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1 Theoretical Background

In this section we introduce the theoretical background needed to perform this experiment. Fur-
thermore a minimal description of the Standard Model of particle physics is given and a brief review
of some basic features of scattering processes described by quantum field theories (QFTs) are dis-
cussed using an analogy to non-relativistic quantum mechanics. We start by a short review of point
particle kinematics used within this experiment.

1.1 Point Particle Kinematics

Since the goal of particle physics is to study matter at the smallest scales, extremely high energies
are needed. This statement can be motivated by a simple resolution argument: To resolve very
small objects one needs a sufficiently small wavelength. Hence, in a scattering experiment we resolve
smaller scales with higher momenta (and therefore higher energies) as the de Broglie wavelength
goes as λ = h/p.

The theory which needs to be applied at high energies and flat space-time1 is special relativity.
Throughout this work we will use the (+,−,−,−)-signature for the Minkowski metric, where the
0th entry accounts for the time dimension. We will also use natural units where c = 1. For point
particle kinematics the object of interest is the four-momentum vector

p =


E
px
py
pz

 , (1)

which satisfies the on-shell condition

pµg
µνpν = pµp

µ = E2 − ~p2 = m2, (2)

where ~p is the usual three-momentum and m is the invariant mass which is Lorentz invariant. For
later analysis it is also practical to define the transverse mass

mT =
√

2pT(e)pT(ν)(1− cos(φe − φν)), (3)

which is invariant under Lorentz boosts along the z-axis (beam-axis). The transverse momentum
is just the transverse proportion of the momentum with respect to the z-axis. It is often useful to
reparameterize a problem using coordinates which satisfy certain symmetries. Therefore cylindrical
coordinates are used when dealing with colliding-beam-experiments, since the differential cross
section respects the cylindrical symmetry of the initial state. Hence one of the most important
parameters of a particles trajectory is the polar angle θ, which is the angle between the trajectory
and the beam axis. Instead of using θ directly it is of practical use to define the pseudo-rapidity

η = − ln

[
tan

(
θ

2

)]
, (4)

1This assumption holds since on small scales space-time is sufficiently flat.
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which is a dimensionless parameter. Using high energy approximations (neglecting rest-masses), it
is possible to reexpress the transverse momentum in terms of the pseudorapidity η and the measured
energy E of the particle via

pT ≈
E

cosh η
,

this expression is intensively used and a derivation of which is found in appendix A.

1.2 Particle Scattering Processes in QFTs

We already stated that due to the high energies needed to explore the realm of fundamental particles
the applied theory needs to satisfy the laws of special relativity. It is also not surprising that a theory
of fundamental particles needs to obey the features of quantum mechanics. From the unification of
both of these concepts quantum field theories (QFTs) arise in a quite natural way.

When exploring the interactions of fundamental particles via scattering experiments, it is clear to
see that the scattering matrix is the most central object in this context. The scattering matrix
relates the initial state and the final state of a physical system involved in a scattering process, and
its interpretation is quite similar to the scattering matrix in non-relativistic quantum mechanics.
The scattering matrix contains the matrix elements which need to be computed to make predictions
about scattering events. Although the construction of analytical expressions for the matrix elements,
which can be evaluated numerically, can be quite complex, the perturbative expansion of them has
a pictorial representation. These pictorial representations are called Feynman diagrams, which can
be used to build a good intuition on what is going on. It might be useful to look at a simple
example. In fig. 1 two Feynman diagrams are shown. These diagrams correspond to a scattering
event where one electron and one positron are in the initial and final states, so we have the reaction
e+e− → e+e−. It is seen that we can choose different “paths” from the initial state to the final
state. In fig. 1 for example the interaction is once “mediated” by a virtual photon and once by a
virtual Z-boson. The four-momenta of these virtual particles2do not respect the on-shell condition
shown in eq. (2).

A useful way to think about these Feynman diagrams is as an analogy to the propagation probabili-
ties in non-relativistic quantum mechanics. From non-relativistic quantum mechanics we know that
we cannot assign a trajectory to a particle which propagates from one point to another, but every
path connecting the initial and final position has a probability assigned to it. The same reasoning
applies to some extend to Feynman diagrams. The outer lines of a Feynman diagram dictate the
initial and final state of the system, whereas the propagator (the virtual particle) is a “trajectory”
connecting the initial and the final state, to which a probability is assigned. Another similarity
is that in non-relativistic quantum mechanics the classical trajectory contributes the most to the
propagator. This also holds to some extend for the QFT calculations. The probability for a specific

2It has to be pointed out that the term virtual particle has lead to a lot of confusion, even amongst physicists.
There is no reason to assume that the virtual particle shown in a Feynman diagram like fig. 1 really existed as a
particle. After all a Feynman diagram is a pictorial representation of a perturbative expansion of the corresponding
matrix element and interpretations like the ones discussed in this protocol are often oversimplifying the underlying
theory.
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Figure 1: In this picture two examples for tree level Feynman diagrams are shown, where one
electron and one positron are in the initial and final states (in general 6 more diagrams contribute
to this process at tree level in Feynman-t’Hooft-gauge using the Standard Model vertices.). In this
work we will use the convention where the arrow of time points from left to right. (So in this figure
only annihilation processes are shown.)

tree-level particle reaction is maximal 3 when the propagator (virtual particle) is close to on-shell.
This maximum in contribution causes the resonance when the kinematics of the initial particles
allow the propagator to be close to on-shell. This analogy follows very naturally from the path
integral formalism. For a rigorous treatment we suggest the books by Sakurai and Peskin [9, 8].

This reasoning is heavily used when applying cuts to the data, since if we are interested in a single
resonance of the system and we have a rough idea of where this resonance is expected4, we can use
the knowledge of the final state (the particles and their properties) and its kinematic parameters
to select events which might be amplified by the resonance of the new particle. And we can also
use these ideas to suppress events which might contribute to the background.

1.3 The Standard Model

The Standard Model of particle physics is a quantized gauge theory with the underlying gauge
group

SU(3)× SU(2)×U(1). (5)

To each of the group generators there is a gauge boson. So for the strong interaction we have, due
to the SU(3) gauge group, 32 − 1 = 8 generators and hence 8 different gluons. It is noticeable that
this is the reason there is no colorless gluon. For the weak interaction we have, due to the SU(2)
gauge group, 22 − 1 = 3 generators and hence 3 gauge bosons, which can be roughly identified by
the W±- and Z-Bosons. The electromagnetic interaction is a U(1) gauge theory hence there is only
one gauge boson, which is roughly identified by the photon.5 These gauge bosons are the mediators
of the weak, strong and electromagnetic forces. The gravitational force is not described within the
Standard Model. These forces act between the fermions6 of the Standard Model which are listed

3Of course the contribution of a single Feynman diagram to the total scattering amplitude depends on the
perturbative order (roughly the number of vertices) and the couplings involved in the event of interest. But the
contribution of a single diagram also depends on the initial kinematics of the scattering process. So for tree-level
processes we get a resonance whenever the propagator (virtual particle) goes on-shell.

4The search for a sensible mass window for an additional particle is very intriguing but exceeds the scope of this
protocol.

5Due to the spontaneous symmetry breaking of the Higgs field the direct identification of the γ, Z and W± bosons
is a little more subtle than presented here. A good introduction to the topic is presented in the book of Böhm,
Denner and Joos [6].

6Particles of half integer spin, in the case of the fundamental fermions of the Standard Model all fermions have
spin-1/2.
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in fig. 2. The quarks interact via all three interactions, whereas the charged leptons interact via
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Figure 2: The fermions of the Standard Model of particle physics ordered by particle type (same
type horizontal) and generation i ∈ {1, 2, 3} (indicated by subscripts)

the weak and the electromagnetic forces and the neutrinos interact exclusively via the weak force.
The last particle of the Standard Model is the Higgs boson. The Higgs boson is described by a
scalar field and therefore has spin-0. The Higgs boson is not charged. Since direct mass terms for
the massive gauge bosons would violate gauge symmetry the Higgs boson is needed to generate the
mass of the massive gauge Bosons. Additionally the fermions of the Standard Model get their mass
by the Higgs boson, too.

1.4 The Higgs Mechanism

Since it is observed by experiments that the gauge bosons of the weak interaction must be mas-
sive, one of the main tasks for a consistent description of nature is to generate masses for the
Z,W± bosons keeping gauge invariance unbroken, while the photon should remain massless. A
naive approach would be to add mass terms to the Lagrangian. A free field Lagrangian for a spin-1
boson including a mass term would be

LProca = −1

4
FµνF

µν +m2AµA
µ. (6)

Such a Lagrangian does not respect gauge invariance, therefore this approach would not yield the
desired results.

The solution to this problem is the Higgs mechanism. For this purpose a complex scalar doublet Φ,
which transforms in the fundamental representation under SU(2)W transformations, is introduced

Φ(x) =

(
φ+(x)
φ0(x)

)
, (7)

where φ+, φ0 are complex scalar fields. Without further specification this doublet has four real
degrees of freedom. The corresponding Lagrangian for this doublet is

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ

4
(Φ†Φ)2, (8)

where Dµ is the covariant derivative specified by the gauge group of the Standard Model. This
Lagrangian contains two free parameters µ, λ, where µ is a mass parameter for the Higgs doublet and
λ is a coupling constant for the self-interaction of the Higgs doublet. For a single complex scalar
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V (φ1, φ2) = 0

V (φ1, φ2)

φ2φ1

Figure 3: Higgs potential depending on the field components φ1, φ2 of a single scalar field φ =
φ1 + iφ2 where the parameter µ is restricted to µ2 > 0 so that the potential has a degenerate
minimum, and the parameter λ is restricted to λ > 0 so its bounded from below. Furthermore, it
can be seen that the vacuum expectation value for the field is non–vanishing, imposed by the local
minima.

field, the potential of the field configuration can be illustrated by fig. 3. To guarantee vacuum
stability it is of course necessary that the potential is bounded from below, since otherwise the field
configuration would just decay into lower and lower energy configurations. This property is ensured
by λ > 0, as shown in the example given in fig. 3.

The field configuration minimizing the potential 7

V (Φ†Φ) = −µ2Φ†Φ +
λ

4
(Φ†Φ)2 (9)

which is given by

|Φ0|2 = Φ†0Φ0 =
2µ2

λ
=:

v2

2
6= 0, (10)

where we introduced the parameter v, is not unique, since the minimum is only restricted by the
norm of the doublet. It is therefore only defined up to a phase, so one is thus free to choose a phase
since all the field configurations minimizing the potential are physically equivalent8.

Since it is inconvenient to quantize a field with non-zero vacuum expectation value, we need to shift
the fields, such that we can quantize the shifted fields. So the Higgs doublet is reexpressed by fields
with zero vacuum expectation value. This reparameterization is given by

Φ(x) =

(
0
v√
2

)
+

(
φ+(x)

1√
2
(h(x) + iχ(x))

)
= Φ0 + Φ1(x), (11)

7The field configuration minimizing the potential also minimizes the total energy, since the kinetic energy cannot
be negative and thus to be minimal must be zero, which is given for a field configuration, which is constant in
space-time.

8For a simple illustration of this property one can once again look at fig. 3.
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where h(x) and χ(x) are real scalar fields and φ+(x) is a complex scalar field and the representation
of the vacuum expectation value of the Higgs doublet is chosen as

〈Φ〉 = 〈0|Φ|0〉 = Φ0 =

(
0
v√
2

)
. (12)

For a phenomenological discussion of the Higgs doublet it is useful to choose another configura-
tion space parametrization. In fig. 3 it is somewhat obvious that one is able to choose a polar
parametrization for the single complex scalar field φ(x) shown in the figure. The same arguments
apply for the Higgs doublet Φ, although other than in fig. 3, the Higgs doublet is not a single
complex field but two of them. The polar representation for the Higgs doublet is given by

Φ(x) = exp

(
i
θj(x)Ij

v

)(
0

1√
2
(v + h(x))

)
, (13)

where the Ij are the generators of the SU(2) gauge group9. By choosing a proper gauge for the field
in eq. (13) the phase factor in eq. (13) is canceled by the choice of the gauge. This gauge choice
is called unitary gauge. One then concludes that out of the four degrees of freedom of the Higgs
doublet only one is physical. This physical degree of freedom is identified as the Higgs boson field.

The kinetic term for the Higgs doublet then introduces the term (DµΦ0)†(DµΦ0) to the La-
grangian10, which introduces mass terms for the gauge fields. To be more precise one can expand
the Lagrangian in eq. (8) in the unitary gauge, which yields

LHiggs =
1

2
(∂µh)(∂µh)− µ2h2

+
v2

8

(
g22W

1
µW

1,µ + g22W
2
µW

2,µ +
(
g2W

3
µ + g1Bµ

) (
g2W

3,µ + g1B
µ
))

+ LInt.(h,W
a, B),

(14)

where the terms bilinear in the gauge fields W 1, W 2, W 3, B are the desired mass terms. Realizing
that there are terms in the Lagrangian that are proportional toW 3

µB
µ, one can already conclude that

the fields W i
µ and Bµ do not correspond to the mass eigenstates which are observed in experiments.

The fields describing mass eigenstates of the particles are obtained by the transformations11(
Aµ
Zµ

)
=

(
cW −sW
sW cW

)(
Bµ
W 3
µ

)
, W±µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (15)

where the parameters are given by

cW = cos θW :=
g2√
g21 + g22

, sW = sin θW :=
g1√
g21 + g22

. (16)

9To build some intuition for the reparameterization in eq. (13) it is again useful to look at fig. 3. The θ fields can
excite modes along the angular degree of freedom in configuration space, whereas the Higgs field h excites modes of
the radial degree of freedom in configuration space.

10This seen by introducing eq. (13) into the Higgs Lagrangian, without the phase factor, since it was canceled by
the gauge transformation.

11These transformations are just rotations in configuration space under which the Lagrangian is invariant and
therefore do not change the physics described by the model.
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The parameter θW is called weak mixing angle, sometimes also called Weinberg angle. Applying
this redefinition of the fields to the Lagrangian one can read off the masses of the fields, which are
then given by

MW =
g2v

2
, MZ =

v

2

√
g21 + g22 , MA = 0, Mh =

√
2µ. (17)

Since the gauge bosons are now massive, they have a longitudinal degree of freedom. Therefore the
three massive gauge fields get one additional degree of freedom each. These additional degrees of
freedom are exactly the three unphysical degrees of freedom of the Higgs doublet, which are now
absorbed by the gauge bosons. The masses of the fermions of the Standard Model are generated
via Yukawa couplings of the fermion fields and the Higgs field, which is done in a way that the
Standard Model is parity violating, since this was observed by experiments by Wu [11].

To conclude this section about the Higgs mechanism we show the most important Higgs production
mechanism and the Higgs decay mechanisms we used as a search channel. This is of great interest
when applying the cuts for the Higgs search, since a good knowledge of the dominating Higgs
production/decay channels gives the information about the measured final state (e.g. additional
Jets apart from the final state of the actual Higgs decay, due to for example top fusion as an Higgs
production event.). The most important Higgs production mechanisms are shown in fig. 4. The
most dominant production mechanism is the gluon fusion process seen in the lower left of fig. 4.
The search channel we use is shown in fig. 5. The four lepton decay is a good candidate for a search
channel, since the final state should be detectable in a rather clean manner.
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Figure 4: In this figure some of the most important Higgs productions mechanisms are dis-
played. (top fusion (upper left), vector boson fusion (upper right), gluon fusion (lower left), W, Z
Bremsstrahlung (lower right))
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Figure 5: In this figure the Feynman diagram corresponding to the Higgs decay h →WW → ll̄ ll̄,
which was used as a search channel.

P

(1 − x)P

xP

xP + q
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Figure 6: Scattering of an electron off a proton, where the proton has the initial four-momentum P
and the electron has the initial four-momentum k1. Within the naive parton model, the proton is
described as a loosely bound cloud of partons. The electron in the figure scatters off such a parton
by exchanging a photon.

1.5 The Parton Model

The naive parton model describes the proton as a weakly-bound system made of quasi-free and
point-like particles, which are called partons. An explanatory example is the deep inelastic scat-
tering of an electron and a proton. The process is visualized in fig. 6, where P is the initial
four-momentum of the proton and k1 is the initial four-momentum of the electron. It is assumed
that the parton, which interacts with the electron, carries a definite fraction xP of the proton’s
four-momentum. These collisions are considered to happen at large center-of-mass energies, so that
one can neglect the masses of the proton and the electron in the kinematics. Therefore, the proton
has an almost light-like momentum along the axis of collision. It is assumed that the partons are
collinear with the proton. This assumption is justified by the fact that at very large energies the
interaction occurs almost instantly since the interaction time observed in the lab-frame is time-
dialated. Therefore it is very unlikely that within this small time interval any interaction within
the proton occurs, such that the parton gains additional transverse momentum. One concludes that
the four-momentum of the parton is actually a longitudinal fraction of the protons four-momentum.
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Hence, for a leading-order approximation, the cross section for the scattering process is given by
the cross section of the electron–quark scattering σ̂ at given longitudinal fraction x multiplied by
the probability that the proton contains a quark with this fraction x, which is given by the parton
distribution function fq(x), where it is integrated over all possible fractions x ∈ (0, 1),

σe−p→e−X =

∫ 1

0

dx
∑

q∈{u,d,s,c,t,b}

fq(x) σ̂e−q→e−q (18)

1.6 The ATLAS-Detector

The ATLAS-detector consists out of four detectors that are designed for different purposes. In fig. 7
a sketch of the detector is shown and one can see ordered from the collision point to the outside
the inner detector, the liquid argon calorimeter, the tile calorimeter and the muon spectrometer.
In and around the detector the magnetic system consisting of the barrel toroids, the end-cap toroid
and the central solenoid magnet is placed.

Figure 7: Sketch of the ATLAS-detector. Image taken from [2], labels were added.

The Inner Detector A closer look on the inner detector is given in fig. 8. The information
about the inner detector was taken from [7, 5, 3].

The innermost layer of the inner detector is a semiconductor tracker, called Pixel detector. In
four layers that are wrapped around the beam pipe and three disks in each end-cap 92 million
silicon pixels are placed. The innermost layer has pixels with an area of 50 · 250µm and is specially
designed to detect secondary vertices emerging from the decay of b-hadrons, its called insertable
b-layer (IBL). The outer layers have pixel with an area of 50 · 400µm.

Around the Pixel detector the Semi-Conduct Tracker (SCT) is wrapped. Same as the Pixel detector
it is made of silicon, but arranged in stripes rather than in pixels. This allows to cover a wider area.
60 m2 of silicon are distributed over four barrel layers and two end-caps with nine layers each. In
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Figure 8: Inner detector. Taken from [4]

the detector readout-strips are placed every 80 µm what allows determining the position of charged
particles with an accuracy of 17 µm per layer in the direction transverse to the strips. The detector
covers an area of |η| < 2.47, so charged particles with greater pseudorapidity cannot be detected
here.

The last detector in the inner detector is the transition radiation tracker (TRT). The TRT consists
of cylindrical drift tubes with conductive coating, also called straws. The straws are filled with
a gas mixture based on xenon and in the center of each straw a sense wire is placed. When a
charged particles passes a straw it will ionize the gas and as the straws are kept at high negative
voltages negative ions will be driven to the sense wire and detected. In between the layers of straws
radiators with different refractive indices are used to produce transition radiation. The detector
provides drift-time measurements and two independent thresholds. These thresholds allow the
detector to differentiate between tracking hits and transition-radiation hits what provides additional
information on the particle type.

The whole inner detector is wrapped by central solenoids which provide the inner detector with a
magnetic field of about 2 T.

The energy loss of particles before they reach the calorimeter depends on the material they pass
before. Therefore a lightweight and uniform material distribution in the inner detector is desired.
As this goal cannot be fully reached it is of interest to take a look at the material distribution in
dependence on the pseudorapidity (fig. 9). The distribution in dependence on the azimuthal angle
is not of great interest as the detector is rather symmetrical.

Calorimeters The information about the calorimeters is taken from [5, 2].
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Figure 9: Material distribution of the inner detector. The amount is shown in units of the electron
radiation length in dependence on the pseudorapidity η. Graphic taken from [1].

The main goal of the calorimeters is to absorb as many particles as possible by forcing them to
loose their energy in the detector. The ATLAS detector contains two calorimeters that cover
a range of |η| < 4.9 and are both built as sampling calorimeters with an active and a passive
material. Sampling calorimeters are usually an acceptable compromise between accuracy in the
measurements and cost and can be used to cover wider areas.

The electromagnetic calorimeter (EMCal) consists of a barrel part and two end-caps that are divided
into smaller parts and it has a fine granularity allowing precise energy measurements. The active
medium of the EMCal is liquid argon and lead is used as the passive absorber material, both
are arrange in a accordion-shaped structure to provide full coverage in the azimuthal angle. The
purpose of the EMCal are energy measurements and identification of particles that interact via the
electromagnetic force, for example electrons or photons. In the absorbing material electro-magnetic
showers are created that can be detected in the active material.

The hadronic calorimeters (HCal) are build to measure hadronic showers that pass the EMCal due to
the strong interaction of hadrons. For |η| < 1.7 the barrel and the extended barrel tile calorimeters
use the iron scintillator-tile technique: Iron as a passive absorber and scintillator tiles for detection.
Larger pseudorapidity is covered by the hadronic end-cap and the high density forward calorimeter,
both are liquid argon calorimeters and also provide measurements of electromagnetic energy. To
reduce hadrons disturbing the muon detector the HCal is much larger than the EMCal with a
thickness of 11 interaction lengths at |η| = 0. In comparison to the EMCal the resolution of the
HCal is reduced.

Muon Spectrometer The muon detector consists of muon chambers that use four different
types of detecting chambers: The thin gap chamber, the resistive plate chamber, monitored drift
tubes and cathode strip chambers. The track of muons can be measured in these chambers and in
combination with the toroid magnet system the momentum of muons can be measured precisely.
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1.7 Particle Identification

All detector parts are designed for a specific purpose and knowing the signal of the different particles
gives us the possibility to reconstruct the events that might have taken place. In table 1 the different
particles are listed, together with the detector parts that can be used for their identification. This is
going to be used during the event selection and identification in the later Atlantis-part, see section 2.

Particle Type Inner Detector EMCal HCal Muon Detector
e X X
γ X
µ X

charged hadron X X X
neutral hadron X

ν

Table 1: Particles and the detector part in which they can be identified, so the parts in which they
mainly loose their energy.

Electrons will leave a trace in the inner detector and create a shower in the EMCal. Charged
hadrons will also create a shower in the EMCal and the shape of the showers has to be used to
differentiate electrons and charged hadrons. Photons leave the same trace in the EMCal, but do not
leave a trace in the inner detector so they can be distinguished from electrons. Particles that reach
the muon detector are most probably muons but a signal in the muon detector might also originate
from background or cosmic radiation so a signal in the muon detector needs to be reconstructed to
its origin to be sure.

Neutrinos are the only particles we know that leave the detector without interaction. The only
chance to detect neutrinos indirectly is to detect missing energy. Furthermore we can only recon-
struct the energy balance in the transverse plane, hence reconstruction of the missing energy is also
just possible in this plane. The contribution to the missing energy can be written as

Emiss
x = −

∑
Ei sin θi cosφi

Emiss
y = −

∑
Ei sin θi sinφi

Emiss
t =

√
(Emiss

x )2 + (Emiss
y )2.

The measurement of the missing energy is rather imprecise, as it depends on all the single contri-
butions that have been measured and therefore carries all the uncertainties. Moreover if more than
one neutrino contribute the transverse energy depends on the angle between the two neutrinos.
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2 Atlantis

The first part of the experiment was performed with help of the Atlantis-Event-Generator. Six
different events were given and the goal was to identify decay products and find a possible process
for the observation. Furthermore kinematic variables of the shown products could be read out,
these were later used to check whether the stated process is actually possible with regard to con-
servation laws. Additionally different energy cuts could be applied to adjust the event display to
the interesting things and erase the background.

To reconstruct masses the root function TLorenzVector was used. This function takes the measured
transverse momentum, the angle φ and the pseudorapidity η as well as the mass of the observed
particle and creates a four-vector out of these informations. Using this four-vector it is possible to
determine the invariant mass.

Z

µ

µ

Figure 10: Event display and Feynman diagram for the first event.

Event 1: Z→ µ+µ− In the first event two muons were observed, identified by the tracks in the
muon-detector that other charged particles do not reach. A possible assumption is that the two
muons are the decay products of a Z-boson. This can be checked by calculating the mass of the
two muons by adding the two four-vectors and then calculating their norm, which was done with
help of the root-function TLorentzVector. The result of this computation is 90.55 GeV which is
close to mZ = 91.1876 GeV, hence justifying the assumption.

Event 2: W → µνγ In the second event a muon was observed in the muon detector and some
missing transversal energy was found what indicates the existence of neutrinos. Furthermore a
photon was detected. Our guess for the decay is, that the mother particle is a W-boson and that
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Figure 11: Event display and Feynman diagram for the second event.

the photon comes from bremsstrahlung, so energy loss of the muon in the material of the detector.
To check this it would be nice to again calculate the mass of the mother particle, but due to the
neutrino this is not completely possible. Due to lepton-number conservation we can state that the
missing transverse energy originates from only one neutrino, so at least the transverse mass of the
mother particle can be calculated. This has been done with eq. (3) and yields mT = 72.35 GeV.
This result is smaller than the actual mass of the W-boson mW = 80.379 GeV, which is totally
fine since we just calculated the transverse mass. Also the energy of the photon is neglected which
should also add up to the energy of the mother particle.

Event 3: tt → bb µ+µ−νν̄ In the third event two bottom quarks, two muons and two muon
neutrinos are assumed. Of course only the quarks and the muons are detected. A reconstruction of
the top-quark mass is not possible, since the neutrinos are not measured individually, but only their
summed missing transverse energy is known. Furthermore other than the measured particles, none
of the other expected reacting particles needs to be a real particle. Hence, the W-bosons and the
top-quarks do not need to be on mass-shell, so they might only contribute as virtual particles. For
virtual particles no sensible calculations are possible, although one could still try to estimate some
things, since the probability is higher for virtual particles to ”occur”/contribute if they are close
to on-shell. Nevertheless the invariant mass of the different combinations of muons and bottoms
was calculated and we found that one combination (muon down right and bottom top left) leads
to a top mass of mmother = 323 GeV, so this combination is not possible and these specific bottom
and muon have not originated from the same top quark. Hence the other possible combination
has been checked and we found mtop, 1 = 102 GeV for the combination of the bottom right muon
and the upper right bottom quark and mtop, 2 = 125 GeV for the combination of the bottom left
muon and the upper left bottom quark. Therefore these combinations could originate from two top
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Figure 12: Event display and Feynman diagram for the third event.

quarks and the found mass is lower than the real mass of the top quark, but this makes sense as
we do have missing energy from the neutrinos. Thus the calculated masses have to be understood
in sense of a lower boundary.

Event 4: tt → bbe+e−νν̄ In the fourth event two bottom quarks, two electrons and two elec-
tron neutrinos are assumed. Only the quarks, the electrons and the missing transverse energy are
detected/reconstructed by the detector. Just as in the third decay no direct kinematic reconstruc-
tion of any particle mass is possible/sensible. Anyway, same as for the previous decay possible
combinations can be calculated to determine whether they might originate in two top quark. Com-
bining the bottom quark on the right and electron on the bottom left an invariant mass of the
mother particle of mmother = 232 GeV can be calculated, so this combination does not correspond
to a top quark. Combining the bottom quark on the left and the electron on the bottom left
yields mtop, 1 = 88 GeV and the other two, the quark on the right and the electron on the upper
right give mtop, 2 = 106 GeV so these can originate from two top quarks. Again the calculated
mass is a lower boundary as we did not take the missing transverse energy from the neutrinos into
account.
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Figure 13: Event display and Feynman diagram for the fourth event.

Event 5: H → ZZ → µ+µ−µ+µ− In the fifth event four muons were found in the final state,
which indicates a four lepton decay, which is one of the possible Higgs-decay channels. As this decay
worked without any missing energy there are no neutrinos and the energy of the mother particle
can be directly reconstructed by adding the four four-vector and calculating the norm. This gave
us a mass of 120.72 GeV which already is quite close to the mass of the Higgs mH = 125 GeV.
To further calculate with this process one could also check the masses of the two Z-bosons and
find out if we find a combination that leads to one real and one virtual Z. Calculating invariant
masses for different combinations of the found muons gives the possibility for mZ1 = 90.47 GeV
and mZ2 = 13.73 GeV.

Event 6: H → ZZ → e+e−µ+µ− Again a four lepton process was found but this time with
two muons and two electrons. Anyway this still can be a possible decay for the Higgs boson in a
process over two Z-bosons. Same as for the last one the invariant mass can be calculated and we
got 124.46 GeV. Again this is really close to the current literature value of the Higgs-mass, which
justifies the assumed process. Calculating the masses of the Z-bosons for the two electrons and the
two muons gives mZ, ee = 28.72 GeV and mZ, µµ = 87.53 GeV.
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Figure 15: Event display and Feynman diagram for the sixth event.
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3 Calorimeter Calibration

To be able to perform useful measurements of the W-boson mass the response of the ATLAS
calorimeter has to be precise in its energy measurements. As the material is not distributed equally
in the detector, the response of the calorimeter differs in dependence on the region. This difference
can be compensated by a calibration that is performed with help of the decay of a Z-boson in an
electron-electron pair, Z → ee. The mass of the Z-boson has been measured at LEP with high
precision and the process has a large cross-section, so it can be measured in the ATLAS-detector
and a calibration in terms of the parameter α can be calculated by

α =
Emeas.

Etrue
− 1. (19)

Emeas. is determined by fitting a non-relativistic Breit-Wigner function

f(Mee) =
Γ2
Z/4

(M2
ee −M2

Z)2 + Γ2
Z/4

to the invariant mass mee that is measured in the ATLAS-detector.

3.1 Event Selection

The dataset that is used to determine the invariant mass mee contains all events with at least one
electron with pT > 25 GeV. Thus the searched Z→ ee-decay is included, but also other events that
might fulfill these conditions. The goal of the event selection is to cut the given data by applying
reasonable conditions to select all Z → ee-events while the background by other events is cut off
without cutting to much of the desired data by too strict rules.

The cuts that were applied, select events that have exactly two electrons with opposing charge,
that both fulfill the tightness criteria. Before applying any cuts it was taken a look at different
distributions, here we will take a look at the energy of the electrons as an example.

In fig. 16 one can see, that before any cuts the energies of the two electrons differ a lot. Adding
to that there is a larger number of electrons that are measured having zero energy (not displayed
in the figure because one would not see anything else in that case). This suggests the assumption,
that some events with only one electron are measured and stored in the data, therefore the events
were cut by selecting events with two electrons. Apart from that two other cuts were implemented.
As the searched decay is Z → ee and the Z-boson is not charged we are looking for a non-charged
final state. Hence a cut for opposing electrons was added. This cut did not change the data in
a noticeable way, nevertheless it was kept, as it physically makes sense. The last cut asks for the
tightness of the two electrons and only events that passed the tightness criteria in both electrons
were selected. This cut was implemented to ensure that no fake-electrons contaminate the data.

On the right side in fig. 16 the energy distribution after the three cuts is shown and one can see,
that the distributions for the two electrons have converged.
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(a) Energy of the electrons before applying any cuts.
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(b) Energy of the electrons after applying all cuts.

Figure 16: Change in the energy distribution due to the applied selection rules.

3.2 Invariant Mass for Different Pseudorapidity

The selected events can now be used to determine the invariant mass mee and calculate the cali-
bration parameter for suitable dependencies. The invariant mass is calculated with help of the two
four-vectors of the two electrons, by adding them up and calculating the norm. The four-vectors
can be written in dependence of η, φ and the transverse momentum pT, were η and φ are measured
and the transverse momentum can be calculated via

pT ≈
E

cosh η
,

as shown in appendix A.1.

The strongest fluctuation in the response of the calorimeter can be seen in the pseudorapidity η,
this is due to the high differences in used material as seen in fig. 9. To determine the calibration
parameter α in dependence on η the invariant mass has to be determined for different η and plugged
into eq. (19). For a sensitive calibration a suitable binning for η has to be chosen.

In fig. 17a the dependence of the events on η is shown. First we note, that the distribution looks
comparable for both electrons after the cuts have been applied, which was not the case before.
Furthermore we see that evens with an absolute pseudorapidity around zero are more probable.
This was expected as in the decay process we analyse forward- or backwards-scattering what would
lead to larger η is suppressed. Apart from that we note that for η ≈ 1.5 there have not been any
detected events. Taking a look at [5] we find that at η ≈ 1.5 the Barrel-End-caps of the calorimeter
form the so called “crack”, where no data can be collected.

Now the goal is to find a binning for η that leads to a fine resolution but still has sufficiently high
counts in each bin. Adding to that it is desired, that the crack fills an own bin and does not
contaminate other bins. We have chosen 15 equidistant bins in a range from η = 0 to η = 2.47 and
this binning was used to determine the invariant mass for each bin.

In fig. 17b a histogram for the invariant mass for each bin is shown. During the analysis this plot
was used and checked for different binnings, until a binning was found which does not show a too
high fluctuation between neighboured bins.
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Figure 17: Pseudorapidity η and the invariant mass for different bins.

3.3 Calibration

For this fixed binning in η for each bin a Breit-Wigner fit is performed and the invariant mass
is calculated. According to the mass found in the fit the calibration parameter α was calculated.
The calculated parameter for all bins is shown in fig. 18. For all η the calibration is of the same
magnitude and one can see a small dip in calibration around the crack, this is sensitive as this is a
region with more fluctuation in material than the extrema.
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Figure 18: Calibration parameter and result of applying the calibration.

This calibration can now be applied on the data to check the invariant mass again. This was done
for each bin and the plot is shown in fig. 18. The plot gives a good insight that the calibration was
rather successful, as all bins now behave the same way. The only two lines that are significantly
lower than the other belong to the two bins containing the crack, so also this behaviour is expected.
Furthermore the calibrated data was fitted for every bin and the invariant mass was calculated by
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taking the mean over all bins and using the standard deviation as an error:

mee = (90.7± 0.6) GeV.
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4 W-Boson Mass

The goal of this part of the experiment is to determine the mass of the W-boson. As the precision
of the measurement is limited by the decay products a suitable decay channel has to be chosen. On
the one hand a process with a rather hight cross-section is desired, on the other hand a process with
precisely measurable decay products is needed. The decay of the W-boson to hadronic jets has a
rather large branching ratio, but the measurement of these jets does not yield as good results as the
measurement of leptons. This is due to the better resolution of the electro-magnetic calorimeter in
comparison with the hadronic calorimeter and therefore the decay W → lν is going to be analysed.

4.1 Data and Monte Carlo Samples

The given data does again not only contain the interesting events, but every event with at least
one lepton with transverse momentum pT > 25 GeV. Thus the data needs to be cutted so only the
relevant events add to the measurement. This data selection is done with help of simulated Monte
Carlo data for all decays that may occur and the goal is to achieve a good agreement in different
kinematic variables.
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Figure 19: Transverse momentum of the first electron before any major cuts have been applied.

In fig. 19 the agreement between data and Monte Carlo data is shown before any major cuts have
been applied. One can clearly see, that there is a huge difference and that it might not be enough to
add more background processes to the Monte-Carlo data. First we notice, that the data is shifted
towards the MC-data, this is due to the missing calibration that has not been applied yet. But
even if the data was shifted a little the agreement would be sobering. This difference between data
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and MC is due to the existence of so called “fakes”. The preselected data we get from the detector
only takes events that have on lepton with a minimal transverse momentum. This is useful for us,
as the amount of data we would get otherwise would be overwhelming but has the disadvantage
that the detector might be wrong in its decisions. Therefore some events are selected as an event
with at least one lepton that do not contain a lepton, but a really lepton-like jet. This problem can
be solved by determining the amount of fakes out of the data, thus two different selection processes
are implemented, one for fakes and one for the rest of the data. The first two cuts that have been
made apply to both types of events: Every event that is considered has to have exactly one lepton
(or at least the detector should tell us that it has one) and there should be missing transverse
energy MET > 20 GeV. Both cuts make sense and are mandatory (event though the amount
of missing transverse energy can be discussed), as were are looking for the W → lν decay, so we
have one lepton in the end and a neutrino that will be detected as missing energy. The obtained
histograms after these two cuts are shown in fig. 20.
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(a) pseudorapidity
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(b) transverse momentum
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(c) isolation parameter
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(d) transverse mass

Figure 20: Different kinematic variables after the general cuts were applied.

Taking a look at the histograms we clearly see that more cuts need to be applied and that there
is a need to differentiate between fakes and true data. The two parameters that seemed the most
sensitive to take a look are isolation and tightness. An event that is considered a fake should
be good enough to pass the general cuts, otherwise it would not be a fake event but just a not-
interesting event, but it should be too bad to pass the strict selection criteria. To get a feeling for
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both parameters the same kinematic variables as before were taken a look at. Each time with the
general cuts applied, once with cuts in terms of tightness (see fig. 22) and once with help of the
isolation parameter (see fig. 21).
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(a) pseudorapidity
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(b) transverse momentum
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(c) isolation parameter
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(d) transverse mass

Figure 21: Different kinematic variables for the general cuts and a selection with regard to the
isolation parameter I. For fake events Ifake > 0.1 has to apply and for non-fakes In.f. < 0.35 was
set.

In fig. 21c we can see, that the selection of the fakes lead to the expected result and cut all fakes with
isolation around zero, bringing the data closer to the Monte Carlo data. Also the other kinematic
variables show a closer relation between data and Monte Carlo data.

The second criteria that was chosen is the tightness of the electron. Tightness in this context
means, that there are different criteria and a real lepton will pass this strict selection rule and
carry a T == True, while a false lepton, so for example a quark-jet does not pass this criterion.
Hence, this can be applied to select fakes that were good enough to pass the general selection,
but are not the events that we are actually interested in. In fig. 22 different kinematic variables
with the general cuts and the tightness selection applied are shown. Same as for the variables after
applying the isolation selection, we see that the data and the Monte Carlo data got closer, but
comparing fig. 21 and fig. 22 we see that both cuts show an absolute difference between data and
Monte Carlo data, but in different directions. Thus the insight in these two selection criteria was
used to try a combination of both, in hope that the over- and underestimation combine and cancel
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(a) pseudorapidity
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(b) transverse momentum
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(c) isolation parameter
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(d) transverse mass

Figure 22: Different kinematic variables for the general cuts and a selection with regard to the
tightness T. For fake events T == False was expected and the non-fakes should satisfy T == True.

out.

In fig. 23 the kinematic variables with the final cuts applied are shown. For most of the variables
the data lies nicely on the Monte Carlo data, nevertheless there still is some discrepancy. It was
tried to find better combinations of the mentioned parameters but the settings mentioned above are
the best that were found. Also it has to be mentioned, that the whole selection process is limited
by comparing the fit of data and Monte Carlo by eye.

4.2 Reweighing the Monte Carlo Samples

Later we are going to determine the mass of the W-boson by comparing our measured transverse
momentum to the solution of different mass hypothesis. Thus we need simulated Monte Carlo data
for all hypothesis we are going to test. Since the generation of this data is computationally heavy
just generating this data can not be done in a reasonable amount of time. Therefore the existing
data is used and shifted to different mass hypothesis, the data is reweighed.

In fig. 24a the process is illustrated: For a given distribution (in our case the existing MC-samples
for mW = 80.4 GeV ) the weights needed to go from the old to a new distribution can be calculated
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(a) pseudorapidity
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(b) transverse momentum
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(c) isolation parameter
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(d) transverse mass

Figure 23: Different kinematic variables after general cuts, the tightness criterion and the isolation
selection as describes before were applied.

via

f(x) =
N(x|mnew)

N(x|mold)

and this calculation can also be used to go to a new distribution for known weighting factors. The
transverse mass follows a Breit-Wigner distribution. This can be used to determine the weighting
factors, by determining the Breit-Wigner function for the given MC-samples with a fit and calculate
the weight needed to go from the fitted Breit-Wigner function to one that is shifted to the new
mass. The process is illustrated in fig. 24.

The calculated weight-factors can now be used to determine the reweighed distribution of any
variable out of the one set of MC-samples we do have, so it is possible to test our data for the
transverse momentum of the electron against any weight-hypothesis we might have.

4.3 Statistical Analysis

Now that the data is cut and we can create Monte-Carlo samples for any mass hypothesis we are
interested in the mass of the W-boson can be determined by fitting different hypothesis to the data.
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(a) Sketch that shows how the existing data can
be reweighed to different mass hypothesis.
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(b) Breit-Wigner fit on the MC-samples.
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Figure 24: Precess to reweigh MC-samples. The fitted Breit-Wigner function on the existing data is
used to determine the reweighing parameters for different mass hypothesis. The determined weight
factors can now be used to shift the MC-samples to the new mass hypothesis.

The hypothesis has two different parameters: The mass of the W-boson and the fake-factor.

In fig. 25 a comparison between hypothesis and data for different fake factors is shown. We see
that a larger fake-factor leads to a higher curve for lower transverse momentum, this is expected,
as for lower transverse momentum we do expect more fakes due to QCD-effects. A mass change in
the hypothesis would lead to a lower curve for lower masses and vice versa.

In the following the best values for these parameters are estimated with help of the negative log-
likelihood (NLL) minimisation method. For both, the hypothetic mass and the fake-factor sensitive
ranges have to be determined for which the minimum of the NLL is determined. These ranges were
found with help of the histograms fig. 25. The found minimum then is the best estimate that is
found under the given conditions. Besides giving a possibility to estimate the optimal parameters,
the NLL-method can also be used to determine errors on the estimation via

− lnL(x̂± nσ) = − ln l(x̂) +
1

2
n2,
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Figure 25: Transverse momentum of the electron as found in the data in comparison to hypothesis
with mW = 80 GeV and different fake factors.

where x̂ is the best found estimate for the parameter. The estimation of the best parameters
together with the error estimation yields

mW = 83.473+0.004
−0.007 GeV,

f = 1.119+0.003
−0.002

In fig. 26 the best estimate with its errors and the kinematic variables for these values are shown.
For the found parameters the data fits the MC-samples very well, even though there are some
discrepancies for all variables.
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Figure 26: a) Visualisation of the found best estimate for the mass and the fake-factor together
with the errors. b), c), d) Different kinematic variables for the best estimates.

29



5 Higgs Search

In this section we analyze the Run1 dataset at
√
s = 8 TeV. This analysis is split into two parts.

First we begin in “data-blind”-mode, where we work exclusively on Monte-Carlo simulation data.
The main task is to apply cuts to the Monte-Carlo data in a way that the Higgs signal for the
four lepton decay is of maximal statistical significance. After the final choice for the cuts is set we
“unblind” the data and check if we got a Higgs signal, which allows to discard the “background
only”-hypothesis. So we start off describing the “data-blind”-phase.

5.1 “Data-Blind”-Phase

The main indicators for the quality of the chosen cuts are the histograms of the kinematic variables
and the significance plots of the signal for the different kinematic variables. The significance plots
show the signal significance estimator s/

√
b for every bin, where s is the number of signal events

and b is the number of background events. The estimator indicates how many Poisson standard
deviations from the background-only-model the signal corresponds to. Thus the choice of the cuts
was an iterative process. We started choosing the isolation parameters until the signal significance
was maximal. Afterwards the cuts on the impact parameter significance where chosen, again trying
to maximize the signal significance. Then the rest of the cuts where chosen in an iterative manner
as explained below. For the sake of readability and clarity the plots, which show the cutting process,
are shown in appendix B.

Lepton Number The most obvious cut which was set was that in the final state (the measure-
ment) are exactly 4 leptons, since we are interested in the search channel shown in fig. 5.

N(leptons) = 4

Charge Neutrality Since we are interested in leptons, which are originating from an Higgs
particle decay, the total charge of the final state needs to be zero, since the Higgs particle is charge
neutral.

4∑
i=1

Qi = 0

Isolation Parameter Here we exclusively orientated us on the significance plot for the m4l

histogram. We also chose a harder cut for the electrons since muon events are less likely to be
misinterpreted because of the detectors architecture.

I(pT , electron) < 0.4

I(ET , electron) < 0.4

I(pT ,muon) < 0.6

I(ET ,muon) < 0.6

The impact of these cuts is displayed in figs. 35, 41 and 42, which are found in the appendix.
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Impact Parameter Significance Once again we orientated us on the significance plots. And
again we imposed a harder cut to the electron impact parameter significance.

IPS(electron) < 5

IPS(muon) < 6

The impact of these cuts is displayed in figs. 36, 41 and 42, which are found in the appendix.

Transverse Momentum of Individual Leptons For these cuts we looked at the histograms
of the transverse momenta of the individual leptons. We chose our cuts in a way, that we cut off
background events, but keeping signal events. Afterwards we checked for the signal significance,
which stayed roughly the same. The histograms for the final cuts are shown in fig. 29

pT,l1 > 20 GeV

pT,l2 > 12 GeV

pT,l3 > 8 GeV

pT,l4 > 1 GeV

The impact of these cuts is displayed in figs. 37, 41 and 42, which are found in the appendix.

Invariant Masses m12 & m34 For this cut the line of reasoning is a bit more physical than the
other ones. For a Higgs Boson with mH < 2 ·mW it is clear to see that for the H→W−W+ → ll̄ll̄
channel, not both W bosons can be on-shell because of 4-momentum conservation. Hence we chose
the cuts in a way which restricts the more energetic lepton pair to come from a rather close to
on-shell W boson, while the less energetic lepton pair can come from a virtual W boson which is
rather “below” the mass-shell (Even though, the on-shell mass is included in the mass interval.).

50 GeV < m12 < 110 GeV

10 GeV < m34 < 110 GeV

The impact of these cuts is displayed in figs. 38, 41 and 42, which are found in the appendix.

Invariant Mass m4l Finally we chose a cut for the total invariant mass of the measured 4
leptons. This mass window is again justified by the mH < 2 ·mW assumption. Furthermore a lot
of background and no signal was visible below 100 GeV.

100 GeV < m4l < 180 GeV

These cuts result in the invariant four lepton mass histogram shown in fig. 27a. The signal signif-
icance for the MC-simulation data is shown in fig. 27b. At this point we chose to “unblind”, even
though the significances for the simulated data where below 3σ for all Higgs models. The P-value
plot for the simulated data is shown in fig. 28. We then moved on and “unblinded” the data.
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Figure 27: In this figure the distribution of the invariant 4 lepton mass and the associated signal
significance is shown.
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Figure 28: In this picture the p-value plot for different Higgs-mass models using the simulated
signal is shown.
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(d) Transverse Momentum of Lepton 4

Figure 29: In this figure the transverse momentum distributions for each individual lepton are
shown.
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5.2 “Unblinded”-Phase

In this task we basically just compiled the code which was given. At first we examined the his-
tograms for the kinetic observables and checked how good they match the measurements. The
histograms including the data is shown in figs. 30 and 31. Even though for some of the points the
measured data and the simulation data do not agree within one standard deviation, but the trend
seems quite good.12
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Figure 30: In this figure the transverse momentum distributions for each individual lepton are
shown.

12Since there is not much information given on how many perturbative orders where used in the simulation data and
how all the errors where estimated, it is hard to give a reasonable explanation for the deviation (and its magnitude)
between simulation and measurement.

34



0

5

10

15

20

25

Ev
en

ts
 / 

5 
G

eV FP2 - ATLAS
Higgs search
FP2 - ATLAS ggH125

VBFH125
WH125
ZH125
TH125
ZZ
WZ

Zee
Zeebb
Zmumu
Zmumubb
Ztautau
Top
Data

100 110 120 130 140 150 160 170 180
M4l / GeV

0.5
1.0
1.5

da
ta

/M
C

Figure 31: Invariant 4 lepton mass distribution including the measurement data.

P-Values and Fit Now the cutted data is tested against the “s + b”-hypothesis for different
Higgs-masses, while the initial hypothesis is the background only hypothesis. To discard the initial
hypothesis at a significance of 5% we need a p-Value of p < 0.05. Furthermore, in physics we speak
of a discovery for a significance of σ ≥ 5. The results of the statistical analysis performed by the
program, which was given, are listed in table 2. The p-Values are also shown in fig. 32

Table 2: In this table the p-values and significances for the different Higgs-mass hypothesises are
listed.

Higgs Mass mh / GeV p-Value Significance / σ
110 0.128 1.18
115 0.004 2.81
125 4.2 · 10−8 5.02
135 0.014 2.29
145 0.021 2.06
155 0.022 2.02
165 0.109 1.23
175 0.302 0.50

As seen in table 2 we achieved a σ = 5.02 signal for the mH = 125 GeV model. Hence, we discovered
the Higgs boson. To get an estimate for the Higgs mass, which should be really close to 125 GeV
due to the model significance, a fit to the data shown in fig. 31 was performed. The model function
which is fitted to the data is given by

f(x;A,µ, σ,B,C,D) = A e
(x−µ)2

σ2 +B + C x+Dx2 (20)

The fit results are shown in table 3 and the fit is also plotted in fig. 33. The position parameter µ
of the gauss function in the fit model was estimated to be µ = (125± 1) GeV which is in full
accordance with the literature and the model we used for the significance estimation.
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Figure 32: In this picture the p-value plot for different Higgs-mass models against the measured
data is shown.

Table 3: In this table the results for the model fit are shown. The model which was used is given
in eq. (20) and the plot for the fit and the data are shown in fig. 33

Parameter Value
A 15± 4
µ (125± 1) GeV
σ (5± 1) GeV
B −15± 26
C 0.27± 0.40
D −0.0008± 0.0014
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Figure 33: In this figure the results for the model fit are shown. The model which was used is given
in eq. (20) and the fit parameters for the fit are shown in fig. 33
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6 Summary and Discussion

Atlantis-Event-Generator In the first part of the experiment the Atlantis-Event-Generator was
used to analyse different processes with help of their decay products. The determined processes
are:

Z → µ+µ−

W → µ ν γ

tt̄→ bb̄ µ+µ−νν̄

tt̄→ bb̄ e+e−νν̄

H → ZZ → µ+µ−µ+µ−

H → ZZ → e+e−µ+µ−.

For the processes without neutrinos the invariant mass of the mother particle was calculated to check
the assumed decay, for processes involving neutrinos only the transverse mass could be calculated.
All calculations gave good indications that the assumed decays are right. The last two decays are
possible decays of the Higgs boson and these decay chanels were used later in the search of the
Higgs boson.

Calibration of the Calorimeter In the second part of the experiment the calorimeter was
calibrated. This was done by determining the mass of the Z boson the ATLAS detector measures
witout calibration and comparing to the Z mass measured precisely at LEP. First the ATLAS data
was cutted so only the Z → ee decay was included, afterwards the invariant mass of the Z boson was
calculated for different pseudorapidity. This was done by binning the pseudorapidity, therefore also
the calibration in the end depends on η, which is a sensitive parameter as the material distribution
in the detector fluctuates a lot in dependence on the pseudorapidity. To check the calibration it
was applied on the ATLAS data and the mass of the Z boson was calculated as a mean over all
bins. This calculation yields

mee = (90.7± 0.6) GeV. (21)

This result is close to the mass of the Z boson of (91.1876± 0.0021) GeV as given by the Particle
Data Group [10] and this literature value lies in one standard deviation of the calibrated measure-
ment of the ATLAS detector. Therefore it was decided to use the determined calibration in the
following parts. Nevertheless a better calibration probably could have been achieved by not only
considering the pseudorapidity but performing a two-dimensional calibration that also depends on
the transverse momentum of the particles.

W-Boson Mass To determine the mass of the W boson in the thid part of the experiment, the
decay of the W boson in a lepton and a neutrino was chosen as a decay chanel. Again the given data
was cut to achieve a good selection of the interesting events, this was done with help of simulated
Monte-Carlo data. Besides taking background into account a selection for fake events had to be
applied. To determine the W mass the selection of data and MC data was tested againdst different
mass hypothesis realised by shifting the MC data to different masses. The best fit for the mass and
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the fake facor was determine with the Negative-Log-Likelihood method and the error was estimeted
by − lnL+ 1/2 and the result is

mW = 83.473+0.004
−0.007 GeV,

f = 1.119+0.003
−0.002.

This is not compatible with the mass as given by the Particle Data Group of (80.379± 0.012) GeV [10].
One reason for the difference of the calculated value and the literature value lies in the calibration
of the calorimeter but this was difficult to consider, as the results of the calibration were used
without error estimation. Furthermore the event selection might not have been optimal and was
only performed by eye which makes it difficult to find the best fit. Adding to that the MC data was
only shifted to different mass hypothesis as generating this data for every hypothesis would take
too much time, but shifting the data also generated errors that cannot easily be used later.

Higgs Search The last part of the experiment was the search for the Higgs boson. With help of
Monte-Carlo data cuts were applied that isolated the chosen four lepton decay chanel while trying
to keep a maximal statistical significance. After all cuts were chosen the data was unblinded and
the cuts were applied on the data, but not changed anymore. Now the different mass hypothesis
were tested againdst the real data and the mass of the Higgs boson was determine as

mH = (125± 1) GeV (22)

with a significance of 5.02σ and a p-value of 4.2 · 10−8. A significance of σ ≥ 5 corresponds to a
discovery, so with the set cuts in combination with the given data it was possible to isolate the
chosen decay chanel with high precision without loosing too much events.
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A Appendix: Theoretical Backgound

A.1 Transverse Momentum

Notation We use units where c = 1 and we denote four momenta by p, three-momenta are
denoted by ~p and we will use p := |~p|.

Pseudorapidity Since within the data the energy of the particle and its pseudorapidity is given
we need to find a way to determine the transverse momentum, which is done using the relation
derived in the following. The pseudo-rapidity, which is used as a measure for the angle between the
particles momentum and the beam-axis, is defined as

η = − ln

[
tan

(
θ

2

)]
,

where θ is the actual angle between the particles momentum and the beam-axis. This can be
reexpressed, by geometric constructions, using the longitudinal projection of the momentum of the
particle yielding

η =
1

2
ln

(
p+ pL
p− pL

)
.

Due to the high energies E of the observed electrons in comparison with their small mass m we can
use the following approximations

m2 = pµpµ = E2 − p2

=⇒ p2 = E2 −m2 ≈ E2

=⇒ p ≈ E

Such that the pseudorapidity becomes the rapidity y often used in experimental particle physics

η ≈ y =
1

2
ln

(
E + pL
E − pL

)
.

We then solve for the energy E, using

cosh η =
1

2

(
eη + e−η

)
=

1

2

(√
E + pL
E − pL

+

√
E − pL
E + pL

)

=
E√

E2 − p2L
=

E

pT

where we used E2 ≈ p2 = p2T + p2L. Hence we can use

pT ≈
E

cosh η
,

which is a very good approximation for our purposes.
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B Appendix: Higgs Search

B.1 Histograms: Transverse Momenta
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(d) Transverse Momentum of Lepton 4

Figure 34: In this figure the transverse momentum distributions for each individual lepton are
shown, where no cuts are applied.
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(c) Transverse Momentum of Lepton 3
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(d) Transverse Momentum of Lepton 4

Figure 35: In this figure the transverse momentum distributions for each individual lepton are
shown, where only the cuts on the lepton number and the total charge of the measured final state
are applied.
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(d) Transverse Momentum of Lepton 4

Figure 36: In this figure the transverse momentum distributions for each individual lepton are
shown, where the cuts on the lepton number, the total charge of the measured final state and on
the isolation parameters are applied.
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(c) Transverse Momentum of Lepton 3
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(d) Transverse Momentum of Lepton 4

Figure 37: In this figure the transverse momentum distributions for each individual lepton are
shown, where the cuts on the lepton number, the total charge of the measured final state, the
isolation parameters and the impact parameter significances are applied.
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(d) Transverse Momentum of Lepton 4

Figure 38: In this figure the transverse momentum distributions for each individual lepton are
shown, where the cuts on the lepton number, the total charge of the measured final state, the
isolation parameters, the impact parameter significances and transverse momenta are applied.
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(d) Transverse Momentum of Lepton 4

Figure 39: In this figure the transverse momentum distributions for each individual lepton are
shown, where the cuts on the lepton number, the total charge of the measured final state, the
isolation parameters, the impact parameter significances, transverse momenta and invariant masses
m12, m34 are applied.
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(d) Transverse Momentum of Lepton 4

Figure 40: In this figure the transverse momentum distributions for each individual lepton are
shown, where the all chosen cuts are applied. It is seen, that especially the Higgs production via
gluon fusion is very present.
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B.2 Significance Plots for m4l-Data.
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Figure 41: In this figure the evolution of the signal significance is displayed.
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B.3 Histograms: Invarant Mass
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(a) Cuts on: Nothing.
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(b) Cuts on: Lepton Number and Charge.
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(c) Cuts on: Lepton Number, Charge and Isola-
tion Parameters.
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(d) Cuts on: Lepton Number, Charge, Isolation
Parameters and Impact Parameter Significance.
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(e) Cuts on: Lepton Number, Charge, Isolation
Parameters, Impact Parameter Significance and
Transverse Momenta.
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(f) Cuts on: Lepton Number, Charge, Iso-
lation Parameters, Impact Parameter Signif-
icance, Transverse Momenta and Invariant
Masses m12, m34.

Figure 42: In this figure the evolution of the m4l histogram is displayed. The histogram, where all
cuts are applied is found below (fig. 43).
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Figure 43: Cuts on: Lepton Number, Charge, Isolation Parameters, Impact Parameter Significance
Transverse Momenta, Invariant Masses m12, m34 and Invariant Mass m4l.
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