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Table 1 contains an overview of all symbols used in this lab report.

Symbol Meaning

A Area
B Magnetic field strength
c Speed of light
D Lengths
E Energy
E Electric field
e Electric charge
F Field-flux-coefficient
H Magnetic field strength
~ Planck constant
I Current
j Current density
L Lengths
m mass
ne Charge density
p Magnetic dipole moment
R Resistance
r Radius
S Spin
T Temperature
t Time
U Voltage
v Velocity
z Distance between used object and SQUID sensor
µ0 Magnetic field constant
Φ Magnetic flux
φ angle
ω Angular velocity

α, β, γ, δ Fit parameters
sx Uncertainty of the value x

Table 1: Symbols used in this lab report.

1 Introduction
In this experiment the dipole moment of different samples shall be determined using
a SQUID (Superconducting Quantum Interference Device). An RF-Squid is used,
which consists of a superconducting ring with a Josephson junction. With this setup
it is possible to detect very low magnetic field strengths.
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2 Physical basics
The theoretical principles described below are based on the Staatsexamen [1] and
the instructions [2].

2.1 Superconductivity

Superconductors can be characterized by some properties, which are briefly ex-
plained in the following. Below the material-dependent critical temperature Tc,
the electrical resistance of a superconductor drops to a value that is immeasurably
small. Furthermore, superconductors in the superconducting state behave like ideal
diamagnet. This means that almost no magnetic field can penetrate the supercon-
ductor. This behaviour is explained by the Meissner-Ochsenfeld effect. In addition,
superconductors reveal a temperature-dependent energy gap

Eg = Ef ±∆E, (1)

where EF refers to the Fermi energy. This property can be described by the BCS-
Theory, which will be discussed later. Below the critical temperature, electrons
of the superconductor change into a macroscopic quantum state in which cooper
pairs are formed. Superconductivity in superconductors can be interrupted even
at a temperature below the critical temperature: This can be caused by strong
external magnetic fields, large currents or an alternating electromagnetic field withe
a frequency of the order of ∆E

~ .
Superconductors can be divided into two different types. The first type of su-

perconductors have a maximum critical temperature of Tc = 23.2 K. These super-
conductors have a material-dependent critical magnetic field strength Hc at which
the superconductivity is broken. At magnetic field strengths below Hc the magnetic
field can penetrate just a few nanometers into the superconductor. In the second
type of superconductors, also know as high-temperature superconductors, supercon-
ductivity can be achieved at temperatures of up to 200 K. These superconductors
have two critical magnetic field strengths. At Hc2 the magnetic field is only partially
displaced and at Hc1 it vanishes completely.

2.2 London equations

As mentioned before, a magnetic field can only penetrate a few nanometers into
a superconductor. This penetration depth can be determined using the London
equations. For the calculation it must be assumed that mv̇e = −eE applies. If this
condition is met and the definition of the current density j = neeve, of a charge
density ne, is applied to the Maxwell equations, the following term can be obtained:

∂

∂t

(
∇× j + nee

2

mc
B

)
= 0. (2)
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Since within a superconductor B = 0 must apply, the term in the brackets in the
equation shown above must be zero for any time leading to the London equation

∇× j = −nee
2

mc
B. (3)

From which the two London equations

∇2B = 4πnee2

mc2 B (4)

∇2j = 4πnee2

mc2 j (5)

can be derived. These equations are solved by exponentially decaying functions
which provide the penetration depth Λ =

√
mc2

4πnee2 .

2.3 BCS theory

The conductive behaviour of superconductors with a temperature below Tc can
mainly be described by the BCS theory. Unlike metallic conductors, the current
is not carried by individual free electrons, but by bound electron pairs, so-called
cooper pairs. The protons in the atomic lattice have a high inertia compared to the
electrons. Thus, an electron leaves a positive polarization trace attracting another
electron. The coupling of the electron pair is formed by this effect. Since electrons
are fermions, meaning that two electrons must not be in the same state, the electrons
of a cooper pair have opposite spins. This leads to the condition that a cooper pair
can be understood as a quasi-particle with an integer spin of S = 0. Due to the
integer spin, a cooper pair has boson characteristics, so it is subject to Bose-statistics.
Thus, the cooper pairs can assume an energetically lower state and due to the boson
properties, several cooper pairs are allowed to be in the same state. This leads to
a lower total energy of the system, which results in a drop in the resistance of a
superconductor, making it superconducting.

2.4 Flux quantization

In this experiment, a ring-shaped superconductor is used. Therefore the circuit
current can be calculated as a closed path over the current density j and since the
current is constant,

0 =
∮

jdl (6)

applies. According to Stoke’s theorem, the magnetic flux ΦB through the ring can
be calculated with ∮

A · dl = ΦB. (7)
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Since the phase of the wave function of the cooper pairs is a well defined parameter,
the result can only change by a multiple of 2π after one revolution. From that
follows: ∮

∇θdl = ∆θ = 2πn (8)

This results in a quantization of the magnetic flux in fluxon Φ0 of the form:

|ΦB| = n
~
2e = nΦ0, (9)

with

Φ0 = 2.067 833 667× 10−15 Wb. (10)

2.5 Josephson effect

If a superconductor is interrupted by a thin insulating layer, the cooper pairs can
still tunnel through this layer. This phenomenon is called Josephson effect and such
an insulator layer is called Josephson junction. The wave functions of the cooper
pairs to the left and right of the isolator must merge continuously. As a result, the
tunnel current depends only on the phase shift. This means that the cooper pairs
do not lose any energy during tunneling, so that no current drops in the insulator,
even if it is not a superconductor. Since the insulator is not a superconductor, a
magnetic field can penetrate the insulator layer. This causes a phase shift, which
results in the Josephson direct current:

I = I0
sin πΦ/Φ0
πΦ/Φ0

. (11)

2.6 The magnetic field of a conductor loop

The magnetic field in z-direction Bz of a conductor loop can be calculated with

Bz = µ0p

2πz3 , (12)

where µ0 is the magnetic field constant, z the distance in the z-direction of the
conductor loop and p the magnetic dipole moment. The magnetic dipole moment
can be calculated with

p = A
U

R
, (13)

where U is the voltage and R the resistance applied to the loop and A the area
enclosed by the conductor loop. A can be calculated with πr2, where r is the
radius of the conductor loop. The magnetic field can also be calculated from the
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measurements of the SQUID. The measured voltage U of the circuit can be converted
into the magnetic field strength using

Bz = F
∆U
si

. (14)

F is the field-flux-coefficient which is specified as F = 9.3 nT/Φ0 [2, p. 21] for the
used SQUID and si[V/Φ0] is the used value of the feedback-resistor. The magnetic
dipole moment can be calculated with

p = 2π
µ0
Bzz

3 (15)

from the magnetic field strength obtained.
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3 Setup and procedure

3.1 Setup

Figure 1: Schematic representation of the structure used in the experiment. [2, p.19]

A schematic representation of the experimental setup is shown in fig. 1. The
main part of the experiment is the RF-SQUID: The core element is a SQUID sensor
which consists of a superconductor ring interrupted by a Josephson contact. In order
for the temperature of the sensor to be below the critical temperature, it is located
in a cylinder filled with liquid nitrogen. Above the SQUID sensor, there is an LC
circuit which generates an additional magnetic flux. The voltage of the circuit is the
actual measured parameter in this experiment. The controller of the circuit can be
set via a computer and the signal of the circuit can be viewed via an oscilloscope,
which in turn can then be read out by the computer. The samples producing the
magnetic field can be placed below the sensor using a carriage and rotated using a
motor. Different angular velocities can be set on the motor. The samples are once a
conductor loop in which different resistances can be set and a collection of different
objects.

3.2 Procedure

Calibration

First, the length of the bar to which the SQUID sensor is attached was measured
using a ruler. The sensor was then placed in the cylinder after which we waited
15 minutes for the sensor to cool down sufficiently. Then, all devices were switched
on and the program JSQ Duo Sensor Control was started on the computer with
which the circuit could be controlled. The program was set to the test mode, in
which a triangle voltage is coupled into the circuit. At the oscilloscope, the triangle
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voltage as well as the SQUID signal could be observed. In order to calibrate the
oscilloscope correctly, the VCA (amplitude of current) was set to 1000 and the VCO
(frequency of current) parameter was varied until the value was found for which the
voltage of the SQUID signal was at its maximum. Afterwards, the VCA was set so
that the SQUID signal became maximum again. In addition, by varying the offset,
the SQUID signal was shifted to the center of the oscilloscope screen. After the
calibration was completed, the program was switched to the measuring mode. On
the first day, no proper signal long enough to carry out the measurements could be
found. On the second day we first waited until the sensor was cooled down again
and then started the calibration. At first, no signal could be found again. After
taking the SQUID sensor out of the cylinder, blow-drying it and then cooling it
down in the cylinder, a new calibration could be carried out. After the calibration
however, we were able to measure a signal with the set parameters VCA = 1061,
VCO = 1390 and OFF = 1840. The resulting SQUID pattern is shown in fig. 2.

Figure 2: The SQUID pattern obtained during calibration.

Measurement

The first step was to measure with the conductor loop. For each of the five resistors,
the SQUID signal was measured with three different angular velocities ω = 2, 5, 10
where ω refers to the name of the motor setting. During measurements, we noted
that the higher the resistance, the worse the SQUID signal became. The data
of each measurement was saved on the computer as .csv and .bmp files. During
the measurements with the conductor loop, the integration capacitance was set to
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100 nF and the resistance of the circuit was set to 100 K. Afterwards, seven more
samples were measured: The samples were a grey stone, a reddish stone, an iron
span, a magnetic span, a gold sample, a crown cap and an iron rod. For all these
measurements, the angular velocity was set to ω = 5. The integration capacity had
to be changed several times for the different samples and the resistance of the circuit
had to be reduced for the crown cap and the iron rod. The exact settings can be
seen in the laboratory note in the appendix (cf. appendix A). Finally, the radius
r of the conductor loop, the distance from the conductor loop to the top of the
cylinder and the voltage applied to the conductor loop were measured. After this,
the experiment was finished and the SQUID sensor was taken out of the cylinder
again and blow-dried, as wetness can damage the SQUID.
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4 Analysis

4.1 Theoretical calculation of the magnetic field and magnetic dipole
moment

Firstly, the theoretical value for the magnetic field of the conductor loop is calcu-
lated. For that, the distance between the conductor loop and the SQUID sensor
has to be calculated. The distance of the conductor loop to the top of the cylinder
was measured to be L = (29.0± 0.1) cm, a red marking on the cylinder was used
for the position of the conductor loop. For the distance of the SQUID sensor to
the top of the cylinder, the values D̄ = (24.9± 0.4)× 10−2 m were obtained using
seperate measurements taken with a ruler: This distance was measured twice and
the mean of both measurements was calculated. The measured values and estimated
uncertainties can be found in the laboratory notes in the appendix appendix A. The
uncertainty of the mean was calculated with Gaussian error propagation:

sD̄ = 1
2

√
s2
D1 + s2

D2. (16)

This results in a distance between conductor loop and SQUID of z = (4.1± 0.4) cm
where the uncertainty again was calculated with Gaussian error propagation.

As the conductor loop wasn’t formed uniformly, the diameter of the conduc-
tor loop was measured three times and half of the values were taken to obtain
the radius r. Again, the mean was calculated which results in a value of r =
(2.12± 0.06) mm for the radius. At last, the voltage applied to the conductor loop
is required, which has also been measured several times. For the uncertainty of the
voltage measurements, the uncertainty of 0.5 % of the measured value plus one digit
specified by the manufacturer was assumed. The mean was calculated with the re-
sult of Ū = (2.408± 0.010) V. Now the magnetic field of the conductor loop for the
different resistors could be calculated with eq. (12). The values obtained are shown
in table 2. The uncertainties of the magnetic field strengths were calculated with

sB = µ0
2

√(
r2

Rz3 sU

)2
+
(2Ur
Rz3 sr

)2
+
(
Ur2

R2z2 sR

)2
+
(3Ur2

Rz4 sz

)2
. (17)

Additionally, the magnetic dipole moments were calculated with eq. (13). Since A =
πr2, the uncertainty of A can be calculated as sA = 2πrsr. With this the uncertainty
of the dipole moment is calculated to

sp =

√(
U

R
sA

)2
+
(
A

R
sU

)2
+
(
AU

R2 sR

)2
. (18)

The calculated dipole moments are also shown in table 2.
For comparison and later error analysis, the distance between the conductor loop

and the top of the cylinder was determined in an alternative way by measuring the
distance from the sample inlet to the cylinder cover. This leads to the distance z2 =
(4.4± 0.4) cm. The magnetic field strength was also calculated with this distance in
the same way as explained above; the results are shown in table 2.
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Resistor R/Ω B/nT B2/nT p/nA m2

R1 51.47 ± 0.05 4.9 ± 1.8 1.49 ± 0.03 660 ± 40
R2 100.80 ± 0.10 2.5 ± 0.9 0.76 ± 0.02 336 ± 18
R3 300.8 ± 0.3 0.8 ± 0.3 0.256 ± 0.007 113 ± 6
R4 510.6 ± 0.5 0.49 ± 0.18 1.507 ± 0.004 66 ± 4
R5 1000.0 ± 1.0 0.25 ± 0.09 0.769 ± 0.002 33.9 ± 1.9

Table 2: The theoretical values for the magnetic field B and the magnetic dipole
moment p of the conductor loop with various set resistors calculated from the mea-
sured distance between conductor loop and SQUID sensor and the measured radius
of the conductor loop.

4.2 Calculation of the magnetic field with the SQUID data

For each measurement with the conductor loop, a sine fit of the form

Ui = α sin (β · ti + γ) + δ (19)

was applied to the data. In the above equation, α, β, γ and δ are parameters to be
determined by the fit while Ui and ti refer to the data given by the oscilloscope.
The Python module scipy.optimize.curve_fit was used for the fits. Figure 3
shows an exemplary plot of the measured data and the sine fit for the set resistance
R1 and the angular velocity ω = 2. For the remaining measurements, the plots can
be found in the appendix. In order to be able to check the quality of the fits, the
coefficient of determination R2 was calculated for each fit with:

R2 = 1−
∑
i(Ui − [α sin (β · ti + γ) + δ])2∑

i(Ui − Ū)2 , (20)

where Ui is the measured voltage and Ū is the mean of the measured voltages. The
magnetic field strength can be calculated from the fit parameter α using eq. (14).
For the magnetic field strengths of the conductor loop si = 1.9 V/Φ0. The obtained
magnetic field strengths are shown in table 3. The uncertainties of the calculated
strengths results from

sB = F
sα
si
. (21)

With these field strengths, the magnetic dipole moment can be calculated addition-
ally with eq. (15). The uncertainty for these results can be calculated with

sp = 2π
µ0

√
(3Bzz2sz)2 + (z3sB)2. (22)

The obtained results are also shown in table 3. The magnetic dipole moments were
calculated with both distances z and z2. For each resistor the mean of the field
strength and the dipole moment for the different angular velocities was calculated,



4 Analysis 14

0 10 20 30 40 50 60 70 80 90 100

−0.4

−0.3

−0.2

−0.1

0

0.1

t/s

U
/V

R2 = 0.96

α = −0.2070(9)

β = 0.174 30(17)

γ = 3.425(10)

δ = −0.1873(7)

Figure 3: The measured data and the applied sinus fit for the measurement with R1
and ω = 2.

which can be seen in table 4. For the measurements of the other objects, a sine fit
was carried out with the same method as for the conductor loop. From this, the
magnetic field strengths and the magnetic dipole moments were calculated in the
same way as described above. For the iron stick and the crown cap the resistance
of the circuit had to be reduced. Therefore, for the calculation for the iron stick
si = 0.38 V/Φ0 and for the crown cap si = 0.06 V/Φ0 was used. The plots showing
the data and the fits can be found in the appendix while the calculated magnetic
field strengths and magnetic dipole moments are shown in table 5.

4.3 Polar plots of the measured magnetic fields

To be able to draw the polar plots, the time measured by the oscilloscope had to be
converted to an angle α using

φ = β · t+ γ (23)

where β and γ refer to the parameters of the respective fit (cf. eq. (19)). Also, the
measured magnetic field had to be converted to the absolute value of the magnetic
field strength with the equation

|B| = |U − δ| · F
si
. (24)

With that, the polar plots could be drawn. The polar plot for the measurement
with resistance R2 and the angular velocity ω = 2 is shown in fig. 4. The remaining
plots can be found in the appendix.
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Resistor Rotation B/nT p/nA m2 p2/nA m2

R1 2 1.013 ± 0.005 140 ± 50 430 ± 120
R1 5 1.006 ± 0.005 140 ± 50 430 ± 120
R1 10 0.992 ± 0.004 130 ± 50 420 ± 120
R2 2 0.478 ± 0.004 60 ± 30 200 ± 60
R2 5 0.526 ± 0.005 70 ± 30 220 ± 60
R2 10 0.547 ± 0.004 70 ± 30 230 ± 60
R3 2 0.237 ± 0.004 32 ± 13 100 ± 30
R3 5 0.168 ± 0.004 23 ± 9 70 ± 20
R3 10 0.248 ± 0.003 34 ± 13 100 ± 30
R4 2 0.102 ± 0.003 14 ± 6 43 ± 12
R4 5 0.153 ± 0.002 21 ± 8 65 ± 18
R4 10 0.103 ± 0.004 14 ± 6 44 ± 12
R5 2 0.107 ± 0.002 15 ± 6 48 ± 13
R5 5 0.087 ± 0.004 12 ± 5 37 ± 10
R5 10 0.093 ± 0.003 13 ± 5 40 ± 11

Table 3: The measured values for the magnetic field B and the magnetic dipole
moment p of the conductor loop with various set resistors and angular velocity.

Resistor B/nT p/nA m2 p2/nA m2

R1 1.004 ± 0.003 140 ± 30 430 ± 70
R2 0.517 ± 0.003 70 ± 16 220 ± 30
R3 0.218 ± 0.002 29 ± 7 90 ± 15
R4 0.1193 ± 0.0019 16 ± 3 50 ± 8
R5 0.0958 ± 0.0018 13 ± 3 40 ± 6

Table 4: The average values for B and p for the respective resistor.

Samples B/T p/A m2 p2/A m2

Iron span 3.3 ± 0.3 × 10−11 4.4 ± 1.8 × 10−9 1.4 ± 0.4 × 10−9

Gold 5.4 ± 0.6 × 10−11 7 ± 3 × 10−9 2.3 ± 0.7 × 10−9

Gray stone 1.67 ± 0.06 × 10−10 2.3 ± 0.9 × 10−8 7.1 ± 2.0 × 10−8

Iron stick 6.37 ± 0.07 × 10−8 9 ± 3 × 10−6 2.7 ± 0.7 × 10−5

Crown cap 9.36 ± 0.05 × 10−7 1.3 ± 0.5 × 10−4 4.0 ± 1.1 × 10−4

Magnetic span 1.989 ± 0.006 × 10−8 2.7 ± 1.1 × 10−6 8 ± 2 × 10−6

Red stone 5.94 ± 0.08 × 10−10 8 ± 3 × 10−8 2.5 ± 0.7

Table 5: The measured values for B and p for the different samples.
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Figure 4: Polar plot of the measurement with R1 and ω = 2
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5 Discussion
The measurement with the conductor loop shows that the magnetic field strength
and magnetic dipole moment decrease for larger resistances, as expected. We also
noted that the quality of the signal decreases greatly with higher resistances: As
the plots show, the signal for higher resistances does not clearly correspond to the
expected sine shape, which is also shown by the smaller R2 values for higher re-
sistances. Also, the polar plots do not show the expected eight-like shape at high
resistances. The same effect can also be seen from the measurements of the other
objects: The stronger their magnetic fields become, the clearer the sine shape of the
signals and the clearer the eight like shape of the polar plot get. The measurements
with the magnetic span, the crown cork and the iron rod which have by far the
strongest magnetic fields have a very clear sine signal.

For comparison, the theoretical magnetic field strengths and those measured are
show in table 6. The values for the magnetic dipole moment are shown in table 7.

Resistor Btheo/nT B2,theo/nT Bmes/nT

R1 4.9 ± 1.8 1.495 ± 0.003 1.004 ± 0.003
R2 2.5 ± 0.9 0.763 ± 0.002 0.517 ± 0.003
R3 0.8 ± 0.3 0.2573 ± 0.0007 0.218 ± 0.002
R4 0.49 ± 0.18 0.1507 ± 0.0004 0.1193 ± 0.0019
R5 0.25 ± 0.09 0.0769 ± 0.0002 0.0958 ± 0.0018

Table 6: Comparison of the obtained magnetic field strengths.

Resistor ptheo/nA m2 pmes/nA m2 p2,mes/nA m2

R1 660 ± 40 140 ± 30 430 ± 70
R2 336 ± 18 70 ± 16 220 ± 30
R3 113 ± 6 29 ± 7 90 ± 15
R4 66 ± 4 16 ± 3 50 ± 8
R5 33.9 ± 1.9 13 ± 3 40 ± 6

Table 7: Comparison of the obtained magnetic dipole moments.

The theoretical values calculated with the smaller z for the magnetic field strength
and the measured values deviate from each other by 2 to 3 standard deviations.
However, this is due to the large error of the theoretical values, which all have a
relative error of over 30 %. The theoretical values calculated with z2 and measured
values deviate from 10 to over 100 standard deviations. But the relative errors on
these values are also very small and are all below 0.3 %.

For the magnetic dipole moments, the theoretical values and the measured values
calculated with the smaller z differ between 6 and 14 standard deviations. The
measured values, calculated with z2, deviate from the theoretical values with 2
to 3 standard deviations. Altogether, it can be said that the number of standard
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deviations with which the theoretical and measured values diverge does not plausibly
verify one or the other distance z due to the strong varying relative errors. However,
if we look at the absolute values we see that the values fit together much better when
usingz2. This could either be a coincidence and that a wrongly determined distance
compensates other errors. On the other hand it could also indicate that the position
marked on the cylinder does not correspond to the actual position of the conductor
loop in the cylinder. In any case, it shows how strongly the distance influences the
results, what is to be expected since it is cubically included in the equations (cf.
eq. (12)). Thus, the determination of the distance can probably also be regarded as
the largest error influence for the measurement. This is reinforced by the fact that
the distance cannot be measured directly, but other lengths have to be measured
outside of the cylinder and from these the distance between conductor loop and
SQUID sensor can be calculated.

Other sources of error can be due to an external magnetic field, which interferes
with the signal or also the fact that the samples were not pushed directly below the
SQUID sensor, but rather a little too far or too short. This would also cause the
measured and calculated magnetic field to diverge. For the conductor loop, it should
be noted that we assumed it to be perfectly circular for the theoretical calculation.
However, it appears almost oval shaped, which makes it difficult determine its area
and also changes the magnetic field generated by the conductor loop. Finally, it
is surprising that the theoretical and measured values for higher resistances do not
differ significantly more as for low resistances although the signals are much worse
for the high resistances, as described above.
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Figure 5: The plots for the measurement with R1 and ω = 5.
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Figure 6: The plots for the measurement with R1 and ω = 10.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 7: The plots for the measurement with R2 and ω = 2.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 8: The plots for the measurement with R2 and ω = 5.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 9: The plots for the measurement with R2 and ω = 10.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 10: The plots for the measurement with R3 and ω = 2.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 11: The plots for the measurement with R3 and ω = 5.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 12: The plots for the measurement with R3 and ω = 5.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 13: The plots for the measurement with R4 and ω = 2.



List of Tables 30

0 5 10 15 20 25 30 35 40 45 50

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

−0.22

t/s

U
/V

R2 = 0.68

α = 0.0312(5)

β = 0.4405(11)

γ = −0.764(30)

δ = −0.2774(3)

(a) The measured data and the applied sinus fit.

0◦
30◦

60◦

90◦

120◦

150◦
180◦

210◦

240◦

270◦

300◦

330◦

0

0.1

0.2

0.3

0.4

(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 14: The plots for the measurement with R4 and ω = 5.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 15: The plots for the measurement with R4 and ω = 10.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 16: The plots for the measurement with R5 and ω = 2.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 17: The plots for the measurement with R5 and ω = 5.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 18: The plots for the measurement with R5 and ω = 10.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 19: The plots for the measurement of the iron span.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 20: The plots for the measurement of the gold sample.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 21: The plots for the measurement of the gray stone.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 22: The plots for the measurement of the red stone.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 23: The plots for the measurement of the magnetic span.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 24: The plots for the measurement of the crown cap.
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(b) The polar plot of the angle α over the respective magnetic field strength.

Figure 25: The plots for the measurement of the iron stick.
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