


Contents

1 Introduction 2

2 Methods 3

3 Analysis and Results 5

3.1 Analysis: Calibration of the Temperature Sensors . . . . . . . . . . . . . . . . . . . 6

3.2 Analysis: Transition Temperature of YBa2Cu3O7–x . . . . . . . . . . . . . . . . . 8

3.3 Analysis: Temperature Dependence of the Resistance of Cu . . . . . . . . . . . . . 10

4 Discussion 13

4.1 Discussion: Calibration of the Temperature Sensors . . . . . . . . . . . . . . . . . . 13

4.2 Discussion: Transition Temperature of YBa2Cu3O7–x . . . . . . . . . . . . . . . . 14

4.3 Discussion: Temperature Dependence of the Resistance of Cu . . . . . . . . . . . . 15

5 Conclusion 16

6 Appendix A: Signed Lab Notes 18

7 Appendix B: Additional Pictures and Data 22

1



Analysing the Resistivity Behaviour of Superconductor YBa2Cu3O7–x
and Normal Conductor Cu as a Function of Temperature

Abstract

Superconductors are materials which, under the right conditions, exhibit a sudden loss of

their electrical resistivity below a certain critical temperature Tc, along with a repulsion and

expulsion of magnetic field lines. This has countless applications in science and technology, as

it allows for, amongst others, the creation of extremely strong electromagnets, e!ective energy

storage systems and general reduction of energy losses. The goal of this experiment is to

analyse and compare the temperature-voltage curves of the high-temperature superconductor

YBa2Cu3O7–x and of a piece of copper wire down to near -200 °C. Measurements are conducted

using the 4-point-probe technique for measuring small resistances and liquid nitrogen is used

to cool down the samples. The critical temperature of the superconductor is found to be

Tc = →164(5) °C and a linear decrease of voltage is observed for Copper when cooling it down

through the same temperature range. Di!erent systematic and statistical uncertainties are

be taken into account and some fluctuations and deviations from the expected behaviour are

discussed.

1 Introduction

While normal conductors show a continuous decrease in electrical resistivity at decreasing tempera-
ture and never reach zero, some materials display an abrupt transition below a certain temperature,
where the resistivity falls to zero. This e!ect was first observed in the case of mercury, in 1911
by Kamerlingh Onnes, who then coined the term superconductivity [Dem17]. A theoretical ex-
planation for superconductivity was o!ered in 1957 by Bardeen, Cooper and Schrie!er [BCS57;
Wer12]: At low temperatures, electron-lattice interactions produce correlated electron pairs. In a
simplified model, each electron induces a polarisation of the surrounding lattice which will in turn
attract other electrons, hence leading to an e!ective attraction in between electrons. In fact, it is a
dynamical polarisation due to the electron’s movement, and electrons of opposite momentum will
form correlated pairs - the so-called Cooper pairs. Due to their vanishing total momentum, Cooper
pairs barely get scattered during collisions with other electrons and ions, which heavily reduces
electrical resistivity [Wer12; Dem17]. This is not the only e!ect occurring in superconductors - the
Meissner-Ochsenfeld e!ect describes that around the same temperature TC , perfect diamagnetism
emerges, meaning that magnetic fields are expulsed from superconductive materials [Wer12] - but
the focus of this experiment lies on the resistivity behaviour.

The bond of Cooper pairs is broken when the temperature is high enough that the electrons’
thermal kinetic energy exceeds the bond energy. This critical energy is so low that the transition
temperature TC is below 30K for many elements and compounds [Dem17]. However, in further
research, superconducting compounds with a higher TC up to more than 100K have been found.
Such high-temperature superconductors are especially sought-after for practical application, as
cheaper materials like liquid nitrogen can be used to keep them below their critical temperature,
in comparison to e.g. liquid helium. This is the case for the superconductor examined in this
experiment.

Superconductivity is a very active field of research, which is driven by the countless applications
of the advantageous properties of superconductors. One well known example are MRI machines,
which require extremely homogeneous magnetic fields of considerable strength, typically between
1.5 and 3.0 T [MVG23], which can be achieved using superconducting electromagnets. MRI is a
non-invasive medical imaging technique, based on the resonance behaviour of proton spins. For
the same reason of neading extremely high magnetic field strengths, superconducting magnets are
a vital part of most large particle accelerator systems, like the LHC at CERN [CER].
Another example are MagLev technologies, i.e. vehicles floating over rails without rolling friction
and at extremely high speeds, making use of strong (superconducting) magnets. There are two
main types of maglev systems [Bos24]: electromagnetic suspension (EMS), which is based on the
attraction between magnets on both the train and the railway, and electrodynamic suspension
(EDS), in which superconducting magnets of the rails repel the magnets on the trains underside.
Maglev technologies have a low energy consumption and o!er many other advantages like a low
noise level and no air pollution, in comparison to many other modes of transportation.
Even within the field of sustainable energy research, superconductivity has become a much dis-
cussed concept. Superconducting magnetic energy storage (SMES) is based on the idea that a
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current will persist within a superconducting material, even after the originally applied electric
field is turned o! [AOA22]. Such storage systems can easily be charged and discharged repeatedly
and quickly and can contribute, amongst others, to stabilising the electricity grid.

The aim of this experiment is to analyse the behaviour of a superconductor (YBa2Cu3O7–x )
and a normal conductor (Cu) when cooling them down to very low temperatures. We use the
four-point-probe technique for measuring resistances and liquid nitrogen to cool down the probes.
Additionally, calibrations for the temperature sensors are conducted. Based on the obtained data
we will compare the temperature-voltage-curves of the two samples and determine the critical
temperature Tc of YBa2Cu3O7–x .

2 Methods

This experiment is performed using the Leybold Experiment Kit 667 552 [Didb], including the
Measurement Adapter 666 205 for data acquisition and an integrated superconductor measur-
ing module. The measuring module consists of a piece of YBa2Cu3O7–x superconductor and a
Platinum-Irdium resistor as a temperature sensor, all encased within a metal mantle. The inte-
grated measuring module can be plugged into the measuring adapter when required. YBa2Cu3O7–x

is a high-temperature superconductor with an expected critical temperature around -180 °C [Didb].
The outputs of the adapter (voltage Utemp of the temperature sensor and voltage Usample across
the sample) are fed into the Leybold Cassy 2 524 013 sensor module, which can be read out via the
Cassy 2 application on a computer. The two Leybold devices and their setup for measurements
with the superconductor are depicted in fig. 1. A picture of the full setup can be found in fig. 13.

Figure 1: Measuring Adapter on the right and Cassy 2 Sensor on the left in the setting used for the
measurements with the superconductor probe. The thicker grey cable plugged into the measuring
adapter is connected to the superconductor probe head.

For the measurements with copper, a sensor head had to be built first. This was done by removing
the isolation sheath from a piece of copper wire and soldering it onto a circuit board together with
4 contact wires. The length of copper wire between the outer most contacts is around l = 11.6
cm. The diameter of the wire is very thin and unknown to us, which is why we will not be able to
take into account the samples geometry and calculate the resistivity from the measured resistance.
The resistance of a conductor through which a current I is flowing and at which a voltage U can
be measured is given by Ohm‘s law:

3



R =
U

I
. (1)

As the current is in first approximation constant in our experiment, we will limit ourselves to
examining the voltage Usample across the sample as a function of temperature, which is then
proportional to the resistance.
A Platinum temperature sensor of the model Pt100 [BLA] is glued onto the copper wire and two
wires are attached to it. A picture of the Cu measuring head can be found in fig. 2.

Figure 2: Measuring head with a piece of copper wire, contact cables for a 4-point-probe resistance
measurement and a Platinum temperature sensor with wires.

For the measurements with the Cu sample, the two outer contacts on the copper wire are connected
with the power output of the measuring adapter and the two inner contacts with the voltage input
channels. This setup allows for a 4-point-probe measurement of the resistance of the sample,
which is a technique that is used to avoid contact voltage losses and which allows for precise
measurement of even very low resistance [al15]. The two contacts of the Platinum temperature
sensor are connected to the respective black ports on the measuring adapter.

Additionally, an EXTECH multimeter [Ins] is used for measurements of the output current of the
measuring adapter and the room temperature, the latter of which is done via a plug-in temperature
measuring head. A Dewar flask and a plastic bucket with water complete the collection of necessary
equipment. A supply of liquid nitrogen is hold at the ready.

In the data acquisition software, the voltages Utemp from the temperature sensor, and Usample

measured across the sample are recorded as a function of time. There are various settings to be
chosen, like the range of the displayed voltage and the time intervals over which the program
is averaging the recorded values. The integration time was kept at 200ms during the whole
experiment. Based on the respective peak voltages, the voltage range was set to (-0.3,0.3)V for
the temperature sensor’s output and (-1,1)V for the sample voltage.

Before measurements with the superconductor- and Cu samples are taken, the temperature sensors
are calibrated, in order to be able to convert the voltage Utemp into a temperature T . This is done
performing three di!erent calibration measurements for each of the two probes. As a first reference,
the room temperature is measured using the multimeter and the temperature probe which is placed
close to the platinum sensor on the probe heads. A picture of this setup is shown in fig. 3 (a). After
the voltage Uroom temp displayed by the data acquisition software was verified to be approximately
constant over time - confirming that the probe had reached room temperature even if it had been
cooled down before -, the momentary value was noted down.
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(a) Room temperature (b) Melting temperature of ice

Figure 3: Calibration measurements using (a) the room temperature and (b) the temperature at
which ice melts for the Cu probe.

As a second reference for the calibration, we use the temperature at which ice melts, i.e. 0 °C. The
probe is placed in a plastic bucket, which is filled with water, as can be seen in fig. 3(b). The water
is brought to freeze by adding liquid nitrogen and the voltage Utemp is observed. After the ice
is formed and the nitrogen has vaporised, a continuous decrease in voltage begins, corresponding
to a rising temperature. When the melting point is reached, the temperature stays much longer
at a steady value, due to the extra amount of energy required for the phase transition, before it
continues to further increase. The corresponding plateau voltage is taken as the reference value
Uice temp.
Thirdly, the known boiling point of liquid nitrogen is used as an additional point for the temperature
calibration. This is done by immersing the probes into the Dewar flask filled with liquid nitrogen
and observing both the boiling behaviour of the nitrogen and the exponential temperature decay
(voltage increase) on the screen. The maximum value of the voltage (minimum temperature) at
which boiling is observed is recorded for both the superconductor and the Cu probe.

After the calibration measurements are complete, the stability of the output current is investigated
by connecting the multimeter in the function of an amperemeter to the ports and observing the
behaviour of the measured current over the course of a few minutes. The observations are discussed
in section 3.2.

For the actual measurements of the temperature dependence of the resistance of the two discussed
materials, the Dewar flask is filled again with liquid nitrogen and each of the probes is immersed
into it, while the curves of temperature and voltage are recorded. After 2 to 5 minutes, the probes
are removed from the flask and the heating process is recorded as well. This procedure is repeated
several times, in order to assess the repeatability and gain more data for statistical significance.

3 Analysis and Results

Based on the measured data, we will first calibrate the temperature sensors, so that we can then
examine the voltage at the two samples as a function of the temperature. The voltage data for the
calibration were simply read o! from the Cassy software display like described in section 2. The
data from the other parts of the experiment were exported from the software and imported into
Python for the analysis. These raw data are plotted in Appendix B, figs. 14 and 16 for reference.
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The uncertainty on the measured voltages is given by the manual [Dida] as:

ωU,syst = ±1% · U ± 0.5% · Urange, (2)

where the range end value Urange was, in our case, 0.3V for the temperature sensor and 1V for the
sample voltages. We make the assumption that this uncertainty ωU,syst is a systematic error, while
an additional statistical uncertainty comes from the limited resolution of the displayed values:

r = 0.0001V for the displayed momentary values, used for the calibration, (3)

r = 0.00005V for the values listed in the exported files (range ±0.3V), (4)

r = 0.0005V for the values listed in the exported files (range ±1V). (5)

From these resolution widths r, we calculate the statistical uncertainty as for a rectangular distri-
bution:

ωU,stat =
r

2
→
3
. (6)

3.1 Analysis: Calibration of the Temperature Sensors

Based on the information given in the manuals [Didb; BLA], we can, as an approximation, assume
a linear relation between temperature and the output voltage from the temperature sensors. We
therefore use the three temperature measurements that were performed for both of the sensors (at
room temperature, ice bath and boiling nitrogen) in a linear calibration fit

Utemp = aT + b.

These fits are performed via orthogonal distance regression with the Python-module scipy.odr
[com24] and take into account the statistical uncertainties on both temperature and sensor voltage.

For the statistical voltage uncertainties, we use the calculation from eqs. (3) and (6). On the
reference temperatures, we estimate the following uncertainties:

For the room temperature (23 °C resp. 21 °C for the two calibration measurements), a statistical
uncertainty component is given by the resolution of the display, assuming a rectangular probability
distribution:

ωTroom,stat =
0.05→

3
°C.

Additionally, there is a systematic uncertainty component on this value, stemming from the accu-
racy of the multimeter as listed in [Ins]:

ωTroom,sys = ±1% · Troom ± 2.5 °C.

In order to simplify the following calculations, we add those three components for the room tem-
perature quadratically:

ωTroom =

√(
0.05→

3
°C

)2

+ (1% · Troom)
2 + (2.5 °C)2.

For the melting point of ice at T0 = 0 °C, we estimate a statistical uncertainty of ωT0 = 0.5 °C,
due to the fact that we might not have hit the exact melting point from our observations of the
plateau in the voltage Utemp:

T0 = 0.0(5) °C.

As a literature value for the boiling point of nitrogen, we find Tboil, lit = 77.15K = ↑196 °C [Zha11].
During the calibration measurement, we observed the surface of the liquid nitrogen boiling. As
there is most certainly a bit of a temperature gradient within the depth of the liquid, we assume a
systematic deviation to lower temperatures and an according uncertainty on the calibration value
and take

TNitr = ↑197.5(1.5) °C

as our reference value for the calibration.

The resulting linear fits are shown in fig. 4. As a measure of goodness of the fits, we use the
reduced ε2, which is quoted in the respective plot legends.
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(a) First temperature sensor, used with the super-
conductor sample.

(b) Second temperature sensor, used with the nor-
mal conductor sample.

Figure 4: Calibration lines for the two temperature sensors.

The statistical uncertainties of the parameters a and b resulting from the fits are quoted in the
legends of the plots in fig. 4. They are correlated with covariances of

cov(a, b)sensor 1 = 1.1 10→9 · V
2

°C

cov(a, b)sensor 2 = 1.1 10→9 · V
2

°C

(both corresponding to a correlation coe”cient of 0.3). It is a coincidence that the rounded values
are the same for both materials. Additionally, the systematic uncertainty on the voltage Utemp

described in eq. (2) propagates into the fit parameter best values as

ωa,syst = 0.1% · a (7)

ωb,syst = 0.5% · Urange. (8)

As an overview, here are the parameter best values with both uncertainty contributions:

sensor 1:

a = ↑9.70 (8)stat (10)syst · 10→4 V/°C,
b = ↑2 (5)stat (15)syst · 10→4 V.

sensor 2:

a = ↑9.70 (8)stat (10)syst · 10→4 V/°C,
b = 17 (5)stat (15)syst · 10→4 V.

For the further analysis, we combine statistical and systematic uncertainties into total uncertainties
on the calibration fit parameters:

#a =
√

ω2
a,stat + ω2

a, syst,

#b =
√

ω2
b,stat + ω2

b, syst,

From the voltages Utemp we can now calculate the corresponding temperatures T via:

T (Utemp) =
Utemp ↑ b

a
. (9)

We obtain a statistical uncertainty on T directly from the statistical uncertainty on Utemp:

ωT, stat =
1

a
ωUtemp,stat. (10)
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The uncertainty contributions from the fit parameters, on the other hand, will have a common, di-
rectly correlated e!ect on all calculated temperatures (if the fit result for a is too large, for example,
this will make all calculated temperatures too small). Therefore, we include these contributions
into a systematic uncertainty ωT,syst together with the systematic uncertainty contribution from
ωUtemp,syst:

ωT, syst =

√(
1

a
ωUtemp,syst

)2

+

(
1

a
#b

)2

+

(
Utemp ↑ b

a2
#a

)2

+ 2 cov(a, b)

∣∣∣∣
Utemp ↑ b

a3

∣∣∣∣. (11)

Any potential correlations between the uncertainty contributions except between ωa,stat and ωb,stat

were neglected here, which will be discussed in section 4.1. The statistical component ωT,stat will
later be taken into account when performing the fits on the temperature-voltage curves, while the
ωT,syst will be applied to the fit results.

3.2 Analysis: Transition Temperature of YBa2Cu3O7–x

Applying the above described calibration to the voltages Utemp, we can now examine the data for
the voltage Usample across the sample as a function of temperature. The measurement adapter
should provide a nominal constant current of 140mA, so that the resistance Rsample should be
simply proportional to the measured voltage Usample.

In order to assess how stable this current is in reality, we connected the power output sockets on
the measurements adapter [Didb] with the multimeter and observed the resulting current before
performing the actual cooling and heating measurements with the superconductor probe. The
observation made was that there is a slow but steady increase in current over time, which is not
influenced by factors like movement of the device or temperature. We observed an increase in
current by approximately 0.3mA within 5min at a current of around 135mA, thus corresponding
to a 0.2% increase every 5min. As we allowed the probe to cool down in the liquid nitrogen
for around 5min and observed the heating process afterwards for another 5min, we can expect
a relative increase in current of around 0.4% during this. In approximation, the same increase
should also a!ect the voltage Usample. We will come back later to this e!ect and for now, regard
the voltage as an approximate measure for resistance.

In order to gain some statistical significance, we performed the cooling and heating process several
times. From comparing the plotted data sets (Appendix B, fig. 15) we can see that there is a certain
amount of fluctuation between them, which we would like to take into account as an additional
statistical uncertainty component on Usample(T ). We observe that the di!erence between curves
from di!erent measurements increases with increasing temperature. This can partially be explained
by above described increase in current over time: as we started by cooling down the probe and
heated it up again afterwards, there is an expected increase in current over time and the di!erence
between the two curves will be largest for the start and end temperature, respectively, thus at
the high temperature end of the plot. However, this e!ect (expected influence ↓ 0.4% as noted
above) is not big enough to completely explain the fluctuation between the curves from di!erent
measurements. We will discuss some other possible factors later in section 4.2. For now, we quantify
the fluctuations by assuming them to increase approximately linear with increasing temperature,
starting from the minimal reached temperature Tmin ↓ ↑197 °C. By estimating the maximum
fluctuation at highest temperature between the two first measurements (”Heating 1” and ”Cooling
1”) visually from the plotted data, we get:

ωUsample,fluct(T ) = (T ↑ Tmin) · 10→4 V/°C.

This gives us an additional statistical component on the uncertainty on Usample, which we combine
with the statistical uncertainty ωU,stat stemming from the display accuracy of the software (eqs. (5)
and (6)):

ωUsample,stat =
√
ω2
U,stat + ω2

Usample,fluct
. (12)

Having analysed the di!erences between the repeated measurement series and included this into
the error calculations, we now decide on one single measurement series for a detailed analysis. Since
the cooling process was happening faster than the heating process, the latter is supposed to be more
reliable: First, a slower process allows more finely spaced data acquisition, and second, a faster
process could introduce systematic errors if either the temperature sensor or the superconductor
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Figure 5: Sample voltage as a function of temperature for the superconductor YBa2Cu3O7–x .
Statistical uncertainties on the data are given by eqs. (10) and (12). Multiple linear fits are used
to determine the transition temperature. Confidence intervals of the fits are too thin to be visible.

sample changes faster in temperature than the other one, resulting in a di!erence between the
measured and the actual sample temperature. We thus decide to use the data from the first
heating process in the further analysis. This is plotted in fig. 5.

As visible from fig. 5, the voltage drop does not happen abruptly once reaching the transition
temperature, but with a certain slope. The transition temperature Tc is defined to be in the
middle of this slope. We use the following procedure to obtain the value of Tc:

First, we fit straight lines to the linear areas of data, to the right and left of the voltage drop.
The fits are again performed using orthogonal distance regression and the python module scipy.odr
[com24] and a linear model of the shape

Usample = a T + b.

These fits are illustrated as the blue and green curves in fig. 5 and yield the best fit parameters
aupper, alower, bupper and blower, the values and statistical uncertainties of which are given in the
plot legend.

By taking the average values of both fit parameters, we obtain the parameters for a third straight
line, which lies in the middle between the upper and lower fit (in red in fig. 5):

amiddle =
aupper ↑ alower

2
(13)

bmiddle =
bupper ↑ blower

2
(14)

The corresponding uncertainties are propagated according to Gaussian error propagation. We
assume total correlation, i.e. the correlation coe”cient is

corr(amiddle, bmiddle) = 1,

since the values aupper and bupper are dominating here and their correlation coe”cient - just like
the lower line’s correlation coe”cient - is also approximately 1 (less than one percent deviation in
both cases).

Finally, another linear fit is performed on the steep part of the voltage drop (purple line), resulting
in asteep and bsteep. The values and statistical uncertainties are again given in the legend.

Next, we use the intersection point between Usteep(T ) and Umiddle(T ) to obtain Tc:
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Tc =
bmiddle ↑ bsteep
asteep ↑ amiddle

(15)

with a statistical uncertainty resulting from the following error propagation:

ωTc, stat =

√(
1

as ↑ am
ωbm

)2

+

(
1

as ↑ am
ωbs

)2

+

(
↑ bm ↑ bs
(as ↑ am)2

ωam

)2

+

(
bm ↑ bs

(as ↑ am)2
ωas

)2

+2 cov(am, bm)

∣∣∣∣↑
bm ↑ bs

(as ↑ am)3

∣∣∣∣+ 2 cov(as, bs)

∣∣∣∣
bm ↑ bs

(as ↑ am)3

∣∣∣∣,

where ”s” labels the parameters of the steep fitted line and ”m” the ones of the averaged middle
line.

Until now, systematic uncertainties were neglected in this section. The systematic uncertainty on
Usample should only shift or stretch the whole plot in vertical direction, so that it has no e!ect on
the calculated transition temperature. The systematic temperature uncertainty (eq. (11)), though,
directly a!ects Tc. We therefore calculate the systematic uncertainty ωTc,syst by applying eq. (11)

(where we replace Utemp→b
a = Tc) to the calculated value of Tc. The two uncertainty components

are then

ωTc, stat = 3.4 °C, (16)

ωTc, syst = 3.3 °C. (17)

They can be combined by quadratic addition into one total uncertainty on the end result:

Tc = ↑164(5) °C. (18)

3.3 Analysis: Temperature Dependence of the Resistance of Cu

Analogous measurements as for the superconductor sample were performed with the Cu sample.
Again, the temperature values were calculated from the corresponding calibration in section 3.1,
and the measurement uncertainty on the sample voltage was given by eqs. (5) and (6). The
resulting temperature-voltage-curves from all measurement series are shown in fig. 6.

Notably, the curves acquired from the cooling processes vary among each other and deviate from a
linear function more strongly than any of the heating curves. Their data are also a lot less densely
spread over large temperature ranges. Both e!ects stem from the fact that the cooling process was
happening significantly faster, and imply that the data from the heating processes are again more
reliable. A detailed discussion of these e!ects follows in section 4.3. We will therefore focus on the
three heating curves for now.

While the first and second heating process don’t vary strongly from each other, the third one,
which was conducted one day later, does deviate especially at low temperature. Potential reasons
for this will also be discussed in section 4. For now, the same procedure as for the superconductor
sample is applied: We estimate an additional statistical uncertainty based on the variation between
di!erent measurement series and then continue with a detailed analysis of only one of the curves.
In contrast to the experiments with the superconductor, in this case here the variation between
measurement series is largest at low temperatures. Due to that, we now use the ansatz of an
uncertainty ωUsample,fluct that is proportional to the measured temperature. By estimation based
on the plot, we decide on the specific values

ωUsample,fluct = ↑T · 10→5 V/°C.

Like before, this is combined with the measurement uncertainty ωU,stat eqs. (5) and (6) to a total
statistical uncertainty of

ωUsample,stat =
√
ω2
U,stat + ω2

Usample,fluct
. (19)

With that, the first heating curve (blue in fig. 6) is chosen for a detailed analysis. Like the other
two heating curves, it is approximately linear over most of the covered temperature range, but
begins to decrease steeply around -190 °C. First, we perform a linear fit

Usample = aT + b
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Figure 6: Sample voltage as a function of temperature for the normal conductor Cu in repeated
measurement series. Statistical uncertainties on the data are given by eqs. (5), (6) and (10).

Figure 7: Sample voltage as a function of temperature for the normal conductor Cu in one selected
measurement series (first heating process). Statistical uncertainties on the data are given by
eqs. (10) and (19). This fit was performed using data from the whole temperature range.
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on the whole temperature range which is shown in fig. 7. To quantify the deviation at low tem-
peratures, we additionally perform a series of linear fits using only parts of the data, each in a
di!erent temperature interval: Keeping the interval’s upper bound fixed at the maximal value, we
vary the lower bound and investigate what influence that has on the fit. In fig. 8, the resulting
reduced ε2-values are plotted to give an impression of the fit quality dependence on the amount of
data used in the fit. Additionally, for each of the parameters a and b, the mean from the various
fits was calculated:

â = 0.001308 (5)stat (67)syst V/°C,

b̂ = 0.32816 (7)stat (645)syst V,
(20)

where the systematic uncertainties are propagated from eqs. (2), (5) and (11). For each fit with

results a and b, the relative deviations !a
â = a→â

â and !b
b̂

= b→b̂
b̂

from these mean values are plotted
in fig. 8 as well, showing how strong the actual fit results depend on the chosen fit interval.

Figure 8: Results from linear fits like the one in fig. 7 for di!erent fit intervals.

There are two points in the resulting plot where the fit results and quality change abruptly: One
of them is at 0 °C, where an o!set occurs that is also visible in fig. 7 and for the second heating
curve in fig. 6. Of course, in the calculations leading to fig. 8, it has an especially heavy influence
since there are only few data points included in the fits with Tmin ↓ 0 °C. The other main deviation
at low temperature, which is found to be around -197.3 °C using this plot, has a lower influence
on the fit results since the many data with T > ↑197.3 °C dominate at that point. This deviation
corresponds to the sudden voltage decrease already mentioned. Potential reasons for these two
main deviations will be discussed in section 4.3.

Despite the obvious systematic deviations from the linear model, the reduced ε2 values are def-
initely below the expected value of 1 in all fits. Usually, this could imply that the statistical
uncertainties were estimated too large. However, in this case, the dominating uncertainty is the
resolution uncertainty which was directly calculated from the resolution of the exported values
(eqs. (5) and (6)), so that even without our roughly estimated additional uncertainty ωUsample,fluct,
the maximal value of ε2/dof is found to be at 0.8.
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4 Discussion

4.1 Discussion: Calibration of the Temperature Sensors

As the first part of the here presented experiment, measurements were performed which were used
to calibrate the two temperature sensors. In both cases, three reference temperatures were chosen
and a linear model was fitted to the data points. It is noteworthy how close the resulting fits are
to each other: with the model Utemp = aT + b, the fits yield parameter best values of

sensor 1:

a = ↑9.70 (8)stat (10)syst · 10→4 V/°C,
b = ↑2 (5)stat (15)syst · 10→4 V.

sensor 2:

a = ↑9.70 (8)stat (10)syst · 10→4 V/°C,
b = 17 (5)stat (15)syst · 10→4 V.

This speaks of the similarity between the two sensors, which are both Pt(-Ir)-sensors. Similar
results were thus expected to a certain degree, though the closeness of the parameters a is still
surprising. We can also have a look at the reduced ε2 values in fig. 4 to assess how well the linear
model describes our data with the estimated uncertainties:

ε2

dof sensor 1

↓ 3

ε2

dof sensor 2

↓ 1

As one can see, the quality of the fit is really good for the copper sample and slightly less good for
the superconductor probe. There is of course the possibility that a model di!ering from the simple
linear one would be better suited to accurately describe the calibration of the superconductor
temperature sensor. With only three data points, however, it does not really make sense to fit
more complex models. If one wanted to test the di!erent fit functions, one would need a larger set
of data.

For the here performed calibration we relied to a great extend on the known boiling point of nitrogen
and the melting point of ice. The advantage of using these two reference values in comparison to
more random temperatures (including the room temperature) is that one does not need to rely on
the calibration quality of another device (the multimeter with plug-in temperature sensor in our
case). In theory, those two data points alone would even be enough to define a linear calibration
function.
On the downside, it was not at all trivial to identify the respective phase transitions correctly and
especially in the case of the boiling temperature, a significant uncertainty stems from the fact that
while the nitrogen at the surface had been boiling, the liquid some centimetres below the surface
(where the temperature sensor was situated) might still have been cooler. This uncertainty might
have been reduced by positioning the probe in a way that the temperature sensor would be directly
at the surface of the boiling liquid. While this is a feasible idea for the self-build Cu-sensor for
which the position of the Pt sensor is known, we do not know much about the positioning of the
components within the integrated superconductor probe.

Additionally, it has to be noted that we did not actually deal with pure nitrogen and pure water
respectively, as both substances were contaminated with each other from passing the probe back
and forth. Having a mixture of two di!erent substances could in general influence their boiling /
melting point. As we do not know exactly how high the concentrations of contaminators were, it is
di”cult to make an estimation of how large this systematic e!ect might have been. Alternatively,
one could have performed calibration measurements at varying temperatures using a well calibrated
and precise thermometer.

Regarding the treatment of uncertainties during the calibration analysis section 3.1, quite a few
assumptions and simplifications were made in order to keep the process comprehensible and avoid
overly complicated calculations. One of those simplifications worth discussing is the treatment of
the systematic uncertainty on the fit parameters a and b. This was first derived from a systematic
uncertainty on the voltage Utemp eqs. (7) and (8) and later included in the error propagation for
the systematic uncertainty on the temperature ωT, syst eq. (11). What was however not taken into
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account is the fact that the systematic uncertainty components on a and b and the systematic
uncertainty component of Utemp, which also appears in eq. (11), are actually correlated. Then
again, the influence this would have on the total uncertainty is almost negligibly small.
On a similar note, we need to point out that we chose to combine systematic and statistical
uncertainty components a few times in this report. It would in fact be cleaner to keep them
separated for as long as possible, but it seemed more important to us to deliver a fairly concise
and exemplary data treatment, rather than to include extremely lengthy error propagations taking
into account all possible correlations.

4.2 Discussion: Transition Temperature of YBa2Cu3O7–x

In the second part of the experiment, we determined the critical temperature of the superconductor
YBa2Cu3O7–x by performing fits to the temperature-voltage curve of a heating process, after the
probe had been cooled down to temperatures below Tc. The final result

Tc = ↑164(5) °C (21)

lies a bit lower than the rough orientation value of ↑180 °C [Didb], but as the critical temperature
depends on a lot of di!erent factors, like the exact composition of the superconductor material,
we cannot compare our result with any reference value. It does nevertheless seem to be a realistic
value for such a high temperature superconductor and the uncertainty on our result is with 5 °c,
corresponding to around 30% of the Tc, quite small considering the simple methods by which it
was obtained.

One aspect that might hint at a kind of systematic error which we did not include in our analysis
so far, is the fact that we observed such a strong fluctuation between di!erent measurement series.
While we are not able to fully explain these deviations, we can discuss a few possible contributing
factors:
A first factor that was already brought up in section 3.2 is the drift over time that we observed
in the current and which would impact Usample. As already mentioned in the data analysis, we
estimate that this e!ect to be at the largest ↓ 0.4% between the beginning of one cooling and
the end of one heating process. It has to be noted that we cannot say anything about the current
flowing through the temperature sensor which is included in the superconductor probe head. This
might be completely di!erent from the current through the actual superconductor sample or might
even show a drift of its own.
Secondly, we do not know much about in what geometry and how tightly the superconductor
probe, the temperature sensor and the rest of the electronics are packed within their probe case.
Depending on their orientation and the varying thermal capacities of the di!erent materials, it
seems likely that for example the superconductor might have heated up and cooled down faster
than the Pt temperature sensor, leading to a systematic shift in the observed data. This is another
factor that might have contributed to the curves of heating and cooling down processes being
shifted with respect to each other.

We also need to address the point that while we did take into account the data sets from di!erent
measurements in order to estimate an additional statistical errorbar on them, we only chose one
of the data sets to perform the rest of the analysis on, instead of combining the datasets. The
problem here is that the data acquisition software recorded di!erent amounts of data for di!erent
Utemp, depending on how fast the temperature change happened. Simply taking the average of two
data sets is thus not possible. One, rather cumbersome, way of combining the data sets anyway
might have been to divide them into small bins and use the average value within each bin as new
data points, which could then be combined with data points from di!erent measurements.
In the here presented analysis, we limited ourselves to including the fluctuations as an additional
statistical uncertainty on Usample. This was basically done via a visual estimation, from which
we assumed the magnitude of fluctuation to be linearly increasing with increasing temperature.
While this might have worked well as a first order approximation, the real nature of this statistical
uncertainty component is not known, especially as we cannot fully account for it yet with the two
explanations given above.

When looking at the treatment of statistical and systematic uncertainties in this part, one has to
be aware of the fact that they are strongly influenced by the decisions made in section 3.1 and
are mainly propagated through the various fits performed. For reasons of not wanting to over-
complicate things, we included statistical uncertainty components in the fits and only brought up

14



the systematic uncertainty on the temperature eq. (11) at the very end, as an additional uncertainty
on the end result. Alternatively, one might have included this component already in the orthogonal
distance regressions. As one can see from eq. (17), the systematic and statistic contributions on
the final uncertainty are of the same order of magnitude.

As already mentioned before, one of the heating curves was chosen for the final analysis over one
of the cooling curves, as it was suspected that the heating process, being much slower, would yield
the more reliable data. One way of improving the experimental methods could be to come up with
a way of having an even slower and more controlled change in temperature. We did experiment a
bit with taking the probe out from and inserting into the liquid slower and faster, but this comes
with di”culties of its own, as it might for example increase the risk for asymmetric temperature
changes across the di!erent probe head components, as described above as one possible systematic
contribution to the drift observed between di!erent measurement series.

Finally, it might have been interesting to take even more data, using multiple measurement series
like we did, but with a more systematic method of varying possibly influential factors. For example,
one could take repeated measurement series in an evenly spaced time series in order to identify
the influence of the suspected temporal drift. Another idea would be to systematically vary the
speed of the probe insertion into nitrogen, consciously producing an inhomogeneous heating. These
kinds of measurements would allow to monitor the changes between di!erent measurements in more
detail, with the goal of a better quantification of potential systematic e!ects.

4.3 Discussion: Temperature Dependence of the Resistance of Cu

Also with the copper sample, the challenge of sensibly combining observations from di!erent mea-
surement series arose. Between the heating curves from day one of the experiment, no significant
systematic deviation could be observed. The measurement taken on the following day, however,
shows lower voltages especially at low temperature.

Possible reasons for these fluctuations are, as in the superconductor part, a varying current through
the sample - though that would have a more important influence on the high temperature values
-, a varying current through the temperature sensor - which would explain the linearly increasing
deviation - or an inhomogeneous heating of the copper wire and the sensor. The latter e!ect is in
particular a probable reason for the strong fluctuation between the cooling curves: Comparing the
time evolution of the voltages in figs. 14 and 16 (Appendix B), it becomes evident that the cooling
process of the Cu probe was by far the fastest temperature change encountered in our experiment.
While in the other parts of the experiment, the change of temperature was happening over tens and
hundreds of seconds, the Cu probe cooled down in only a few seconds. This means that the cooling
was happening quasi instantaneous during the insertion of the sample into the liquid nitrogen, and
that any asymmetry in the way of inserting it would have potentially distorted the results. This
is well visible in the first measurement (”Cooling 1”, red in fig. 6, top right in fig. 16), where the
probe was inserted more slowly: Here, we hypothesise that due to its high thermal conductivity,
the copper wire was quickly cooled down as a whole as soon as it was partially inserted into the
liquid nitrogen, while the temperature sensor was still above, weakly thermally coupled to the wire,
and thus showed higher temperatures than the actual wire temperature (steep slope on the right in
fig. 6). Only when the sensor itself reached the liquid nitrogen, its temperature began to decrease
more quickly, while the sample was already at minimum temperature so that Usample was nearly
constant (quasi horizontal line on the left in fig. 6).

A solution to this homogeneity problem would be to use a more compact probe. This, however, was
opposed to the idea of using a long wire in order to get higher resistivity, higher voltages and thus
lower relative uncertainties. To reconcile compactness and wire length, one idea discussed during
the experiment is to use a coiled or serpentine sample wire. Besides, the fact that the sample
was open in direct contact to the thermal environment - the temperature sensor was covered in
glue - promotes inhomogeneous cooling. In comparison: the superconductor sample, which was
enclosed in an aluminium casing together with the corresponding temperature sensor, was cooling
and heating more slowly (compare figs. 14 and 16) and thus presumably more homogeneously.

Regarding the heating processes where this error source was less influential, it was found that the
expected linear model works over a large temperature range. Solely based on the ε2/dof-value of
0.7, one could even say that it is, within the limits of statistical uncertainties, compatible with the
data over the whole measured temperature range. However, two temperatures were found where
the data from several measurement series notably deviate from the linear model: around 0 °C and
around -197 °C.
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At both of those points, one can see a kink in the data plotted in fig. 7. At 0 °C, this is just a minor
e!ect and afterwards the curve seems to follow a close to linear function again. For the lowest
temperatures recorded in this experiment, the e!ect is more pronounced and one can first see a
hint of a plateau, when moving towards lower temperatures, and then a short steep drop in voltage.
We noticed that both of those anomalies occur at the temperatures, at which phase changes in the
involved materials ought to take place: at 0 °C, this might have been caused by ice (adhering to
the measurement head) melting and around -197 °C, the liquid nitrogen being at its boiling point
could influence the voltage drop in the observed way. For example, if there was sublimated water
vapour adhering to the temperature sensor, the melting at 0 °C would temporarily slow down the
sensor’s heating compared to the sample. Additionally, at the lowest recorded temperatures, we
operate very close to the limit of the working range of the Pt temperature sensor (-200 °C), as
given in [BLA], which might also be a cause for a deviation.

As expected, the copper wire does not exhibit a sudden drop in resistance within the considered
temperature range, as the high-temperature superconductor did. The close to linear voltage de-
crease observed for decreasing temperatures agrees with our expectations. As suggested by [Hyp],
a deviation from this linear trend and convergence to a residual resistance ϑ0 > 0 would be ex-
pected for temperatures lower than around 60K, which is beyond the scope of the here performed
experiment and could therefore not be observed. The exact parameter values calculated in our fit
are not comparable to any reference value since we do not know the exact diameter of the copper
wire and it is thus impossible to calculate the actual resistivity. However, the ratio

ϖ =
1

ϑ(0 °C)
dϑ(T )

dT
=

1

U(0 °C)
dU(T )

dT
=

a

b

should be independent of geometry and current and can therefore be directly compared to a
literature value: In [Dem17], this temperature coe”cient is given as ϖ ↓ 0.004K→1, which is
indeed the same value that the mean fit values given in eq. (20) yield:

â

b̂
= 0.0040(2) °C→1.

Despite the observed systematic deviations and the various approximations made during the anal-
ysis, this result thus seems to be in good accordance with the expected resistivity behaviour.

5 Conclusion

In this experiment, the temperature-voltage curves of the superconductor YBa2Cu3O7–x and the
normal conductor copper have been analysed and compared. Initially, calibrations of the two
temperature sensors were performed and a probe head for the Cu sample was assembled. The
probe heads were cooled down to nearly -200 °C using liquid nitrogen and the changing voltages
Usample were measured through a 4-point-probe technique. From the heating and cooling curves
for the superconductor sample, its critical temperature could be deduced performing a number of
linear fits:

Tc = ↑164(5) °C.

The temperature-voltage behaviour of copper was found to be linear in good approximation for
the considered temperature range, in accordance with our expectation.
Reasons for fluctuations between di!erent measurement series, various sources of uncertainty and
deviations from the expectation were discussed and some ideas for potential improvements of the
experimental methods were suggested.
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6 Appendix A: Signed Lab Notes

Figure 9: Labnotes Page 1
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Figure 10: Labnotes Page 2
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Figure 11: Labnotes Page 3
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Figure 12: Labnotes Page 4
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7 Appendix B: Additional Pictures and Data

Figure 13: Picture of the full setup with (left to right, top to bottom): dewar flask, Cassy 2 sensor,
multimeter, measuring adapter, superconductor probe, normal conductor probe.
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Figure 14: Raw data from the superconductor experiments.

Figure 15: Voltage-temperature-curves for the superconductor sample from repeated measurement
series. Statistical errors are given by eqs. (5), (6) and (10), but are too small to be visible in the
plot.
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Figure 16: Raw data from the normal conductor experiments.
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