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Abstract

In the experiment “ultrasound phase grating“, essential effects of diffraction are examined by
analysing the different behaviour of amplitude and phase gratings. In a first step, different
amplitude gratings are evaluated in respect of their grating constant, resolution and aperture
function. In a second step a phase grating, produced by an ultrasound wave generator in a tank
of isooctane, can be analysed and its interference pattern can be compared to the Raman-Nath-
Theory.

Whereas the amplitude gratings were all successfully analysed with the results being on a realistic
scale, the analysed phase grating showed roughly the correct trend, but couldn’t match the
Raman-Nath-Theory perfectly. In contrast, the calculated ultrasound wave length provided a
very realistic value.
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1 Introduction
In this experiment the fundamental effects of diffraction are studied by evaluating the behaviour
of different gratings on an optical bench. As the first part of the experiment focuses on amplitude
gratings, that vary the transmission of the light beams going through the grating, the second
part mainly studies a phase grating that shifts the phase of the beam and is realised by an
ultrasound wave.

In total, the experiment is divided into three main parts. The first part focuses on the determi-
nation of the grating constants and resolution of different amplitude gratings. The second part
deepens the first part by finding the aperture function of one of the gratings. Finally the phase
grating is studied and the results are compared to the Raman-Nath-Theory.

2 Theory
The following sections introducing the theory and methodology necessary for the experiment
are mainly based on the experiment description, which is provided by the advanced physics lab
team [1] and the diploma thesis by Lutz Lefèvre [2].

2.1 Table of the used variables

Tab. 1: Table of the used symbols for the parameters used in the protocol.

Symbol Parameter
g(x, y) aperture function

I Intensity
K grating constant
m order of the maximum

mmax highest order
N number of lightened slits
θm angle to maximum m on the screen
A resolution
λ wavelength (light)
Λ wavelength (ultrasound)

∆λ difference in wavelength (light)
U voltage on the ultrasound generator
ρ density
n refractive index
α unknown factor in the Bessel function

a, x distances on the optical bench

2.2 Basic theory about diffraction

The experiment investigates the fundamental effects of diffraction. In a diffraction experiment a
light source that transmits parallel beams (for example by using a collimating lens) sends light
through a slit or a grating, generating an interference pattern on a screen.

Generally there a two fundamentally different sorts of gratings – the amplitude and the phase
grating [1]. Gratings are typically described by their aperture function g(x, y), which depends
on the geometry of the grating in the xy-plane. An amplitude grating varies the transmission
T of the light, which means that the aperture function g(x, y) = T is completely real, whereas
the phase grating has a complex aperture function and therefore generates phase shifted beams.
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The connection between intensity and aperture function is described by the absolute square of
the Fourier transformation [1]:

I = |y|2(x⃗) =
∣∣∣∣∫

aperture
g(k⃗)eik⃗·x⃗dk⃗

∣∣∣∣2. (1)

2.3 Amplitude gratings: grating constant and resolution

For the first parts of the experiment the gratings that have to be examined are all amplitude
gratings. A characteristic quantity of the gratings is the grating constant K that describes the
distance between two neighbouring slits. For an amplitude grating the following formula gives
the correspondence between the interference maximum m, the wave length of the light λ and
the deflection angle θm [1]:

mλ = K sin(θm). (2)

Alternatively the grating constant can be displayed as the number of slits per length 1/K. In
the following protocol this definition is the preferred one.
An estimation of the quality of a given grating can be calculated by the resolution A which is
defined as the quotient of wavelength λ and the difference in wavelength ∆λ that still generates
two separable interference patterns on the screen. In the case of an amplitude grating one can
also use an alternative formula derived from the Rayleigh criteria with N being the number of
lightened slits and mmax being the order of the outermost maximum detected [1]:

A = λ

∆λ
= Nmmax. (3)

To get the aperture function of an amplitude grating an approximation can be useful. Because
intensity and aperture function are connected by Fourier transformation and the image on the
screen is mainly made up of discrete maxima, a good approximation can be achieved by using
the Fourier series with the square roots of the intensities being the coefficients of the Fourier
series [1]:

g(x) =
∞∑

j=0
±
√

Ij cos
(

x

K
2πj

)
, (4)

⇒ g(x) =
√

I0 +
√

I1 · cos
(

x

K
2π

)
. (5)

Equation 5 shows the specific aperture function of a sine grating that only has the first order
of the Fourier series and therefore only leads to first order maxima on the screen. This specific
grating will also later be discussed in the experiment.

2.4 Phase gratings: generation and Raman-Nath-Theory

In the other parts of the experiment a phase grating is studied. This grating is realised by
applying a voltage U to a piezo crystal, which produces an ultrasound wave in a tank of isooctane.
The wave produces fluctuations in the density ∆ρ of the isooctane and thereby fluctuations in
the refractive index ∆n. These fluctuation cause different optical path lengths and therefore
different phases in the exiting beams [1]:

n(x) = n0 + ∆n sin
(2πx

Λ

)
with ∆n ∝ ∆ρ ∝ U. (6)

The description of the intensity distribution after a phase grating is described by the Raman-
Nath-Theory. In analogy to Equation 2 it provides an expression to find the angle for the
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maxima θm in dependence of their order m, the wavelength of the light λ and the ultrasound
wavelength Λ [1]. In addition the Raman-Nath-Theory provides a formula to find the intensity
Im of the maximum of order m [1]:

sin(θm) = ±m
λ

Λ , (7)

Im = J2
m(αU). (8)

Jm is a Bessel-function and α is a constant that depends on multiple outer factors [1]. In our
experiment the concrete composition of α is irrelevant, because it can later be found by fitting
the Bessel-function to the data.
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3 Setup and measurements
To perform the different measurements described in the introduction, three different setups are
needed. First the grating constant of a sine grating should be found by directly measuring the
distance between the two first maxima. The setup for this part can be seen in Figure 1.

Laser

grating screen
a

Screen

x

Fig. 1: Sketch of the setup for the first measurement on a sine grating
with all the relevant parameters for the measurements. The distance a
between grating and screen and the distance x between the two maxima
are also shown.

The laser beam with a wavelength of λ = 632.8 nm (no uncertainty found in the data sheet
[3]) goes through the sine grating and hits the screen. The grating constant of the sine grating
1/KS = 1016 mm−1 is recorded for comparison with the calculated value. For the distance a
between screen and grating and the distance x between the two first maxima the following values
are measured with the uncertainty approximated with a triangular distribution [4]:

a = (6.40 ± 0.12) cm, (9)
x = (10.60 ± 0.16) cm. (10)

For the measurements of the other amplitude gratings another setup, which is displayed in
Figure 2, is used.

Laser

L1 L2

aperture

grating

L3

rotating mirror

diodes

Fig. 2: Sketch of the setup for the other measurement of amplitude grat-
ings with all the relevant parameters and components for the measure-
ments.

On this setup the laser first passes two lenses that widen and then collimate the beam and
afterwards it travels through an aperture. The focal lengths of the lenses can be found in
Figure 30. It then hits the given amplitude grating before passing another lens and hitting a
rotational mirror that sends the light to a diode. With a beam splitter the beam is divided in
two parts to get a trigger signal on another diode. With an oscilloscope the interference patterns
can be analysed digitally.
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For calibration reasons the first measurement is taken with a grating R with the well-known
grating constant 1/KR = 80 cm−1. Afterwards five other gratings are evaluated. To get the
resolution of the gratings, the length L with lightened slits on the grating has to be measured.
The uncertainty is again approximated with formulas of a triangular distribution from [4]:

L = (4.0 ± 0.4) mm. (11)

For the last part of the measurements the only change in the setup is the exchange of the
amplitude gratings by the ultrasound cell to measure a phase grating (Figure 3). To calibrate
the new setup another measurement with grating R is made. In the following, the ultrasound
generator is turned on and a frequency is found that gives a stable signal (f ≈ 2070 kHz, the
exact values vary with the voltage and can be found in Figure 31). By varying the voltage in
21 steps between 0 V and 10 V the phase grating can by analysed.

Laser

L1 L2

ultrasound
tank L3

rotating mirror

diodes

Fig. 3: Sketch of the setup for the last measurements on a phase grat-
ing realised by a ultrasound cell with all the relevant parameters and
components for the measurements.
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4 Data analysis and discussion of uncertainties

4.1 Analysis of the measurements of amplitude gratings

4.1.1 Determining the grating constant of a sine grating

With Equation 2 the grating constant of the sine grating can be directly found by measuring
geometrical parameters:

mλ = K sin(θm), (12)

⇒ 1
K

= sin(arctan(x/(2a)))
mλ

, (13)

with m = 1, λ = 632.8 nm, x the distance between the maxima and a the distance between the
grating and the screen. The uncertainty can be found by Gaussian propagation of uncertainty
[5]:

∆
( 1

K

)
= 1

mλ

√√√√( ∆x

2a( x2

4a2 + 1)(3/2)

)2

+
(

x∆a

2a2( x2

4a2 + 1)(3/2)

)2

. (14)

By plugging in the values one can get the following grating constant:

1
K

= (1008 ± 15) mm−1,

⇒ K = (0.992 ± 0.014) µm.

4.1.2 Finding the grating constants of other amplitude gratings

To find the grating constant of the other gratings the data from the oscilloscope can be used.
First there has to be a calibration measurement with grating R that has a well-known grating
constant of 1/KR = 80 cm−1. For every measurement three sets of data are taken to reduce
noise by averaging the data. The interference pattern of the calibration measurement can be
found in Figure 4. As one can see, there is still a lot of noise left. Reasons for this remaining
noise are debated in the discussion part in subsection 5.3.
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Fig. 4: In this graphic the Voltage U in mV is plotted against the time t
in ms for the calibration grating. You can see 9 peaks in the interference
pattern.

Because the oscilloscope has an arbitrary time axis as the x-axis we need to find a formula to
convert the time into an angle by comparing the expected peaks calculated with Equation 2 with
the peaks in the interference pattern in Figure 4. The first step is to calculate the expectation
for the angle. Because later the sine of the angle is used, we can also find a conversion formula
between sin(θm) and t. From Equation 2 we get:

sin(θm) = mλ

K
. (15)

Because for none of this parameters an uncertainty is known, we do not find an uncertainty for
sin(θm). In a second step the peaks in the interference pattern for the calibration measurement
are located. The peak position is found by fitting a Gauß-curve in the neighbourhood of the
peak:

G(x) = A√
2πσ2

e− (x−µ)2

2σ2 . (16)

For the time t of the peak we take the parameter µ and its uncertainty as returned by the
scipy.optimize.curve_fit function. Together with the expected sines, the peak position can
be found in Table 9 in the appendix. In Figure 5 the interference pattern is displayed with the
given peaks:
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Fig. 5: In this graphic the Voltage U in mV is plotted against the time t
in ms for the calibration grating. You can also see the 9 marked peaks in
the interference pattern. Additionally the position of the peaks is marked
by a cross with error bars.

To find the conversion factor a linear regression with the found data is proceeded:

t = a · sin(θm) + b. (17)

While a is the conversion factor between sin(θm) and t, b is the time offset of the principal peak.
For the values of a and b we get with scipy.optimize.curve_fit:

a = (15.13 ± 0.04) ms,
b = (0.4908 ± 0.0002) ms.

For later conversion of data only a is relevant, because the time-offset differs from measurement
to measurement. The linear regression can be found in Figure 6.
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-0.02 -0.01 0.00 0.01 0.02 0.03
sin(θ)

0.2

0.4

0.6

0.8

t [
m

s]

Linear Regression to calculate sin(θ) from t
Regression line
Confidence band
Calibration

Fig. 6: In this graphic the calculated times t in ms of the peaks are plotted
against the expected sin(θ) for the calibration grating. There is also a
regression line with a confidence band to find the conversion factor. The
confidence band is too small to be visible.

For the analysis of the grating constants we only look at one of the gratings, the analogue
discussion is made with the other gratings and the graphics can be found in the appendix
(Figure 17 to Figure 20). Analogue to the calibration measurement the data is imported. After
finding the time code of the main peak t0 with Equation 16, the data is shifted so that the
main peak is at t = 0. Than the data is converted into sin(θ). The uncertainty is splitted into
systematic uncertainty from the calibration and the main peak and statistical uncertainty from
the measurement:

sin(θ) = t − t0
a

, (18)

∆stat sin(θ) = ∆t

a
, (19)

∆syst sin(θ) =

√(
−∆t0

a

)2
+
((t − t0)∆a

a2

)2
. (20)

Analogue to the calibration we get the intensity distribution with the shown peaks portrait in
Figure 7 and summarised in Table 2.
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Fig. 7: In this graphic the Voltage U in mV is plotted against the con-
verted sin(θ) for the first grating. You can also see the 6 marked peaks in
the interference pattern. Additionally the position of the peaks is marked
by a cross with error bars.

The values for K can now be easily found with Equation 2:
1
K

= sin(θm)
mλ

, (21)

∆stat/syst

( 1
K

)
=

∆stat/syst sin(θm)
mλ

. (22)

All the values for K and the positions of the peaks are summarised in Table 2:

Tab. 2: Values for the grating constant 1/K in m−1 for the first grating.
The first column shows the given order m of the maximum, the second
column lists the peak positions sin(θm) and in the last column the calcu-
lated grating constants 1/K of each peak are listed with the statistical
and systematical error.

m sin(θm) · 103 grating constant 1/K in m−1

−3 (−13.69 ±stat 42.79 ±syst 0.04) (7210 ±stat 22540 ±syst 20)
−2 (−9.07 ±stat 0.32 ±syst 0.03) (7160 ±stat 250 ±syst 20)
−1 (−4.710 ±stat 0.090 ±syst 0.017) (7440 ±stat 140 ±syst 30)
0 (0.000 ±stat 0.012 ±syst 0.012) −
1 (4.747 ±stat 0.078 ±syst 0.018) (7500 ±stat 120 ±syst 30)
2 (9.18 ±stat 0.18 ±syst 0.03) (7250 ±stat 150 ±syst 20)

The great statistical uncertainty in the first row will be discussed in subsection 5.3.
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The resulting value for K can now be found by averaging all the values for K. The statistical
uncertainty can be calculated by the standard deviation of the mean [4] and the systematical
uncertainty is calculated by Gaussian propagation of uncertainties [1]:

1
K

= (73.14 ±stat 0.67 ±syst 0.11) cm−1,

K = (136.7 ±stat 1.2 ±syst 0.2) µm.

All the values for K for the five different gratings are summarised in Table 3:

Tab. 3: Summary of the values for the grating constant 1/K in m−1 and
K in µm for all gratings.

1/K in m−1 K in µm
Grating 1 (7314 ±stat 67 ±syst 11) (136.7 ±stat 1.2 ±syst 0.2)
Grating 2 (27701 ±stat 16 ±syst 77) (36.10 ±stat 0.02 ±syst 0.10)
Grating 3 (9240 ±stat 50 ±syst 50) (108.2 ±stat 0.6 ±syst 0.6)
Grating 4 (9330 ±stat 120 ±syst 140) (107.2 ±stat 1.3 ±syst 1.6)
Grating 5 (18460 ±stat 70 ±syst 20) (54.17 ±stat 0.21 ±syst 0.07)

4.1.3 Discussion of the resolution of the gratings

Similarly to the last part, the resolution is again discussed with the first grating. As described
by Equation 3, for calculating the resolution the number of lightened slits N and the order
mmax of the highest maximum are needed. To get N the width of the beam on the grating
L = (4.0 ± 0.4) mm is measured and afterwards multiplied by the previously found grating
constant 1/K. To find mmax the number of clearly visible peaks in the interference pattern is
counted. In Figure 8 a screenshot from the oscilloscope is taken and the number of peaks is
counted.

Fig. 8: Screenshot of the oscilloscope for counting the orders of the max-
ima for the first grating. The x-axis is the time-axis and the y-axis the
intensity of the interference pattern. In red the three visible peaks are
enumerated.
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The resolution A can now be easily calculated:

A = Lmmax
K

, (23)

∆systA = mmaxL∆syst

( 1
K

)
, (24)

∆statA = mmax

√(
L∆stat

( 1
K

))2
+
(∆L

K

)2
. (25)

In Table 4 all the resolutions for the five gratings are summarised together with their grating
constants and the number of visible maxima.

Tab. 4: Summary of the values for the grating constant 1/K in m−1 for
all gratings. In addition the highest peak order mmax and resolution A
are listed.

1/K in m−1 mmax resolution A

Grating 1 (7314 ±stat 67 ±syst 11) 3 (87.8 ±stat 0.8 ±syst 9.0)
Grating 2 (27701 ±stat 16 ±syst 77) 3 (332.4 ±stat 0.2 ±syst 33.9)
Grating 3 (9240 ±stat 50 ±syst 50) 2 (73.9 ±stat 0.4 ±syst 7.6)
Grating 4 (9330 ±stat 120 ±syst 140) 1 (37.3 ±stat 0.5 ±syst 3.8)
Grating 5 (18460 ±stat 70 ±syst 20) 4 (295.4 ±stat 1.2 ±syst 30.1)

4.1.4 Finding the aperture function of the first grating

For the first grating an approximation for the aperture function with Equation 4 should be
found. Therefore all the intensities of the peaks are needed as coefficients in the Fourier series.
Because the positions of the peaks were already used, the related height can be found easily.
The uncertainty of the peak position is translated into an uncertainty of the height, represented
by the voltage, by taking ∆U = U(sin θpeak) − U(sin θpeak ± ∆ sin θpeak). For exacter values an
extra measurement is made for the smaller peaks. Figure 9 shows the measurements for finding
the aperture function with all the peak voltages marked.
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(b) Secondary maxima marked

Fig. 9: In the left graphic one can see the interference pattern of the first
grating with the main maximum marked. On the right hand side one can
see an exacter measurement with the smaller secondary maxima marked.

To get the intensity all the voltages have to be normalised by dividing them with the voltage of
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the main maximum:

Ii = Ui

U0
, (26)

∆Ii =
√(∆Ui

U0

)2
+
(

Ui∆U0
U2

0

)2
. (27)

All the intensities are put together in Table 5:

Tab. 5: Normalised and averaged intensities for each order m of the max-
ima.

m Intensity
3 0.0070 ± 0.0015
2 0.0241 ± 0.0013
1 0.045 ± 0.002
0 1.000 ± 0.016

By plugging all the intensities into g(x) = ∑∞
j=0 ±

√
Ij cos

(
x
K 2πj

)
we can find the aperture

function which is portrait in Figure 10:
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Fig. 10: This plot shows a period of the aperture function of the first grat-
ing. Therefore the intensity is plotted against the length on the grating
in mm.

Some parts of the aperture function are greater than 1 which should not be possible. The reason
for this is discussed later in subsection 5.3.
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4.1.5 Finding the quotient of gap width and grating constant

For the last part of the analysis of amplitude gratings, the gap width b of the slits of the first
grating should be found from the aperture function. Therefore we use the Full-Width-Half-
Maximum of the middle peak of the aperture function as a guess for b. The FWHM is found by
taking the average between maximum and minimum and then finding the width of the peak at
this position. In Figure 11 the aperture function is plotted with a FWHM bar.
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Fig. 11: This plot shows a period of the aperture function of the first
grating. Therefore the intensity is plotted against the length on the grat-
ing in mm. Additionally the Full-Width-Half-Maximum (FWHM) of the
function is shown as a green line.

As uncertainty we assume a statistical error of 5%. The quotient q of gap width and grating
constant can now be directly calculated:

q = b

K
, (28)

∆systq = b∆syst

( 1
K

)
, (29)

∆statq =

√(
b∆stat

( 1
K

))2
+
(∆b

K

)2
. (30)

Plugging in the values gives the following value for q:

q = (0.222 ±stat 0.011 ±syst 0.003)
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4.2 Analysis of the measurements of the phase grating

4.2.1 Intensity distribution of the ultrasound phase grating

Because the laser beam now travels through the tank of isooctane, another calibration is neces-
sary. We again use grating R to calibrate the oscilloscope and do a linear regression completely
analogue to subsubsection 4.1.2. In Figure 21 in the appendix one can find the marked peaks
of the interference pattern of the calibration measurement, which are then used for the linear
regression. In Figure 12 the linear regression is portrayed. For the regression parameters slope
a and intercept b we get from scipy.optimize.curve_fit:

a = (15.40 ± 0.06) ms,
b = (0.4967 ± 0.0005) ms.
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Fig. 12: In this graphic the calculated times of the peaks are plotted
against the expected sin(θ) for the calibration grating for the ultrasound
tank. There is also a regression line with a confidence band to find the
conversion factor. The confidence band is too small to be visible.

After importing the data, it is again shifted, so that the main maximum is at t = 0 and than
converted to sin(θ) by dividing with the conversion factor a (Equation 18 - Equation 20). After
finding the amplitude of the main maximum at 0 V all the data can be normalised to get the
intensity (analogue to Equation 26 - Equation 27). Plotting all the data in one plot gives us the
following three dimensional Figure 13:
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Fig. 13: In this graphic the sin(θ) of the peaks are plotted against the
normalised intensity for different voltages in V. In the four plots different
perspectives are visualised.

4.2.2 Comparison with the Raman-Nath-Theory

To compare the measurements with the Raman-Nath-Theory (Equation 8) we have to separate
all the peaks and create new plots that show the peak height in comparison to the voltage on
the ultrasound generator. For doing this, first the position of the different peaks has to be
found. To find the peaks, the measurement with the highest voltage is used, because here all
the maximums can be seen. Again, a Gaussian curve is fitted to the peaks to find the best
values for sin(θm). In Figure 14 the peaks are shown and in Table 10 in the appendix they are
all listed. The uncertainty on the intensity of the peaks is estimated by 10% because the noise
of the measurement is quite high.
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Fig. 14: In this graphic the Voltage U in mV is plotted against sin(θ) for
the highest voltage. The 5 peaks are marked.

After having found the position of the peaks the values for all the different voltages can be
assembled. By using scipy.optimize.curve_fit, the theoretical trend of the Raman-Nath-
Theory (Im = J2

m(αU), [1]) can be fitted with the data. Exemplary, the fitted Bessel function to
the data of the main peak is shown in Figure 15, all the other fits can be found in the attachment
in Figure 26 to Figure 29. Because for the lower voltage measurements not all the peaks are
visible and the noise is dominating, only the data where clear peaks are recognisable are used
for the fit. In the plots, all used data points are red and all the unused point are marked grey.

20



x x

0 2 4 6 8 10

Voltage U [V]

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

Peak 3 Fit
Fitted Bessel function
Used Measurements

Fig. 15: In this graphic the intensities I of the main maxima are plotted
against the voltage U in V. One can also see the fitted Bessel function.

For the fitting parameter α we get the values and uncertainties from scipy.optimize.curve_fit,
all summarised in Table 6. As we can see in the plot, not all the data matches the theory, so
a χ2-value is calculated to give an approximation for the quality of the fit [5]. A χ2-value of
χ2 ≈ n − f where n is the number of data points and f is the number of fit parameters (in our
case 1) characterises a good fit. If χ2 ≫ n − f , the fit is not a good match for the data [5].

Tab. 6: Fit parameter values α in V−1 and χ2-values for the fits with the
squared Bessel-function Im = J2

m(αU). In addition, for comparison the
value of n − f where n is the data point number and f is the number of
fit parameters is given.

m α in V−1 χ2-values n − f

-2 0.207 ± 0.002 103 11
-1 0.229 ± 0.004 387 20
0 0.167 ± 0.002 46 20
1 0.206 ± 0.004 403 20
2 0.191 ± 0.002 69 8

The differences in the values of the fit parameter α as well as the calculated values for χ2 are
later discussed in the subsection 5.3.

4.2.3 Finding the wavelength of the ultrasound wave

To find the wavelength of the ultrasound wave Λ Equation 7 can be used. Because the positions
of the peaks of the interference pattern and their uncertainties have already been found and
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listed in Table 10 in the appendix, Λ can be simply found by a linear regression:

sin(θm) = 1
Λmλ, (31)

⇒ y = 1
Λx + b. (32)

In a plot with sin(θm) on the y- and mλ on the x-axis, 1/Λ would be the slope and b would
be the intercept. This plot can be found in Figure 16 with a linear regression and a confidence
band.
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Fig. 16: In this graphic sin(θ) is plotted against the order of the peak
times the laser wave length λ in m. One can also see the regression line
with the confidence band.

With scipy.optimize.curve_fit, the following parameters are found:

1
Λ = (1.6 ± 0.5) × 103 m−1,

b = (0.0 ± 0.2) × 10−3.

As expected, b is nearly 0. The value for Λ can now be calculated, the uncertainty is calculated
by Gaussian propagation of uncertainties. We get the following value:

Λ = (620 ± 180) µm.
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5 Summary and discussion of the results

5.1 Summary of the results

In the first part of the experiment, different amplitude gratings were discussed. For the first
grating, which was a sine grating, the following grating constant was found:

1
K

= (1008 ± 15) mm−1,

⇒ K = (0.992 ± 0.014) µm.

For five other amplitude gratings the grating constants and the resolution were calculated. All
the values are summarised in Table 7:

Tab. 7: Summary of the values for the grating constant 1/K in m−1 for
all gratings. In addition the highest peak order mmax and resolution A
are listed.

1/K in m−1 mmax resolution A

Grating 1 (7314 ±stat 67 ±syst 11) 3 (87.8 ±stat 0.8 ±syst 9.0)
Grating 2 (27701 ±stat 16 ±syst 77) 3 (332.4 ±stat 0.2 ±syst 33.9)
Grating 3 (9240 ±stat 50 ±syst 50) 2 (73.9 ±stat 0.4 ±syst 7.6)
Grating 4 (9330 ±stat 120 ±syst 140) 1 (37.3 ±stat 0.5 ±syst 3.8)
Grating 5 (18460 ±stat 70 ±syst 20) 4 (295.4 ±stat 1.2 ±syst 30.1)

From calculating the aperture function for the first grating, the quotient between gap width and
grating constant has also been calculated:

q = (0.222 ±stat 0.011 ±syst 0.003) .

For the analysis of the phase grating the typical intensity distributions were observed. Fits with
the squared Bessel functions J2

m(αU) lead to different fit parameters α and different χ2-values
collected in Table 8.

Tab. 8: Summery of the fit parameter values α in V−1 and χ2-values for
the fits with the squared Bessel-function Im = J2

m(αU). In addition for
comparison the value of n − f where n is the data point number and f is
the number of fit parameters is given.

m α in V−1 χ2-values n − f

-2 0.207 ± 0.002 103 11
-1 0.229 ± 0.004 387 20
0 0.167 ± 0.002 46 20
1 0.206 ± 0.004 403 20
2 0.191 ± 0.002 69 8

Finally the ultrasound wavelength was derived from Raman-Nath-Theory:

Λ = (620 ± 180) µm.
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5.2 Comparison with expectation

For the grating constant of the sine grating, the calculated value can be compared to the real
value 1/KS = 1016 mm−1 by using a t-value. The t-value is calculated by dividing the difference
between measured and real value with the uncertainty of the measured value. A t-value smaller
than two corresponds with a good measurement. For 1/K we get the following t-value:

t = 0.55.

This t-value approves the accuracy of this measurement.
For the other grating constants, no real values are provided, which means no comparison is
possible. With 1/K-values between (7314±stat 67±syst 11) m−1 and (27701±stat 16±syst 77) m−1,
all of the magnitudes could be realistic grating constants. For the resolution a comparison is
not possible either. In addition, the resolution could vary a lot because the number of visible
maxima is very hard to find properly, due to a high measurement noise.
In our comparison with the Raman-Nath-Theory, it could not really be confirmed by the Bessel-
function-fits. With χ2-values much bigger than expected, only the rough trend of the data and
the theory are the same. In addition the fit-parameters differ from plot to plot which should
not be the case. A discussion of this problem can be found in the following subsection 5.3.
The ultrasound wavelength can be compared to the theoretical value, since we know the fre-
quency f = (2070 ± 3) kHz of the ultrasound wave. The sonic speed in isooctane is c =
(1070 ± 20) m s−1 [6]. By multiplying the two values and using Gaussian propagation of un-
certainties we get:

Λtheo = (565 ± 10) µm.

To compare the values, again a t-value can be calculated:

t = 0.27.

Again, the t-value shows that the measurements of the ultrasound wave matches the theory.

5.3 Discussion of results and uncertainties

A first important discussion point is the noise that couldn’t get reduced by taking the average of
three measurements. If the noise would have been of statistical nature this should have reduced
the noise strongly. Instead, no noise reduction is visible. The reason has to be a systematical
problem with the oscilloscope or the digital software, that produces noise of the same nature
for all measurements. Zooming in in the data shows a zig zag noise that is visible on every
measurement.
A possible way to reduce this noise would have been to average every value with its neighbouring
values. Because the peaks are not very broad, this would have lead to falsification of position
and height of the peaks, so we rejected this method. Another option would have been a fast
Fourier transformation of the data to cut the high frequencies of the noise.
Another discussion point are the high uncertainties some of the peak positions have. Especially
for the first grating, one of the peak position has an uncertainty being three times bigger than
the value itself. By using the method of fitting a Gauss curve to the peaks to find their position,
some of the smaller peaks are very hard to detect by the python fitting function. Still this
method seams to be much more accurate than finding the peaks by hand.
For the aperture function some of the values are greater than one which should not be possible.
The reason for this is, that the intensities are all normalised with the respect to the main
maximum. For a proper calibration another measurement would have been useful without a
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grating on the optical bench. Than all the intensities could have been normalised to the laser
intensity and no values greater than one would occur in the aperture function.

What is also important to discuss is the fact, that it is not guaranteed that the beams hits the
grating in a perfect 90◦ angle. Since for the theoretical expectation the beam is assumed to hit
the grating perpendicularly, this can be a main source of error. During the measurement it has
been tried to get a beam hitting the grating as perpendicular as possible, but still small variations
in the angle can not be excluded. Because this aspect has not been examined while measuring,
it is not possible to make a statement on how much this aspect influenced the measurement in
this case.

The last and most important discussion point is the fact, that almost all the χ2-values are way
too large. That means that the Bessel-function-fits to the data were not very good and the
Raman-Nath-Theory could not be directly confirmed. There are three main factors that lead to
the high χ2-values that are possible.
The first one is, that the uncertainties on the intensities are still very underestimated with 10%.
Having higher uncertainties would lead to a better χ2-value and so a better accordance to the
theory. Especially because the rough trend still fits the theory, this is a very possible reason.
Another plausible problem could be the method used for finding the data points. Only finding
the peaks for the highest voltage and not for every single voltage and that extending the model
on the other voltage-measurements could lead to the problem that not every peak is hitted
directly. On the other hand also the uncertainty would have decreased leading to only a tiny
approvement of the χ2-value.
A last important reason is the already discussed noise that could be reduced. Due to this noise,
also the amplitude of the peaks is changed slightly which leads to more inaccurate measurements.

Improvement of the measurements would be possible by having digital filters for the noise. In
addition to that, one could have performed more measurements to also reduce the statistical
noise better. For the second part it would have been interesting to also perform the phase-
grating-measurement with higher voltages to get more values for the Bessel-function. It would
have been insightful to see the main peak disappear and reappear. Of course measurements
could also been improved by hitting the diodes more direct or adjusting the mirrors to get an
even better centred beam.
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7 Attachment

7.1 Tables and graphics

Tab. 9: Values for the linear regression to calibrate the oscilloscope with
the grating R (1/KR = 80 cm−1). The first column shows the given
order m of the maximum, the second column lists the expected values for
sin(θm) and in the last column the time t of the peaks from the grating
are listed.

m sin(θm) time t in ms
−3 −0.015 0.262 ± 0.003
−2 −0.010 0.3384 ± 0.0008
−1 −0.005 0.4140 ± 0.0005
0 0.000 0.4906 ± 0.0004
1 0.005 0.5676 ± 0.0005
2 0.010 0.6424 ± 0.0015
3 0.015 0.723 ± 0.005
4 0.020 0.797 ± 0.002
5 0.025 0.878 ± 0.003

Tab. 10: In the table the positions of the five main peaks sin(θm) of the
phase grating interference patter are listed.

m sin(θm)
−2 −0.0021 ± 0.0015
−1 −0.0010 ± 0.0005
0 0.0000 ± 0.0003
1 0.0010 ± 0.0005
2 0.002 ± 0.002
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Fig. 17: In this graphic the Voltage U in mV is plotted against the time t
in ms for the second grating. You can also see the 5 marked peaks in the
interference pattern. Additionally the position of the peaks is marked by
a cross with error bars.
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Fig. 18: In this graphic the Voltage U in mV is plotted against the time
t in ms for the third grating. You can also see the 9 marked peaks in the
interference pattern. Additionally the position of the peaks is marked by
a cross with error bars.
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Fig. 19: In this graphic the Voltage U in mV is plotted against the time t
in ms for the fourth grating. You can also see the 4 marked peaks in the
interference pattern. Additionally the position of the peaks is marked by
a cross with error bars.
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Fig. 20: In this graphic the Voltage U in mV is plotted against the time
t in ms for the fifth grating. You can also see the 7 marked peaks in the
interference pattern. Additionally the position of the peaks is marked by
a cross with error bars.
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Fig. 21: In this graphic the Voltage U in mV is plotted against the time t
in ms for the calibration grating for the ultrasound tank. You can also see
the 9 marked peaks in the interference pattern. Additionally the position
of the peaks is marked by a cross with error bars.

Fig. 22: Screenshot of the oscilloscope for counting the orders of the
maxima for the second grating. The x-axis is the time-axis and the y-
axis the intensity of the interference pattern. In red the three visible
peaks are enumerated.
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Fig. 23: Screenshot of the oscilloscope for counting the orders of the
maxima for the third grating. The x-axis is the time-axis and the y-axis
the intensity of the interference pattern. In red the two visible peaks are
enumerated.

Fig. 24: Screenshot of the oscilloscope for counting the orders of the
maxima for the fourth grating. The x-axis is the time-axis and the y-axis
the intensity of the interference pattern. In red the one visible peak is
enumerated.
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Fig. 25: Screenshot of the oscilloscope for counting the orders of the
maxima for the fifth grating. The x-axis is the time-axis and the y-axis
the intensity of the interference pattern. In red the four visible peaks are
enumerated.
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Fig. 26: In this graphic the intensities I of the secondary maximum 2 on
the left are plotted against the voltage U in V. One can also see the fitted
Bessel function for which only the red data points are used.
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Fig. 27: In this graphic the intensities I of the secondary maximum 1 on
the left are plotted against the voltage U in V. One can also see the fitted
Bessel.
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Fig. 28: In this graphic the intensities I of the secondary maximum 1 on
the right are plotted against the voltage U in V. One can also see the
fitted Bessel function
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Fig. 29: In this graphic the intensities I of the secondary 2 maximum on
the right are plotted against the voltage U in V. One can also see the
fitted Bessel function for which only the red data points are used.
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7.2 Lab notes
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