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1 Short overview of the experiment

In this experiment we try to confirm the Raman-Nath theory of diffraction.
Therefore we examine the angles and the intesities of diverse interference patterns
which are produced by a He-Ne-LASER and different gratings.
the experiment is split into five tasks.

1. Determine the grating constant of a Sin-grating from the distance of the 1st

maximum.

2. Identify the grating constant and the resolution of 5 different amplitude grat-
ings

3. Calculate the aperture function for the 1st grating from the measured intensi-
ties.

4. Calculate the ratio between the slit width and the grating constant from the
aperture function.

5. (a) Measure the intensity distribution for a phase grating depending on the
Voltage on the ultrasonic oscillating quartz.

(b) Compare the results to the Raman-Nath theory

(c) Identify the sonic wavelength.
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2 Theoretical Background

In the following chapter, all the equations used, can be found in [1]

2.1 Diffraction

The scattering of electromagnetic waves on geometrical objects, like slits or gratings,
is called Diffraction. This effect can not be explained by refraction or reflection but
by the principle of Huygens which states, that every point on a wave-front is equiva-
lent to a spherical wave. Due to those geometrical objects, non-homogeneities occur
which leads to the observed interferences.
For diffraction experiments it is important to distinguish between the Fresnel- and the
Fraunhofer-arrangements. This experiment makes use of the Fraunhofer-arrangement.
Which means, that the spacing between the light source an the detector can be con-
sidered as infinite. This is being realised by two lenses, so that the laser beams are
parallel and so the wave-front structure can be thought of as a plane. For the angles
of the maxima on the screen for a grating with a grating constant K the following
formula applies:

sin (Θm) =
m · λ
K

(1)

The Fresnel-arrangement on the other hand uses a very small distance between de-
tector and light source and the geometrical properties of the wave-front can not be
neglected.

2.2 Aperture function

From the diffraction pattern which can be seen on the screen one can calculate the so
called aperture function g(x). this aperture function gives the characteristics for the
grating, used in the experiment, in dependence of the location. With the Kirchhoff
integral-theorem it can be shown, that the Intensity distribution I of the diffraction
pattern is equal to the to the squared Fourier transformed aperture function g of the
grating.

I = |Ψ(~x, ~y)|2 =

∣∣∣∣∫
aperture

g(~k) · ei~k·~xdAaperture
∣∣∣∣2 (2)

we will look at two different types of gratings in this experiment on the one hand
there will be amplitude gratings, on the other hand one so called phase grating

2.3 Amplitude grating

To make things easy in the beginning we firstly look at one single slit with the width
d and length l where l� b. The aperture function can then be written as:

g(x)singleslit =

{
1 if |x| ≤ b/2
0 if |x| > b/2

(3)

for the amplitude ψ(Θ) of the light-wave-function on the screen we obtain the fol-
lowing relation from [1]:

ψ(Θ) ∼
∫ b/2

−b/2
eikx sin (Θ)dx =

↑
where β(Θ) =

kb sin(Θ)
2

sin(β(Θ))

2β(Θ)
(4)
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with this and Equation 2 it follows, that:

ψ2(Θ) ∼
(
sin(β(Θ))

2β(Θ)

)2

∼ I (5)

Now let us look at a greating with many slits in a row. d shall still indicate the
width and the grating constant which indicates the distance between the centers of
two adjacent slits shall be called K. So the aperture function for a grating with N-
slits can be described similar to the one above in Equation 3 as:

gampl(x) =

{
1 if m ·K ≤ x ≤ j ·K + b where m ∈ {0,1,. . . , N-1}
0 else

(6)

Also ψ(Θ) can now be written as a sum of integrals, in form of the one shown in
Equation 4 , like this:

ψ(Θ) =

N−1∑
j=0

∫ j·K+b

0

eikx sin (Θ)dx (7)

this gives us for the intensity distribution, the following:

I(Θ) = ψ2(Θ) ∼
(

sin (β(Θ))

2β(Θ)

)2

·
(

sin (Nγ(Θ)

N sin(γ(Θ))

)2

(8)

where γ =
kK sin(Θ)

2

In cases where the distribution of the intensity is not known well, the approximation
with a Fourier series is sufficient to calculate the aperture function.

g(x) =

∞∑
m=0

√
Im cos

( x
K

2πm
)

(9)

For example a sin grating. It was theoretically worked out with the Fourier series,
that a grating with only one maximum of the first order could only be possible if it
follows the following equation:

gsin(x) =
√
I0 +

√
I1 cos

( x
K

2π
)

(10)

2.4 Resolution

From [2] we know that the resolution α is

α =
∆λ

λ
≤ N ·m (11)

where λ is the wavelength, ∆λ is equal to the distance of two distinguishable wave-
lengths of the same diffraction order, N is the number of illuminated slits and m the
number of visible maxima.

2.5 Phase grating

The second type of grating which is being used in the experiment is a phase grating.
While the ones discussed were gratings which only differed the amplitude of an elec-
tromagnetic wave, the phase gratings are invisible and diffract light by a fluctuations
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of the refraction indices and also differ, like the name indicates, the phase. This is
realised in the experiment by ultrasound waves in isooctane. the waves change the
pressure of the liquid and therefore the refraction index periodically. This relation
can be written as follows:

∆n

n− 1
=

∆ρ

ρ0
(12)

Now we can write the refraction index in terms of the position inside the isooctane
with a given sonic-wavelength Λ as:

n(x) = n0 + ∆n sin

(
2πx

Λ

)
(13)

because the sonic-intensity is proportional to the voltage applied to the oscillating
ultra sound quarz we can change the refraction index by adjusting the voltage applied
to the quarz.
In the case of a Phase grating, the Grating constant is given by the wavelength Λ so
with Equation 1 it follows, that:

sin (Θm) = m
λ

Λ
(14)

2.6 Raman Nath theory

For small wavelengths and amplitudes of the sonic waves, the relations above can be
explained by the Raman Nath theory which basically states two important things.
Firstly the already explained Equations 1 and 14 and secondly that the ratio of the
intesities of two maxima of the order m relate to one another, like the ratio of the
respective besselfunctions Jm squared of the same order m.

Im
Im′

=
J2
m(∆n ·D 2π

λ )

J2
m′(∆n ·D 2π

λ )
(15)

where D is the thickness of the field in which the sonic waves propagates.
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3 Experimental setup and execution

3.1 Setup

The setup of the experiment is shown in Figure 1 .
A helium neon LASER is used in this experiment and produces a wavelength of
(λ = 632.8nm). L1 (f = 50mm) is the first lens after a beamsplitter, it expands
the beam so that L2(f = 100mm) can parallelise again. It will now seem like the
gratings are infinitely distant from the beam. It then goes through an aperture (L6)
which diminishes the rays. T is the isooctane tank and G the grating mounting. L3
is the third and last lens (f = 300mm), it focuses the beam on the measuring diode
(D1). D1 has an additional slit in front of the diode to minimise the light intensity
of other sources in the room. D is a rotating mirror, it moves with a frequency of
12.5 Hz. The second diode acts as trigger, triggered by the splited beam part which
goes over a mirror S towards D, so that the signal produced by the main beam in
Diode 1 can be read out on the oscilloscope and can be read out by a computer next
by. Depending on the task the third lens will be replaced by a white screen with
mm-pattern, to manually measure the distance of the diffraction pattern from the
sin-grating.

Figure 1: The setup of the experiment. The single parts are explained in the text
above. Taken from [3]
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3.2 Execution

In the first part of the experiemt, we used the setup above without lens 3 and
without the isooctane tank. In the grating holder, a sin-grating is being installed
and a screen with a x-y mm-scale is put up instead of the third lens. It is important
to place lenses L1 and L2 in a distance of the sum of their focal lengths (150mm).
Now it is possible to measure the distances on the mm scale between the first and
zeroth order maximum. Also the distance between screen and grating is measured
with a caliper rule. For the next tasks we implemented lens three for the screen and
tried to focus on the diode. This was not possible, due to the trigger ray, which was
likely to hit the mounting of lens 3 as soon as we put it closer to the rotating mirror.
The sin grating is now replaced by the reference grating ’R’ with a known grating
constant of K = 1

80cm. After switching on the rotating mirror, The diffraction
pattern is shown on the oscilloscope. We saved the images as well as the .CSV data
from the connected computer. This procedure is repeated for gratings 1 to 5. Also,
the diameter of the beam with the closed aperture and the open aperture is noted.
For the last part of the experiment we now implement the isooctane tank and place
the reference grating behind it. The Voltage applied is 0V and the frequency is
adjusted to ∼ 2100 kHZ. The image is being recorded.
From 0V to 10V we measure the diffraction patterns on the diode in steps of 0.5 V.
We noticed that the frequency changed while increasing the voltage.
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4 Data Analysis

In this section we use the time t and the amplitude (intensity) I of the respective
peaks. We obtained these quantities graphically by plotting the respective interfer-
ence pattern and using the zoom function which is implemented in the python 2.7
module matplotlib. The time values t can be found in appendix 6.4 where we called
them µ to emphasise their meaning as the mean value of a (roughly) gaussian-shaped
peak.
For grating 1 (cf. section 4.3) we also fit a gaussian function to each of the peaks to
examine whether the precision of the measurement can be improved significantly by
this method.
By varying the orientation of the gratings in the laser beam, we obtained subjectively
symmetrical interference patterns, so we constrained the data used for our calcula-
tions to the peaks on the right side of the 0th peak for the amplitude gratings (cf.
section 4.3) and the peaks on the left side for the phase grating (cf. section 4.4).

4.1 Sine grating

To compute the grating constant of the sine grating, we first need to calculate the
distance of the first order interference maximum from the 0th order on the screen.
Therefore we use our measured x- and y- distances, compute the hypotenuse c and
then take the mean value c of the two hypotenuses on the right and left side. The
measured values can be found in appendix 6.1. The result is shown in the table below:

left right
x [mm] y [mm] c [mm] x [mm] y [mm] c [mm] c [mm]
45.0± 0.4 5.0± 0.4 45.3± 0.6 44.0± 0.4 5.0± 0.4 44.3± 0.6 44.8± 0.5

Table 1: calculation of the distance between the diffraciton peaks of the sine grating

To calculate the grating constant of the sine grating, we use eq. 1:

K =
λm

sin Θ
= λ

√
l2 + c2

c
(16)

sK = λ ·

√√√√( lsl

c
√
l2 + c2

)2

+

(
l2sc

c2
√
l2 + c2

)2

(17)

where sK is the uncertainty on K, l = 56.8±0.9mm is the measured distance between
the grating and the screen and m = 1 since a sine grating only has peaks of 0th and
1st order.
We obtain the following result:

K = (1.022± 0.012)µm (18)

4.2 Time Conversion Factor

Since we know the grating constant K of the reference grating and the fact that the
spinning mirror in the experimental setup has a constant angular velocity, we can use
eq. 1 to calculate the time conversion factor from the theoretical sin Θm-values and
their linear dependence of ∆t, which is the time difference between the respective
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peak and the 0th maximum:

sin Θm =
mλ

K
= a∆t+ b (19)

The linear fit is shown in figure 2:
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Figure 2: Theoretical sin θm values in dependence of ∆t and linear fit

From the linear fit we obtain the slope a and y-intercept b:

a = (6.65± 0.04) · 10−5 1

µs
(20)

b = (1± 1) · 10−4 (21)

4.3 Amplitude Gratings

Plots of the interference patterns we measured can be found in appendix 6.2.
For grating 1, we fitted each peak by a gaussian function of the form:

f(t) = a exp

{
− (t− µ)2

2σ2

}
+ c (22)

Plots of these fits can be found in appendix 6.3 with the results for their respective
fit parameters. We calculate the grating constants of the five amplitude gratings,
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using the time conversion factor β ≡ a ·∆t+ b (cf. eq. 19) for each peak:

K =
mλ

β
(23)

sβ =
√

(∆t)2s2
a + a2s2

∆t + s2
b (24)

sK =

√
m2λ2

β4
s2
β =

ksβ
β

(25)

We now have a grating constant for each peak which can be found in the tables in
appendix 6.4. It seems appropriate to average over all the visible peaks to get rid of
statistical errors from irregularities in the grid etc.
We also compute the resolution α according to eq. 11:

α = N ·m = m
DLaser

K
(26)

sα = α

√(sD
D

)2

+
(sK
K

)2

(27)

Where for grating 2 we used a laser beam diameter of DLaser = (1.0± 0.3)mm and
for all the other gratings DLaser = (4.0± 0.3)mm.
We obtain the following mean values K and resolutions α:

Grating no. K [µm] α [-]
1 (from gaussian Fit) 144.2± 0.5 110± 8
1 (from plot) 145.2± 0.7
2 37.96± 0.02 52± 16
3 114.7± 0.3 174± 13
4 110.4± 0.2 181± 13
5 56.5± 0.2 283± 1

Table 2: Results for K and α

We can now approximate the aperture function of grating 1 according to eq. 9,
where we use the square root of the normalised Intensities (divided by the intensity
of the 0th peak) as coefficients and approximate the infinite sum by the first five
sumands which correspond to the maxima up to the 4th order. The Intensities and
grating constants we use are obtained by the gaussian fit method in appendix 6.3.
The aperture function we obtained is shown in fig. 3
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Figure 3: Aperture function of grating 1

We compute the slit-width b of the grating as the FWHM value of the main peaks
of the aperture function:

b = 35.0µm (28)

which is is only a rough estimation due to the approximation up to the 4th summand
of g(x). Therefore we leave this value without an uncertainty.
The ratio b

K is:

b

K
≈ 0.24 (29)

which we leave without an uncertainty, too.

4.4 Phase Grating

Figure 4 shows the relative amplitudes of the 3 observed orders (zeroth, first and
second) against the applied voltages. The frequency applied changed during the task
(caused by the sonic wave generator) and is protocolled in the Appendix (cf. Figure
16) and was also plotted against the Voltage.

11



0 1 2 3 4 5 6 7 8 9 1 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0
1 , 1  R e a l t i v e  a m p l i t u d e s  0 t h  o r d e r

 R e a l t i v e  a m p l i t u d e s  1 s t  o r d e r
 R e a l t i v e  a m p l i t u d e s  2 n d  o r d e r
 S q u a r e d  b e s s e l f u n k t i o n  0 t h  o r d e r
 S q u a r e d  b e s s e l f u n k t i o n  1 s t  o r d e r
 S q u a r e d  b e s s e l f u n k t i o n  2 n d  o r d e r

Re
lat

ive
 am

plit
ud

e

V o l t a g e
[ V ]

E q u a t i o n B * ( j 0 ( A * x ) ) ^ 2
A 0 , 1 8 8 3  ±  0 , 0 0 7 1
B 0 , 9 3 8 5 8  ±  0 , 0 2 6 7 1

E q u a t i o n B * ( J 1 ( A * x ) ) ^ 2
A 0 , 2 5 8 8 3  ±  0 , 0 0 7 6 1
B 1 , 2 9 1 6 2  ±  0 , 0 4 6 4 8

E q u a t i o n B * ( J n ( A * x , 2 ) ) ^ 2
A 0 , 3 0 1 6  ±  0 , 0 1 5 5 7
B 0 , 8 2 3 8 7  ±  0 , 0 6 6 4 7

Figure 4: Squared bessel functions fitted to the data of the respective orders.

From the Table in 6.5 we calculated the ∆t for each Maximum for every Voltage.
Then with Equation 241 we can calculate the Wavelength of the ultra sound in
isooctane. therefore:

Λ =
λm

a∆t+ b

(for the calculation of a and b cf. fig. 15) with gaussian error propagation analogously
to eq. 17 we used for the grating constant we get the final result of:

Λ = (509± 4)µm

The theoretical value is calculated by the set frequency (ν = 2133± 0, 7)kHz.
With the known relation and the velocity of sound in isooctane from [3] the theoret-
ical value is:

Λcalc =
v0

ν
=

1111m
s

2133kHz
= (520, 9± 0, 2)µm (30)

sΛ = Λcalc ·
sν
ν

= 0, 2µm (31)

1only in this case we calulate Λ but it is known, that K=̂Λ
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5 Summary and Discussion of the Results

Grating Constants and Resolution: We obtained the following Results for the
different Gratings:

grating K [µm] α [-]
sine grating 1.022± 0.012 -
1 (from gaussian Fit) 144.2± 0.5 110± 8
1 (from plot) 145.2± 0.7
2 37.96± 0.02 52± 16
3 114.7± 0.3 174± 13
4 110.4± 0.2 181± 13
5 56.5± 0.2 283± 1

Table 3: Results for K and α

Note that for grating 2 we shut the aperture to a beam diameter of
DLaser = (1.0± 0.3)mm because it led to a more clear interference pattern. All the
other measurements were performed with a widened aperture and a beam diameter
of DLaser = (4.0± 0.3)mm. This obviously leads to a significantly smaller resolution
of grating 2 in this measurement.
The amplitude gratings subjectively showed macroscopic irregularities such as bumps
and variations in colour and brightness. We assume to have these averaged out by
averaging over all the observed orders of diffraction of each grating.
The grating constant obtained for grating 1 by fitting a gaussian function to each
peak coincides within 1σ with the grating constant obtained by graphical determi-
nation of the peaks. The uncertainties of the average over the K values from the
different orders of diffraction lay within the same order of magnitude for both meth-
ods. Moreover, the uncertainty for every constituent K of this average (cf. appendix
6.4) does likewise. Therefore we can conclude that fitting gaussian peaks does not
significantly improve the precision of our measurement.

Aperture Function and Slit-Width: From the measured intensities of grating
1 we approximated the aperture function g(x) which we plotted in fig. 3. This
allowed us to roughly estimate the slit-width / grating constant ratio to

b

K
≈ 0.24

Comprobation of the Raman Nath theory: In fig. 4 we fitted the squared
bessel functions of 0th, 1st and 2nd order to the relative intensities of the respective
diffraction orden in correlation to the applied voltage at the ultrasound cell. The plot
shows a tendency of the bessel functions to fit our data although the amplitudes show
an unexpected ”jump” at V = 6.5V which we suspect to be due to an irregularity
in the sonic frequency generator: The generator is supposed to hold a constant
frequency but shows a variation of about 4.5kHz during the measurement. This
variation is visualised in fig. 16 in appendix 6.5 where one can observe a collapse of
frequencies around the middle of our voltage range.
As to a quantitative inspection of the theory, we find out that our value for the
wavelength of sound in isooctane,

λ = (509± 4)µm
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which coincides with the reference value, obtained (eq. 30) from the reference value
for the speed of sound [3],

λisooctane = (520.9± 0.2)µm

within 3σ. This confirms our suspicion from the bessel fit, that our data fits the
theory to some degree but still shows a significant deviation which we blame the
ultrasound generator for.
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6 Appendix

6.1 Lab notes
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6.2 Plots of the Interference Patterns
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Figure 5: Interference pattern of grating 1
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Figure 6: Interference pattern of grating 2
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Figure 7: Interference pattern of grating 3
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Figure 8: Interference pattern of grating 4
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Figure 9: Interference pattern of grating 5
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6.3 Gaussian Fit to Grating 1 Peaks
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Figure 10: Gaussian fit to peak of 0th order
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Figure 11: Gaussian fit to peak of 1st order
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Figure 12: Gaussian fit to peak of 2nd order
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Figure 13: Gaussian fit to peak of 3rd order
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Figure 14: Gaussian fit to peak of 4th order
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6.4 Data for Calculation of Grating Constants

Results from Gaussian Fits to grating 1 :
order µ [µs] ∆t [µs] β [-] K [µm]
0 491,85 ± 0,05 - - -
1 555,7 ± 0,3 63,9 ± 0,3 0,00434 ± 0,00010 146 ± 4
2 622,3 ± 0,4 130,5 ± 0,4 0,00877 ± 0,00012 144 ± 2
3 689,2 ± 0,5 197,4 ± 0,5 0,01322 ± 0,00013 143,6 ± 1,4
4 756,1 ± 1,2 264,3 ± 1,2 0,01767 ± 0,00017 143,2 ± 1,3

Table 4: Calculation of grating constants using the data obtained from gaussian fits
(cf. data from graphical analysis in tab. 6.4 on next page)
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Results from the data obtained graphically
Grating 1
order µ [µs] ∆t [µs] β [-] K [µm]
0 492,8 ± 0,1
1 556 ± 2 63 ± 2 0,00430 ± 0,00017 147 ± 6
2 622 ± 2 129 ± 2 0,00869 ± 0,00017 146 ± 3
3 689 ± 2 196 ± 2 0,0131 ± 0,0002 144 ± 2
4 756 ± 2 263 ± 2 0,0176 ± 0,0002 144 ± 2

Grating 2
order µ [µs] ∆t [µs] β [-] K [µm]
0 1019 ± 1 - - -
1 1268 ± 2 249 ± 2 0,0167 ± 0,0002 38,0 ± 0,5
2 1519 ± 2 500 ± 2 0,0333 ± 0,0003 38,0 ± 0,3

Grating 3
order µ [µs] ∆t [µs] β [-] K [µm]
0 494 ± 0,5
1 575 ± 2 81 ± 2 0,0055 ± 0,0002 115 ± 4
2 658 ± 4 164 ± 4 0,0110 ± 0,0003 115 ± 3
4 826 ± 6 332 ± 6 0,0222 ± 0,0004 114 ± 2
5 909 ± 3 415 ± 3 0,0277 ± 0,0003 114,2 ± 1,2

Grating 4
order µ [µs] ∆t [µs] β [-] K [µm]
0 494 ± 1
1 579 ± 1 85,0 ± 1,4 0,0058 ± 0,0001 110 ± 3
3 750 ± 3 256 ± 3 0,0171 ± 0,0003 110,9 ± 1,6
5 923 ± 3 429 ± 3 0,0286 ± 0,0003 110,5 ± 1,1

Grating 5
order µ [µs] ∆t [µs] β [-] K [µm]
0 992 ± 2
1 1160 ± 2 168 ± 3 0,0113 ± 0,0002 56,1 ± 1,1
2 1327 ± 3 335 ± 4 0,0224 ± 0,0003 56,6 ± 0,7
4 1660 ± 10 668 ± 10 0,0445 ± 0,0007 56,9 ± 0,9

Table 5: Calculation of grating constants using the data obtained graphically
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6.5 Calculations of the Phase grating

Voltage Order Amplitude sAmplitude Time szeit relampli sRelAmplitude Λ sΛ
[V] [V] [V] [µs] [µs] [m] [m]

0 0 3,16 0,01 98,30 0,40 1,00 0,0045 1,06E-04
0,5 0 3,11 0,01 98,20 0,40 0,98 0,0044 1,06E-04

1 0 3,04 0,01 97,70 0,40 0,96 0,0044 1,06E-04
1 0,20 0,01 77,50 0,50 0,06 0,0032 4,55E-04 1,09E-04

1,5 0 2,94 0,02 97,90 0,60 0,93 0,0070 1,11E-04
1 0,29 0,03 78,00 2,00 0,09 0,0095 4,66E-04 1,73E-04

2 0 2,79 0,02 98,30 0,30 0,88 0,0069 1,05E-04
1 0,43 0,02 78,00 0,70 0,14 0,0063 4,66E-04 1,14E-04

2,5 0 2,61 0,02 97,90 0,40 0,83 0,0068 1,06E-04
1 0,58 0,02 79,30 0,10 0,18 0,0064 4,99E-04 1,04E-04
2 0,02 0,02 60,00 5,00 0,01 0,0063 4,87E-04 3,62E-04

3 0 2,38 0,02 97,00 1,00 0,75 0,0068 1,24E-04
1 0,71 0,02 79,00 1,00 0,22 0,0064 4,91E-04 1,25E-04
2 0,05 0,02 59,00 1,00 0,02 0,0063 4,74E-04 1,27E-04

3,5 0 2,16 0,02 97,70 0,30 0,68 0,0067 1,05E-04
1 0,83 0,02 80,00 1,00 0,26 0,0064 5,19E-04 1,25E-04
2 0,08 0,02 60,00 2,00 0,03 0,0063 4,87E-04 1,74E-04

4 0 1,89 0,02 98,40 0,60 0,60 0,0066 1,11E-04
1 0,98 0,02 80,70 0,40 0,31 0,0064 5,41E-04 1,07E-04
2 0,13 0,02 61,00 2,00 0,04 0,0063 5,00E-04 1,74E-04

4,5 0 1,63 0,02 97,50 0,05 0,52 0,0065 1,03E-04
1 1,08 0,02 80,00 0,10 0,34 0,0064 5,19E-04 1,04E-04
2 0,18 0,02 60,00 1,00 0,06 0,0063 4,87E-04 1,27E-04

5 0 1,39 0,02 97,00 1,00 0,44 0,0065 1,24E-04
1 1,16 0,02 80,40 0,90 0,37 0,0064 5,31E-04 1,21E-04
2 0,26 0,02 61,00 2,00 0,08 0,0063 5,00E-04 1,74E-04

5,5 0 1,15 0,02 97,00 1,00 0,36 0,0064 1,24E-04
1 1,22 0,02 81,00 1,00 0,39 0,0064 5,51E-04 1,24E-04
2 0,32 0,02 62,00 1,00 0,10 0,0063 5,14E-04 1,27E-04

6 0 1,15 0,02 97,00 1,00 0,36 0,0064 1,24E-04
1 1,14 0,02 80,00 1,00 0,36 0,0064 5,19E-04 1,25E-04
2 0,24 0,02 61,00 2,00 0,08 0,0063 5,00E-04 1,74E-04

6,5 0 1,39 0,02 97,00 1,00 0,44 0,0065 1,24E-04
1 1,18 0,02 80,00 1,00 0,37 0,0064 5,19E-04 1,25E-04
2 0,27 0,02 61,00 1,00 0,09 0,0063 5,00E-04 1,27E-04

7 0 1,25 0,02 97,00 1,00 0,40 0,0065 1,24E-04
1 1,20 0,02 80,00 1,00 0,38 0,0064 5,19E-04 1,25E-04
2 0,30 0,02 62,00 2,00 0,09 0,0063 5,14E-04 1,74E-04

7,5 0 1,10 0,02 97,00 1,00 0,35 0,0064 1,24E-04
1 1,23 0,02 81,00 1,00 0,39 0,0064 5,51E-04 1,24E-04
2 0,37 0,02 62,00 1,00 0,12 0,0063 5,14E-04 1,27E-04

8 0 0,90 0,02 96,50 1,00 0,28 0,0064 1,24E-04
1 1,24 0,02 80,00 1,00 0,39 0,0064 5,19E-04 1,25E-04
2 0,46 0,02 62,50 1,00 0,15 0,0063 5,21E-04 1,26E-04

8,5 0 0,77 0,02 96,00 1,00 0,24 0,0064 1,24E-04
1 1,23 0,02 80,00 1,00 0,39 0,0064 5,19E-04 1,25E-04
2 0,53 0,02 62,00 1,00 0,17 0,0064 5,14E-04 1,27E-04

9 0 0,70 0,02 96,00 1,00 0,22 0,0064 1,24E-04
1 1,22 0,02 80,00 1,00 0,39 0,0064 5,19E-04 1,25E-04
2 0,56 0,02 62,50 1,00 0,18 0,0064 5,21E-04 1,26E-04

9,5 0 0,61 0,02 96,00 1,00 0,19 0,0064 1,24E-04
1 1,19 0,02 80,00 1,00 0,38 0,0064 5,19E-04 1,25E-04
2 0,62 0,02 63,00 1,00 0,20 0,0064 5,29E-04 1,26E-04

9,86 0 0,55 0,02 96,00 1,00 0,17 0,0064 1,24E-04
1 1,15 0,02 80,00 1,00 0,36 0,0064 5,19E-04 1,25E-04
2 0,66 0,02 63,00 1,00 0,21 0,0064 5,29E-04 1,26E-04
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Figure 15: The linear regression for the reference grating with the utrasound cell.
∆t is given in µs

25



0 1 2 3 4 5 6 7 8 9 1 0

2 1 3 0

2 1 3 1

2 1 3 2

2 1 3 3

2 1 3 4

2 1 3 5

2 1 3 6
 D i s p l a y e d  F r e q u e n c y

Fre
qu

en
cy

[kH
z]

V o l t a g e
[ V ]

Figure 16: The indicated Frequency against the Voltage
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