surprisingly close to the calcu-
lated ones if you remember that the experiment did not work at all the days before.
This also makes it hard to decide whether a magnetic field in the background was
the reason for the experiment not working or a loose contact.
Furthermore we can see that the magnetic field decreases with stronger resistance.
This has been expected as a higher resistance means a lower current and in con-
sequence a lower magnetic field.
For the measurement with the other samples we got the values displayed in table 7.

Sample Magnetic Field [nT] Magnetic Dipole Moment [µA2 m]
Iron Stick 52.27± 0.05 21± 3
Iron Flake 0.032± 0.006 0.013± 0.003

Magnet Flake (ω10) 47.5± 0.2 19± 3
Magnet Flake (ω5) 47.8± 0.2 19± 3

Table 7: In this table the magnetic fields and the dipole moments for different
samples are listed.

These values are on a reasonable scale even though the signal we measured with the
SQUID seemed quite suspicious. The smalles measured field was for the iron flake
with Biron flake = (0.032± 0.006) nT the strongest field was measured with the iron
stick Biron stick = (52.27± 0.05) nT. Though one has to look on the plots and decide
if the signal for the iron stick still can be interpreted as a sine.
The polar plots shown in the appendix looked just like we expected. For a perfect
dipole the polar plot should show two circles with their crossing point on the origin.
The plots we got show this pattern for the measurements were we acually measured
a sine signal. For the remaining plots one can only say that the polar plots show
the expecting, a measurement that does not give results.
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6 Appendix

Figure 4: Sine Fits and polar plots

(1) Sine fit for current loop 1 (2) Polar plot for current loop 1

(3) Sine fit for current loop 2 (4) Polar plot for current loop 2

(5) Sine fit for current loop 3 (6) Polar plot for current loop 3

(7) Sine fit for current loop 4 (8) Polar plot for current loop 4
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(9) Sine fit for current loop 5 (10) Polar plot for current loop 5

(11) Sine fit for current loop 6 (12) Polar plot for current loop 6

(13) Sine fit for current loop 7 (14) Polar plot for current loop 7

(15) Sine fit for current loop 8 (16) Polar plot for current loop 8
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(17) Sine fit for current loop 9 (18) Polar plot for current loop 9

(19) Sine fit for current loop 10 (20) Polar plot for current loop 10

(21) Sine fit for current loop 11 (22) Polar plot for current loop 11

(23) Sine fit for current loop 12 (24) Polar plot for current loop 12
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(25) Sine fit for iron Flake (26) Polar plot for iron Flake

(27) Sine fit for magnet flake 1 (28) Polar plot for magnet flake 1

(29) Sine fit for magnet flake 2 (30) Polar plot for magnet flake 2

(31) Sine fit for iron stick (32) Polar plot for iron stick



LIST OF FIGURES 17

List of Figures

1 Josephson contact (black hatched) between two equal superconductors 3
2 Setup of a RF-SQUID consisting of a superconductive ring and an

oscillating circuit, [Source 1] . . . . . . . . . . . . . . . . . . . . . . . 3
3 Photo of the setup, 1)SQUID-RING, 2)electric parts of the SQUID,

3)vessel with liquid nitrogen, 4)sleigh and engine with mounting,
5)switch for the engine, [Source 1] . . . . . . . . . . . . . . . . . . . 5

4 Sine Fits and polar plots . . . . . . . . . . . . . . . . . . . . . . . . . 13
(1) Sine fit for current loop 1 . . . . . . . . . . . . . . . . . . . . . 13
(2) Polar plot for current loop 1 . . . . . . . . . . . . . . . . . . . 13
(3) Sine fit for current loop 2 . . . . . . . . . . . . . . . . . . . . . 13
(4) Polar plot for current loop 2 . . . . . . . . . . . . . . . . . . . 13
(5) Sine fit for current loop 3 . . . . . . . . . . . . . . . . . . . . . 13
(6) Polar plot for current loop 3 . . . . . . . . . . . . . . . . . . . 13
(7) Sine fit for current loop 4 . . . . . . . . . . . . . . . . . . . . . 13
(8) Polar plot for current loop 4 . . . . . . . . . . . . . . . . . . . 13
(9) Sine fit for current loop 5 . . . . . . . . . . . . . . . . . . . . . 14
(10) Polar plot for current loop 5 . . . . . . . . . . . . . . . . . . . 14
(11) Sine fit for current loop 6 . . . . . . . . . . . . . . . . . . . . . 14
(12) Polar plot for current loop 6 . . . . . . . . . . . . . . . . . . . 14
(13) Sine fit for current loop 7 . . . . . . . . . . . . . . . . . . . . . 14
(14) Polar plot for current loop 7 . . . . . . . . . . . . . . . . . . . 14
(15) Sine fit for current loop 8 . . . . . . . . . . . . . . . . . . . . . 14
(16) Polar plot for current loop 8 . . . . . . . . . . . . . . . . . . . 14
(17) Sine fit for current loop 9 . . . . . . . . . . . . . . . . . . . . . 15
(18) Polar plot for current loop 9 . . . . . . . . . . . . . . . . . . . 15
(19) Sine fit for current loop 10 . . . . . . . . . . . . . . . . . . . . 15
(20) Polar plot for current loop 10 . . . . . . . . . . . . . . . . . . . 15
(21) Sine fit for current loop 11 . . . . . . . . . . . . . . . . . . . . 15
(22) Polar plot for current loop 11 . . . . . . . . . . . . . . . . . . . 15
(23) Sine fit for current loop 12 . . . . . . . . . . . . . . . . . . . . 15
(24) Polar plot for current loop 12 . . . . . . . . . . . . . . . . . . . 15
(25) Sine fit for iron Flake . . . . . . . . . . . . . . . . . . . . . . . 16
(26) Polar plot for iron Flake . . . . . . . . . . . . . . . . . . . . . . 16
(27) Sine fit for magnet flake 1 . . . . . . . . . . . . . . . . . . . . . 16
(28) Polar plot for magnet flake 1 . . . . . . . . . . . . . . . . . . . 16
(29) Sine fit for magnet flake 2 . . . . . . . . . . . . . . . . . . . . . 16
(30) Polar plot for magnet flake 2 . . . . . . . . . . . . . . . . . . . 16
(31) Sine fit for iron stick . . . . . . . . . . . . . . . . . . . . . . . . 16
(32) Polar plot for iron stick . . . . . . . . . . . . . . . . . . . . . . 16



LIST OF TABLES 18

List of Tables

1 In this table the theoretical magnetic fields for the different resistors
are listed. The calculation of the errors was done as described earlier. 8

2 In this table the theoretical magnetic dipole moments are displayed.
The calculation of the values and their errors was done as mentioned
before. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 In this table the measured values of the magnetic field and the mag-
netic dipole moment for a conductor loop with different settings are
displayed. The calculation of the listed values where executed as de-
scribed before. The measurements of the empty spots gave data where
no sinus fit was possible the data is shown in the appendix. . . . . . 10

4 This table displays the mean values of the magnetic field and the
dipole moment for each resistor. Since for R5 no sine fit was possible
there were no values calculated. . . . . . . . . . . . . . . . . . . . . . 10

5 In this table the magnetic fields and the dipole moments for different
samples are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 In this table all results for the conductor loop are displayed for com-
parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 In this table the magnetic fields and the dipole moments for different
samples are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References

[Source 1] ”Versuchsanleitung Fortgeschrittenenpraktikum Teil 1, Super Conductive
Interference Device, M. Köhli Stand 09/2019.”



analyse.py Thu Sep 05 11:20:54 2019 1

import numpy as np

from matplotlib import pyplot as plt

from scipy.optimize import curve_fit

from module import *

# SET Variables ================================================================

name = "spule11" 

F = 9.3e-9 # [T/Phi_0]

mu_0 = 1.25664e-6 # N/A^2

k = 1.9 # [V/Phi_0]          <---  depends on feedback resistor

R = 510.6# Ohm              <---  with conductor loop used resistor

s_R = 0.5

r = 0.00175 # m              <---  radius of conductor loop

s_r = 0.0003

a = np.pi*r**2 # m^2

s_a = np.pi*2*r*s_r

z = 0.043 # m                <---  distance SQUID/sample

s_z = 0.002 

ul = [2.66,2.73,2.69,2.81,2.83]

U = mean(ul) # V                  <---  voltage applied on resistor

s_U = sigma(ul)

print(U)

print(s_U)

# READ File ====================================================================

with open(name+".csv","r") as f:

    doc = f.read()

lines = doc.split("\n")

del lines[0]

del lines[-1]

xx = list() # [s]

yy = list() # [V]

for i in range(0,len(lines)):

    entrys = lines[i].split(",")

    xx.append(float(entrys[0]))

    yy.append(float(entrys[2]))

# SET Plotrange ================================================================

left = min(xx)

right = max(xx)

span = abs(left-right)

space = 0.05*span

# EXECUTE Programm =============================================================

popt, pcov = sin_fit(xx,yy,None,left,right,space,name)

A = popt[0]

B = popt[1]

C = popt[2]

D = popt[3]

s_A = np.sqrt(pcov[0][0])

s_B = np.sqrt(pcov[1][1])

s_C = np.sqrt(pcov[2][2])

s_D = np.sqrt(pcov[3][3])

# print("A:",A," +- ",s_A)

# print("B:",B," +- ",s_B)

# print("C:",C," +- ",s_C)

# print("D:",D," +- ",s_D)

string = name+"_ANALYSE \nFitparameter zu f(t) = A + B*sin(C*t + D) \n"+\

"A: "+str(A)+" +- "+str(s_A)+"\nB: "+str(B)+" +- "+str(s_B)+\
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"\nC: "+str(C)+" +- "+str(s_C)+"\nD: "+str(D)+" +- "+str(s_D)

aa = list(map(lambda x: C*x +D, xx))

BB = list()

for i in range(0,len(yy)):

    BB.append(abs(F*(yy[i] - A)/k))

# B-Feld/p-Moment ==============================================================

Bmag = F*B/k                            # MEASURED

Bmag2 = mu_0*0.5*U*(r**2)/(R*(z**3))    # THEORETICAL

pmag = 2*np.pi*Bmag*(z**3)/mu_0         # MEASURED

pmag2 = a*U/R                           # THEORETICAL

s_Bmag = F*s_B/k

s_Bmag2 = mu_0*0.5*np.sqrt(((r**2)/(R*(z**3))*s_U)**2 +

        (2*U*r/(R*(z**3))*s_r)**2 +

        (U*(r**2)*s_R/((R**2)*(z**3)))**2 + (3*U*(r**2)*s_z/(R*(z**4)))**2)

s_pmag = (2*np.pi/mu_0)*np.sqrt((s_Bmag*z**3)**2 + (s_z*Bmag*3*z**2)**2)

s_pmag2 = np.sqrt((U*s_a/R)**2 + (a*s_U/R)**2 + (a*U/(R**2))**2)

string2 = "B_Feld:\nTheoretisch: "+str(Bmag2)+" +- "+str(s_Bmag2)+\

        "\nGemessen: "+str(Bmag)+" +- "+str(s_Bmag)+\

        "\np_mag:\nTheoretisch: "+str(pmag2)+" +- "+str(s_pmag2)+\

        "\nGemessen: "+str(pmag)+" +- "+str(s_pmag)

# SAVE Files ===================================================================

with open(name+"_ANA.txt","w") as f:

    f.write(80*"="+"\n"+string+"\n"+80*"="+"\n"+string2+"\n"+80*"=")

plt.polar(aa,BB,’-r’)

plt.savefig(name+"_POLAR.png",dpi = 500)

# plt.show()
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import numpy as np

from matplotlib import pyplot as plt

from scipy.optimize import curve_fit

#DEF Functions =================================================================

def sinus(x,a,b,c,d):

    return a + b*np.sin(c*x + d)

def mean(x):

    return sum(x)/len(x)

def sigma(x):

    summe = 0

    for k in x:

        summe += (k - mean(x))**2

    return np.sqrt((1/(len(x)-1))*summe)

def sin_fit(x_data,y_data,s_data,left,right,space,name):

    plt.scatter(x_data,y_data,marker = ’x’,color = "red")

    dists = list()

    dummylist = [(x, y) for x, y in sorted(list(zip(x_data,

        list(map(lambda y: abs(y - mean(y_data)),

        y_data)))), key=lambda t: t[1])[:int(len(x_data) / 15)]]

    mdist = 0

    p1 = (0, 0)

    p2 = (0, 0)

    dummylist2 = sorted(dummylist, key=lambda t: t[0])

    for i in range(len(dummylist2) - 1):

        dist = dummylist2[i + 1][0] - dummylist2[i][0]

        dists.append(dist)

        if dist > mdist:

            mdist = dist

            p1 = dummylist2[i]

            p2 = dummylist2[i + 1]

    

    guess_freq = np.pi / mdist

    popt, pcov = curve_fit(sinus, x_data, y_data,p0 = [mean(y_data),

        (3/np.sqrt(2))*sigma(y_data),guess_freq,0])

    xx = np.linspace(left-space,right+space,400)

    plt.plot(xx,sinus(xx, *popt),color = "black", label = "Sinus-Fit")

    plt.xlim(left-space,right+space)

    plt.grid()

    plt.legend()

    plt.xlabel("time [s]")

    plt.ylabel("Voltage [V]")

    plt.savefig(name+"_PLOT.png",dpi = 500)

    # plt.show()

    return popt, pcov








