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I. Introduction

I Introduction

If you look at the radiation of a radioactive source, you'll �nd an isotropic
distribution. That means it has no preferred direction. This behavior is ex-
plained by the statistically isotropic distribution of the nuclear spin, because
the emitted γ-quantum is related to the nuclear spin.
If a nucleus is in an excited state, which decays into an other excited state
before decaying into the ground state, you can choose the direction of the �rst
γ-Quantum as a quanti�cation axis and observe the direction of the following
γ-Quantum emitted by second decay. With a changing nuclear spin during the
decay, you get degenerated sub-states given by the magnetic quantum number
m. The choosing of a quanti�cation axis annihilates the uniform distribution
of the m-states and therefore annihilates the isotropic distribution of the radi-
ation �eld emitted by the second decay (referring to the quanti�cation axis).
With the conservation of angular momentum it is reasonable to assume, that
the change of the nuclear spin during a decay is caused by the emitted radiation
and the angular momentum it is carrying. The radiation carrying an angular
momentum is called "multipole radiation". The properties of the multipole
radiation are based on the angular momentum and the parity of the radiation.
In this experiment we measure the angular distribution of a γ-γ-cascade. This
distribution gives us information about the multipole radiation and therefore
we can determine the nuclear spins of the involved states.
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II. Theoretical foundation

II Theoretical foundation

2.1 Basics

First of all we want to sum up the basics for the understanding of the physical
foundation before we discuss the actual physics, that happen at the experiment.

2.1.1 Nuclear spin

Analog to the electron, the proton and neutron also have a intrinsic angular
momentum (spin) of 1

2
· ~. Usually spins are expressed in the unit ~. That's

why they're called 1
2
-particles or fermions. For a system consisting of many

fermions, the total intrinsic angular momentum is the vector sum of each in-
trinsic angular momentum component. So nuclei with an even number of com-
ponents have a whole-number spin (0, 1, 2, ...) and nuclei with an odd number
of components have a half-number spin (1

2
, 3

2
, ...).

The orbital angular momentum is behaving in the same way as the intrin-
sic angular momentum and by adding both together we get the total angular
momentum, which is called the nuclear spin.

2.1.2 Quantum numbers for single particles

In quantum mechanics the state of a particle is fully described by its wave
function, which is a solution of the wave equation of the system. The func-
tion depends on several parameters which are called the "quantum numbers".
Similar to atom physics, the state of a nucleus can be described by its quan-
tum numbers. Mostly the following quantum numbers are used to describe the
state of a nucleus:

Orbital Quantum Number l
This quantum number gives the value of the orbital angular momentum with
the absolute value ~ ·

√
l(l + 1) and can have the values 0, 1, 2, ... . Using the

nomenclature of the atomic spectroscopy, the states are called:

l = 0 s-state (sharp)

l = 1 p-state (principal)

l = 2 d-state (di�use)

l = 3 f -state (fundamental)

l = 4 g-state

l = 5 h-state

.

.

.

and the following go on alphabetically.
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II. Theoretical foundation

Magnetic Orbital Quantum Number ml

This value gives the component of l in a characteristic direction, for exam-
ple along an external magnetic �eld. It has (2l + 1) whole numbered values
−l,−l + 1, ..., 0, ..., l − 1, l.

Figure 1: Projection of ml, Source [8]

Spin Quantum Number s
The intrinsic angular momentum is called SPIN. Its absolute value is ~ ·√
s(s+ 1) and has for bosons a whole numbered value and for fermions a

half numbered value.

Magnetic Spin Quantum Number ms

This value gives the component of s in a characteristic direction, for example
along an external magnetic �eld. For s = 0 is ms = 0 and for s = 1

2
is

ms = ±1
2
, because after the vector model the spin can only be orientated

parallel or anti-parallel to the characteristic direction.

Quantum Number Of The Total Angular Moment j
The total angular moment is characterized by the vector sum of the spin and
the orbital angular momentum:

~j = ~s+~l (1)

The absolute value is ~ ·
√
j(j + 1)

Magnetic Quantum Number Of The Total Angular Moment mj

This value gives the component of j in a characteristic direction, for example
along an external magnetic �eld. Mostly it's just called m instead of mj. It
can have positive or negative values with a step of one. And analog to the
other magnetic quantum numbers it has (2j + 1) di�erent values.
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II. Theoretical foundation

2.1.3 Angular moment of the nucleus

Every quantum state of the nucleus is built by a number of particles whose
orbital angular momenta and spins are summed up and result in the total
angular moment. The angular momentum of a state is characterized by the
quantum number I (or sometimes J) with the absolute value ~ ·

√
I(I + 1).

The value of I is determined by the direct sum over all ji:

~I =
∑
i

~ji (2)

or the vector sum of the orbital angular momenta and spins:

~I = ~L+ ~S, (3)

with ~L =
∑

i
~li and ~Sp =

∑
i ~si.

2.1.4 Parity

With the probability density given by the square of the wave function, it is
impossible to measure physically if the wave function is symmetric or anti-
symmetric by inverting the space coordinates.

ψ(~r) = ψ(−~r) (4)

ψ(~r) = −ψ(−~r) (5)

If the parity is symmetric it's called even (or + ) and if it's anti-symmetric
its called odd (or - ). To give the parity a physical meaning it's necessary to
explain the correlation of the orbital angular momentum and the parity.

The wave function ψ(r, ϑ, ϕ) of a single (non-relativistic) nucleus in a state
with orbital angular momentum l transforms in polar coordinate mirroring as
the following

r → r

ϑ→ π − ϑ
ϕ→ π + ϕ

The wave function can be written as

ψ(r, ϑ, ϕ) = f(r) · Ylm(ϑ, ϕ) (6)

with the spherical harmonics

Ylm(ϑ, ϕ) = Pm
l (cos(ϑ)) · ei·m·ϕ (7)

which are depending on the quantum magnetic number m and the orbital an-
gular momentum l. Pm

l (cos(ϑ)) are the Legendre-Polynomials.

If we replace ϕ → π + ϕ we have to multiply ei·m·ϕ with (−1)m and by re-
placing ϑ→ π−ϑ we get Pm

l (−cos(ϑ)) = (−1)l−m ·Pm
l (−cos(ϑ)) what means

we have to multiply the whole spherical harmonic Ylm(ϑ, ϕ) with (−1)l.
So a state with even l has an even parity and a state with odd l has an odd
parity.
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II. Theoretical foundation

2.2 Electromagnetic Transitions

2.2.1 Shell Model

The energy distribution of the nucleons in the nucleus is given by the poten-
tial in the nucleus. The boundary condition lead to a discrete distribution
of allowed states. Because the nucleons are fermions the have to obey the
Pauli exclusion principle, which says, that same particles have to di�er in
their properties. These properties are described by the quantum numbers (see
[2.1]). This leads to a shell model similar to the shell model of the atom shell,
where the states (with their di�erent quantum numbers) are �lled in regard of
their energy. But the potential inside the nucleus is much more complex than
in the atom shell, because of the strong interaction between the nucleons. A
good way to describe it is the Wood-Saxon-Potential.

V (x) = − V0

1 + exp
(
r−R0

b0

)
It's a compromise of a box potential and the potential of the harmonic oscil-
lator.

Figure 2: Wood-Saxon-Potential. Source: [3]

This potential gives us the following shell model for neutrons and protons.
Where the potential of the protons is shifted towards the potential of the
neutrons, because of their charge and their slightly di�erent mass.
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II. Theoretical foundation

Figure 3: shell model. Source: [4]

2.2.2 Transitions

In the ground state of a nucleus the energetic lowest states are occupied follow-
ing the Pauli exclusion principle. Similar to the atomic shell the nucleus can
be excited. In this excited state one or more nucleons are on energetic higher
states. Excited nucleons can emerge as residual product of a radioactive decay
or by a electromagnetic excitation. When the nucleon returns to a energetic
more favourable state, it has to give up the energy di�erence. Usually this
happens over a γ-radiation and rarer over internal conversion. When a excited
atomic shell relaxes, you can only observe dipole radiation. The emission of
photons of a higher multipolarity is suppressed and in a case, where this would
be necessary, the atomic shell relaxes over other processes than γ-emission. In
contrast to the atomic shell the nucleus can't interact as easily with its en-
vironment, so you can observe γ-radiation of higher multipolarity. The only
competing process is the internal conversion, where the energy is given to an
electron in the shell. This process is mainly observed, when the competing
photon emission is forbidden or highly suppressed. (see section [2.2.3] and
[2.2.4])
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II. Theoretical foundation

2.2.3 Selection Rules

Beside the energy conservation the conservation of the angular momentum
and the parity are important. This means that the vectorial subtraction of the
angular momentum ~Ii of the initial state and the angular momentum ~If of the

�nal state gives the angular momentum ~L of the radiation. This leads to the
following possibilities for L:

|Ii − If | ≤ L ≤ Ii + If (8)

While for the magnetic quantum number m (see section [2.1])of the radiation
applies:

m = mi −mf (9)

Where mi and mf are the magnetic quantum numbers of both states. Addi-
tionally applies for photons

m 6= 0→ L 6= 0 (10)

For each angular momentum there are two possible kinds of photon radiation,
electric or magnetic. In a classic view this means if a magnetic or electric
multipole oscillates. The parity π of these di�erent kinds of radiation are
opposed. (see section [2.2.5])

πE = (−1)L

πM = −(−1)L

Because the parity is a conserved quantity, it has to follow

πf = π · πi (11)

Where πf is the parity of the �nal, πi of the initial state and π the parity of
the emitted photon.

2.2.4 Transition Probability

The derivation of the transition probability is very complex, that's why we
pass on it. If we assume that there's just one proton which changes its state,
we get:

PE(l) =
2(l + 1)ω

l[(2l + 1)!!]2

(
e2

~c

)(
R

2πλ

)2l

S|MEl|2

PM(l) = PE(l) · 10

(
~

mpcR

)2

With:

PE: probability for transition with electric multipole radiation
PM : probability for transition with magnetic multipole radiation
ω: frequency of the emitted photon
R: Radius of the nucleus
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II. Theoretical foundation

MEl: transition matrix element for electric transition
MMl: transition matrix element for magnetic transition
mp: mass of a proton
S: statistic factor dependent on Ii,If and l, which is normally circa 1

We can see, that the probability is suppressed with greater l and the magnetic
transition is more unlikely than the electric transition with same l.

2.2.5 Multipole Radiation

To treat the photon distribution we use the classic description of the photons
as a electromagnetic wave. We try to evolve the electromagnetic �eld by
eigenfunctions of the angular momentum because it's a conserved quantity by
the transition. We have to solve the Maxwell equations for a source-free room:

~∇× ~E = −
~̇B

c
, ~∇× ~B =

~̇E

c
(12)

~∇ ~E = 0, ~∇ ~B = 0 (13)

(14)

We use the ansatz of a harmonic oscillating time behaviour of exp(−iωt) and
get out of equation(12):

~∇× ~E = ik ~B, ~∇× ~B = −ik ~E

With k = ω
c
From this follows:

(4+ k2) ~B = 0 ∨̇ (15)

(4+ k2) ~E = 0 (16)

First we �rst treat the solution of the the scalar equation:

(4+ k2)Φ = 0

which are:

Φm
l = fl(kr)Ylm(θ, φ) (17)

Here is fl(kr) a pure radial function and Ylm are spherical harmonics, which
are eigenfunctions of the angular momentum l and its z-component m. By
application of the angular momentum operator ~L = −i(~r× ~∇) on equation(17)
we can get solutions for eq (15) & (16)

~Bm
l = fl~LYlm, ~Em

l =
i

k
~∇× ~Bm

l ∨̇ (18)

~Em
l = fl~LYlm, ~Bm

l =
−i
k
~∇× ~Em

l (19)
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II. Theoretical foundation

The �rst line describes a electric 2l-pole �eld and the second a magnetic 2l-
pole �eld. These solutions constitute a system by which every solution of the
Maxwell equation can be evolved:

~E =
∑
l,m

[a(l,m)fl ~X
m
l + b(l,m)

i

k
~∇× fl ~Xm

l ]

Where ~Xm
l are the normalised vectorial spherical harmonics:

~Xm
l =

~LY m
l√

l(l + 1)

So that the coe�cients a and b give the contribution to the respective multipole
radiation.

2.2.6 Angular Distribution

The Intensity is described by the absolute value of the Poynting vector:

|~S| = | 1

µ0

( ~E × ~B)|

Far away from the source the �elds ~B and ~E are approximately orthogonal to
each other.

|~S| ≈ 1

µ0

E ·B =
1

µ0

E2 =
1

µ0

B2

Because the absolute value of the both �elds are the same (see equation (18)
& (19) ) We are only interested in the angular dependence of the distribution:

|~S| ∝ | ~Xm
l |2 =: Zm

l (θ, φ)

→

Zm
l =

1

2

(
1− m(m− 1)

l(l + 1)

)
|Y m+1
l |2+

1

2

(
1− m(m+ 1)

l(l + 1)

)
|Y m−1
l |2 +

m2

l(l + 1)
|Y m
l |2

11



II. Theoretical foundation

Example

Figure 4: Example of a cascade. Source: [1]

Without a chosen z-axis we have 3 di�erent transitions and therefore the
distribution is described by the sum over three di�erent Zm

l :

Z±1
1 =

1

2
(

3

4π
cos2 θ +

3

8π
sin2 θ)

Z0
1 =

1

2

3

4π
sin2 θ

→ Ztot =
3

8π

Which is isotropic like you would expect. But if we chose a z-axis by measuring
the �rst photon, the transition for m = 0 disappears and we obtain:

W (θ) = Ztot = 2Z1
1 =

3

4π
cos2 θ +

3

8π
sin2 θ =

3

8π
(1 + cos2 θ)

This method can be generalized by group theory (see [5] )

W (θ) =
K∑
k

a2k cos2k θ (20)

With a0 = 1 and K = Min{I0, l1, l2} ∈ N; I0 is the middle state of the cascade
and l1/2 is the angular momentum of γ1/2. The Anisotropy

A =
W (180◦)

W (90◦)
− 1 =

2∑
i=1

ai (21)

is a measurement for the diviation of the isotropy.

If I0 is not an integer I0 − 1
2
is used. The coe�cients a2k are determined

for some cascades:
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II. Theoretical foundation

Figure 5: Correlation coe�cients (source: [2])
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II. Theoretical foundation

2.3 Used Probes

For the energy calibration we used Cobalt-60 and Sodium-22 and their known
spectrum.

Sodium-22:

Sodium decays to nearly 89.9% over β+-decay and to 10.1% over electron catch
to an excited state of Neon:

22
11Na→22

10 Ne
∗ + e+ + νe

22
11Na+ e− →22

10 Ne
∗ + νe

Figure 6: Decay of Na-22.(Source: [7])

So we can detect two peaks in the Na-spectrum. One from the transi-
tion into the ground state (1274.6keV) and one from the electron-positron-
annihilation (511keV = electron mass)
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II. Theoretical foundation

Cobalt-60:

Cobalt decays nearly to 100% over β−-decay to the third excited state of Nickel:

60
27Co→60

27 Ni+ e− + νe

Figure 7: Decay of Co-60.(Source: [7])

This excited state transitions mainly to the �rst excited state and this
transitions to the ground state.So we can see again two peaks at 1173.2keV
and at 1332.5keV (see image(7))

Rhutenium-106 We use Ruthenium-106 to produce excited states of Palla-
dium:

Figure 8: Simple decay sheme of Ru-106.(Source: [1])

We try to �nd the in the image listed values in our experiment.
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III. Procedure

III Procedure

3.1 Set-Up

The Set-Up of the experiment is really simple. We have two detectors: one
�xed on a point of a circle around a probe and the other one can be moved
on this circle. With the detectors we can count coincidences for every angle
between them.

3.1.1 Devices

To execute the experiment, we need a selection of electronic devices which we
want specify and explain their functions.

Scintillation Counter

The scintillation counter converts a γ-quantum into an electronic impulse.
The physical e�ects responsible for the conversion are the photo e�ect and
compton scattering. So with a scintillation counter it is possible to make γ-
quanta countable.

Ampli�er

The Ampli�er simply ampli�es the signal and has a uni -and bipolar output.

Single Channel Analyzer

The SCA operates like a Band-Pass-Filter for voltages. You can set the width
of the band and the start of the band. In contrast to the real Band-Pass-Filter,
the SCA only emits a single well de�ned signal with the same shape for every
voltage that is in the allowed band.

Multi Channel Analyzer

The MCA works in principle the same way as the SCA. The only di�erence
is, that you can't de�ne a 'window' in which it passes a signal and the signal
is split up in 1024 channels ordered by the height of the signal. Each channel
represents a little voltage interval. Connected to a computer the MCA shows
you a full spectrum of the input voltage.

Linear Gate

The Linear Gate has a enable-input and a normal input. The output of the
linear gate is just the normal input at the time it gets an enable signal.

Fast Coincidence Device

The Fast Coincidence Device gives a signal, if two or more signals are registered
within the selectable resolving time.
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III. Procedure

Linear Mixer, 50Hz Clock and Hex-Scaler

These simple devices aren't as important as the other ones but they are needed
to make the experiment work. The Hex-Scaler simply counts the input signals.
The 50Hz Clock is used for time measurement because it counts by a frequency
of 50Hz as long as we count the coincidences. And the linear mixer is just
used to reverse the signal of the coincidence device from a positive signal to a
negative signal because the Hex-Scaler just counts on negative signals.

3.1.2 Energy Calibration

For the energy calibration measurement we simply connected the scintillation
counters with the ampli�er and than the uni polar output of the ampli�er with
the multi channel analyzer which is connected to a computer.

3.1.3 Energy Windows

To set the energy windows for every decay, we had to combine the SCA and
the MCA. By giving the ampli�ed signal to the linear gate and the SCA, we
could use the output of the SCA as enable signal. So the MCA only gets the
signals, that can pass through the SCA. In the drawing below you can see the
set up for setting the windows of SCA 1 (orange) and SCA 2 (yellow). Of
course they can't be realized at the same time.

Figure 9: Set-Up for setting the energy windows

3.1.4 Coincidences

For the measurement of the coincidences, we don't need the MCA, because we
can simply use the Hex-Scaler to count the coincidences, the events from the
scintillation counters and the time.
That's why we don't use the linear gate as well. We use both outputs of the
SCAs, one for counting with the Hex-Scaler and the other one to measure the
coincidences. The output of the coincidence device must be inverted by the
linear mixer, because the Hex-Scaler needs a negative input signal. Finally we

17



III. Procedure

use the 50Hz clock to measure the time. We can either stop the counting by
de�ned number of counts of the 50Hz clock or we just use the count of the
50Hz clock to get the elapsed time.

Figure 10: Set-Up for the coincidence measurement

3.2 Energy Calibration

We measured the Spectrum of Cobalt and Sodium with the moveable detector
(D2) and adjusted the ampli�er, so that the last peak of Cobalt (1332.5keV)
was seen a little bit under channel 800. This way we could be sure to have
linear amplifying in the interesting energy area. We measured the spectra each
for circa 40min. Then we measured the spectrum of Palladium with the same
ampli�er settings for about 20min.

3.3 Delay

For the coincidence measurement we needed to adjust a delay between the two
SCA. We used the 511keV peak of sodium to determine the delay settings.
We know that this peak is caused by the positronium decay which sends two
photons in opposite directions. First we had to choose the energy window for
the measurement. We set the window for each detector at the peak of 511keV.
Then we set the detectors with a angular of 180◦ between each other and used
the coincidence set-up. We set the delay of the SCA2 of the second detector D2
to a �xed value ( d = 0.06µs ) and variegated the delay of the SCA1 of the �rst
delay. For the rough delay setting we used the oscilloscope and tried to match
the observed pulses. We measured the coincident counts Nc as a function of
the delay and chose the delay of maximal counts as delay for our measurement
with palladium. The rate �uctuated a lot so we measured the chosen point
more than once to be sure to have chosen a good operating point. We could
use the same delay for palladium as for sodium, although the positron and
electron are emitted simultaneously, because the life time of the middle state
of the γ-γ-decay is short enough to be seen as simultaneously as well.

18



III. Procedure

3.4 Angular Resolution

To determine the angular resolution of the detector we use again the positro-
nium decay of sodium. We use the coincidence set-up and measure the counts
as function of the angular with set energy windows. Because we don't know
how the sodium is put in the given plastic stick we can't know how centred it
is between the two detectors. So we variegate the position of the probe and
measure multiple series to compare the width of the resulting Gaussian curves.

3.5 Angular Distribution

We set the energy windows of the two detectors to the peaks we identi�ed
as the two peaks related by the γ-γ-cascade we're interested in. We use the
movable detector D2 for the second peak of the decay (in the spectrum it is
the higher one because beside the γ-γ-cascade it can appear as usual γ-decay
to the ground state).
First we measured from 70◦ to 290◦ in ∆α = 10◦ steps with a time of ap-
proximately 3 minutes. We set the Hex-Scaler to stop at 10000 counts from
the 50Hz Clock. With this data we could get a feeling for the analysis, but
with this short measurement period the statistics are to bad to get a signi�-
cant result. So we did the measurement again. This time we didn't use the
50Hz clock to stop the measurement, but we used it to measure the time. We
did ∆α = 20◦ steps from 70◦ to 290◦ and then again from 80◦ to 280◦ with
a measuring time of about 10 minutes per step. The data we took from this
measurement was good, but since we had 2 weeks to measure we �gured that
we could do better.
So we started again with smaller energy windows and again ∆α = 20 degree
steps from 70◦ to 290◦ and then from 80◦ to 280◦. This time we measured
each step for about 20 minutes. Since this measurement takes up to 7 hours
and 40 minutes of pure measuring time, we thought we could split it up to 2
days, if we won't touch the setup over night. Sadly the data shows, that, even
without touching, something changed over night and the points we measured
the second day had a lower count rate than the day before:
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III. Procedure

Figure 11: Third measurement - Day 1 and Day 2

Obviously something had changed over night and to prove it, we measured
the 180◦ point again. We can't say for sure what the problem was, but we
think the window settings of the SCAs changed. That's why we couldn't use
the data and had to measure again.
First we set the energy windows again and then we measured in ∆α = 10◦ steps
for 20 minutes again. But this time we started at 180 degree and measured by
turns 180◦ + n ·∆α and 180◦ − n ·∆α (n = 0,1,2,...,11), so that a changing of
the energy windows (or what ever caused the problem) was e�ecting to both
sides equally.
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IV Analysis

4.1 Delay

For the Counts in respect to the delay we measured:

Figure 12: Counts in respect of the delay

We chose the marked point for our measurement with palladium: delay =
0.222µs
We measured this point several times to be sure to be at a maximum.

4.2 Energy Calibration & Energy Spectrum

We �tted the sum of two Gaussian functions and a exponential function to the
two peaks of the cobalt spectrum with Mathematica, because the two peaks
are very close to each other. The Fit was done with weights wi = 1/s2

i where
si =

√
Ni is the uncertainty of the Counts Ni The �t function has therefore

the form:

fc(x) =
h1

s1

· Exp
[
−0.5 ·

(
x−m1

s1

)
2

]
+ (22)

h2

s2

· Exp
[
−0.5 ·

(
x−m2

s2

)
2

]
+ (23)

a · Exp[e · x] + c (24)
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IV. Analysis

We got the parameter values:

Value x Standard Error sx
m1 744.9 1.0
m2 659.5 0.7
h1 38000 1000
s1 42.23 0.7
h2 27600 1200
s2 30.6 0.8
c 54 5
e 130000 20000
a 0.0081 0.0003

(25)

With the �t curve:

Figure 13: Spectrum Cobalt

For this �t curve we calculated the χ2

DoF
with:

χ2 =
∑
k

(
Nmess k −NTheo k

sNmess k

)2

(26)

Where the sum goes over all used measured value. Which gives

χ2

DoF
(Co) = 1.03

We �tted to each peak of the Sodium spectrum the sum of a single Gaussian
function and a exponential function. We used the following �t function for
both peaks:

fs(x) =
h

s
· Exp

[
−0.5 ·

(
x−m
s

)
2

]
+ (27)

a · Exp[e · x] + c (28)
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And got the values for the parameters:

Value x Standard Error sx
m1 302 0.2
h1 −26000 300
s1 −19.6 0.2
c1 30 30
e1 3250 150
a1 0.0057 0.0003
m2 726.8 1.1
h2 4170 150
s2 36.9 1.2
c2 −23 3
e2 1800 70
a2 0.00381 0.00011

(29)

With the �t curve:

Figure 14: Spectrum Sodium (Blue: Peak with parameters 1 , Red: Peak with
parameters 2)

And their χ2

DoF
:

χ2

DoF
(Na1) = 2.80

χ2

DoF
(Na2) = 2.53

We know the spectrum of Sodium and Cobalt (see section [2.3]).
Their peaks are ate 511keV and 1274.6keV for Sodium and 1173.2keV and
1332.5keV for Cobalt.
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With these energy values we could calibrate the MCA, which works linear in
the chosen area. We used a linear �t:

E(m) = a ·m+ c (30)

Where Ch is the channel position of the peaks and also the parameter m of
the �tted curves. With Mathematica we got the parameter values with their
uncertainties:

Value x Standard Errorsx
c −44 12
a 1.84 0.02

(31)

And the linear slope:

Figure 15: Energy calibration ( The errorbars are too small to be seen in this
graph, see table(25) & (29) )

We used the same way to �nd the peak positions in the measured Palladium
spectrum as we used for the Cobalt and Sodium spectrum. We �tted the curve
(22) to the double peak and the curve (27) to the single one. This way we got
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the following parameters with their uncertainties:

Value x Standard Error sx
m1 303.17 0.09
m2 361.8 0.3
h1 722000 4000
s1 19.54 0.07
h2 431000. 4000
s2 28.12 0.19
c12 3090 40
e12 223000. 8000
m3 621.0 0.5
h3 40700 1500
s3 40.7 0.8
c3 −110 50
e3 80000 10000

(32)

With the �t curves:

Figure 16: Palladium spectrum (Red: Double peak with parameters 1 and 2,
Green: Single peak with parameters 3)

and their χ2

DoF
:

χ2

DoF
(Pd12) = 3.49

χ2

DoF
(Pd3) = 1.56

We used the resulted linear �t equation (30)

E(m) = a ·m+ c (33)
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with a and c out of the parameter table (31) to calculate the Energies of each
peak. The errors of these energies are calculated by error propagation of each
parameter ( sa and sc , also found in table (31)) and the channel positions m
with their errors sm (see table (32)) :

sE =
√
m2 · s2

a + a2 · s2
m + s2

c (34)

With these equations we got following values for the three found peaks in the
spectrum of Palladium:

i Ei/keV si/keV
1 513 14
2 620 15
3 1097 19

(35)

We can see that the �rst two energy peaks sum up to the third one. That
means that these �rst two peaks are related over a γ-γ-cascade.
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4.3 Angular resolution

As described before, we measured the angular resolution and �tted the data
with a gaussian-function:

f(x) =
a1

a3

· e−
1
2
·
(
x−a2
a3

)2

(36)

To see the goodness of the �t we also determined χ2:

χ2 =
∑(

yi − f(xi)

σyi

)2

(37)

For the �rst three measurements, with the probe centered as good as possible,
we got the following results.

4.3.1 Measurement 1 - 3

Measurement 1

Figure 17: angular resolution #1

#1 Estimate Standard Error
a1 4420 94
a2 176.3 0.3
a3 13.3 0.3

χ2 = 33.0245
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Measurement 2

Figure 18: angular resolution #2

#2 Estimate Standard Error
a1 3387 99
a2 178.7 0.4
a3 11.1 0.4

χ2 = 75.7416

Measurement 3

Figure 19: angular resolution #3

#3 Estimate Standard Error
a1 5884 223
a2 177.6 0.5
a3 12.5 0.6

χ2 = 57.4437

As you can see easily the Gaussian function is shifted from the 180◦ by a
few degrees and the width is varying as well. So we determined the weighted
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mean of the width a3 because that's the parameter we're interested in.

a3 =

∑3
1
a3,i

σ2
a3,i∑3

1
1

σ2
a3,i

= 12.4 (38)

σa3 =
1∑3

1
1

σ2
a3,i

= 0.2 (39)

But we didn't know, if the value of a3 was e�ected by the shift of a2 from
180◦, so we did two measurements with the probe positioned o�-center as much
as possible.

Figure 20: probe position in 4 and 5
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4.3.2 Measurement 4 and 5

Measurement 4

Figure 21: angular resolution #4

#4 Estimate Standard Error
a1 4355 109
a2 168.7 0.4
a3 12.4 0.4

χ2 = 38.6673

Measurement 5

Figure 22: angular resolution #5

#5 Estimate Standard Error
a1 3941 72
a2 190.3 0.3
a3 12.7 0.3

χ2 = 59.1779
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With these measurements we could see, that the width of the Gaussian
function doesn't really depend on the position of the probe in our set-up. Of
course it always does a little, because of the geometry, but in our set-up the
e�ects are insigni�cant. That's why we decided to determine the weighted
mean over all 5 measurements to get the value of a3.

a3 =

∑5
1
a3,i

σ2
a3,i∑5

1
1

σ2
a3,i

= 12.5 (40)

σa3 =
1∑5

1
1

σ2
a3,i

= 0.2 (41)
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4.4 Angular Correlation

4.4.1 Random coincidences

We measured the random coincidences over night by setting the delay of SCA2
to a very high value (7.14 µs), so that there is no chance of a real coincidence.
We measured the following values:

Event Counts
Random Coincidences 435
t · 50Hz 869822

(42)

So we got the counting rate of

Nrandom =
435 · 50

869822

1

s
= 0.025

1

s
(43)

with the statistical error of:

σNrandom =

√
435 · 50

869822

1

s
= 0.001

1

s
(44)

But with a relative error of

σNrandom
Nrandom

= 0.048 (45)

we can can disregard the error in the following error propagation.

4.4.2 Angular Distribution

We measured the angular distribution as mentioned before. And Just like the
random coincidences we determined the counting rates for each angular. The
next step was to norm the data to the 90◦ point and subtract the random
coincidences:

Nnorm,i =
Ni −Nrandom

N90◦ −Nrandom

(46)

And the error:

σNnorm,i = Nnorm,i ·

√(
Ni

σNi

)2

+

(
N90◦

σN90◦

)2

(47)

In theory we should see the angular distribution

W (a1, a2,Θ) = 1 + a1 · cos(Θ)2 + a2 · cos(Θ)4. (48)

But with the �nite aperture angle and the resulting angular resolution we can't
�t this function on our data. We have to convolve the theoretical angular
distribution with a Gaussian function

G(x,Θ, σ) =
1√

2 · π · σ
· e−

1
2
·(x−Θ

σ )
2

(49)
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with the width σ we determined before from the angular resolution:

g(x) =

∫
W (a1, a2,Θ) ·G(x,Θ, σ)dΘ (50)

But since we couldn't �t this function to our data, because of the integral, we
summed over 360◦ in 1◦ steps and because we didn't measure the 90◦ more
exactly for the normalization, we added a new parameter h1 to adjust the error
in normalization on the other parameters:

ĝ(x) = h1 ·
360∑

Θ=0

W (a1, a2,Θ) ·G(x,Θ, σ) (51)

To appraise the errors on the parameters we didn't just looked at the error
given by the �t, we also wondered how signi�cant the di�erence of the pa-
rameters were if we added/subtracted the error on the width of the Gaussian
function from the angular resolution. So �tted the data three times.
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Fit 1

ĝ1(x) = h1 ·
360∑

Θ=0

W (a1, a2,Θ) ·G(x,Θ, σ − sσ) (52)

Estimate Standard Error
h1 1.13042 0.0365419
a1 −2.81568 0.146575
a2 3.35706 0.163202

χ2

dof
= 27.55

Figure 23: angular distribution - �t1
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Fit 2

ĝ2(x) = h1 ·
360∑

Θ=0

W (a1, a2,Θ) ·G(x,Θ, σ) (53)

Estimate Standard Error
h1 1.13527 0.0368502
a1 −2.84269 0.147156
a2 3.38339 0.163777

χ2

dof
= 26.99

Figure 24: angular distribution - �t2
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Fit 3

ĝ3(x) = h1 ·
360∑

Θ=0

W (a1, a2,Θ) ·G(x,Θ, σ + sσ) (54)

Estimate Standard Error
h1 1.14026 0.0371683
a1 −2.87022 0.147736
a2 3.41022 0.164349

χ2

dof
= 26.45

Figure 25: angular distribution - �t3

As you can see the di�erences caused by the error of the Gaussian width
∆ai is very small and disappears within the error of the �t parameters:

Parameter ∆ai Mean Standard Error
a1 0.055 0.147
a2 0.053 0.164

So we think its reasonable to disregard the error of the Gaussian width and
just go with errors of the �t.

As you remember, while measuring the angular resolution, we saw that the
measured Gaussian function was shifted in middle by about 2.5◦. But since
the geometry of the probe used for the angular resolution was di�erent from
the one we used to measure the angular distribution, we wont correct the data,
but see what e�ect a shift of 2.5◦ has on the �t parameters. So once again we
de�ned a slightly alternated �t function

ĝ4(x) = h1 ·
360∑

Θ=0

W (a1, a2,Θ) ·G(x+ 2.5,Θ, σ) (55)
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Estimate Standard Error
h1 1.12817 0.0407287
a1 −2.81664 0.164064
a2 3.36497 0.181812

χ2

dof
= 26.95

Figure 26: Comparison - �t2 & �t4

Again the di�erence in the parameters ∆ai isn't very big:

Parameter unshifted �t2 shifted �t4 ∆ai
a1 −2.84 −2.82 0.02
a2 3.38 3.36 0.02

So we probably won't have large e�ects from the shift and we can use the
second �t to get the parameters and end up with the angular distribution

W (Θ) = (1.14± 0.04) ·
(
1 + (−2.84± 0.15) · cos(Θ)2 + (3.38± 0.16) · cos(Θ)4

)
(56)

With this we can determine the anisotropy

A =
W (180◦)

W (90◦)
− 1 =

2∑
i=1

ai = 0.54 (57)

And its error

sA =
√
S2
a1

+ Sa2 = 0.22 (58)

So we see that the distribution is not isotropic.
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4.4.3 Assignment of the γ − γ cascade

Next we want to �nd out which γ − γ cascade (A → B → C) describes our
data the best. Therefore we have to �gure out which cascades are possible and
then look which cascade �ts our data the best.

• Our data obviously couldn't be �tted with a2 = 0. So we need to have a
cos(Θ)4 contribution, what means, that the radiation can't be a dipole
radiation and has to be at least quadrupole radiation. We tried to �t with
another parameter a3 and the cos(Θ)6 contribution, but the parameter
was within its error zero, so we can assume, that we just have quadrupole
radiation. Since the cascade should be symmetric we have ∆I = 2 for
both decays, what means we have a angular moment of l = 2 in the
radiation �eld of both decays.

• We know that our nucleus (106
46 Pd) has 46 protons and 60 neutrons, so

we have a even-even nucleus and therefore we know that in its ground
state it has no spin and the parity is P = (−1)l = 1. So we get IC = 0+.

So after �gure (5) we have three possible cascades left and we made for everyone
the χ2 test to see what cascade �ts best to our parameters:

IA(l1)IB(l2)IC a1 a2
χ2

dof

0(2)2(2)0 −3 4 7.66
2(2)2(2)0 −15/13 16/13 152.23
4(2)2(2)0 −1/8 1/24 378.7

As you can see the 0(2)2(2)0 cascade �ts the best to our parameters. And we
have the theoretical anisotropy of

A =
2∑
i=1

ai = −3 + 4 = 1 (59)

In the following plots you can see the comparison of the theoretical angular
distributions. The �rst one shows the pure theoretical angular distribution
without convolution. The green curve is with the parameters from �gure (5)
and the purple with the parameters we measured. The second plot shows the
data�t (Orange) and the distribution with the parameters from �gure (5) but
with the convolution we used to do the �t.
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Figure 27: Comparison of the theoretical distributions and the �tted data
without convolution

Figure 28: Comparison of the theoretical distributions and the �tted data with
convolution
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4.4.4 Verifying the angular resolution

As mentioned before the angular resolution measurement was a huge source for
systematic errors, even if the e�ects where insigni�cant. So with the theoretical
angular distribution we tried to �t the width of the Gaussian curve for the
convolution to verify our angular resolution measurement.

ĝ5(x) = h1 ·
360∑

Θ=0

W (−3, 4,Θ) ·G(x,Θ, σ) (60)

with h1 and σ as �tting parameters.

Estimate Standard Error
h1 0.982039 0.0299964
s1 12.9934 1.88193

χ2

dof
= 39.86

Figure 29: Theoretical Angular Resolution

As you can see the data doesn't �t perfectly. But since the width of the
Gaussian curve is within its error the same we measured, we must look for
another source of systematical errors.

40



V. Conclusion

V Conclusion

5.1 Delay

The measurement of the delay in respect to the count rate let us chose the
necessary delay between the two coincident γ-emissions, which occurs because
of the di�erent way of the two photons until their measurement. We chose the
adjustment of the delays d1 and d2 of the both SCA's, where we could see a
maximum of the rate:

d1 = 0.222µs

d2 = 0.06µs

5.2 Energy Calibration & Palladium Spectrum

We calibrated the MCA with di�erent probes with known energy spectres and
a got for the standard curve:

E(Ch) = a · Ch+ c

a = (1.84± 0.02)keV

c = −44± 12

Where Ch is the channel number. And found three peaks in the Palladium
spectrum, their energy positions we could calculate with the standard curve.

E1 = (513± 14)keV

E2 = (620± 15)keV

E3 = (1097± 19)keV

Unfortunately we couldn't �t a bigger energy range at the channels, because
the calibration peaks of Sodium and Cobalt couldn't be detected any more.
Therefore we couldn't �nd the other two peaks we wanted to detect.

5.3 Angular resolution

We measured the angular resolution three times and found out, that the probe
was o�-centered. To verify, that the position of the probe didn't e�ect the
angular resolution, we placed the probe o�-centered at both directions and
measured again. We found out, that this shift didn't had a big e�ect on the
measurement and we got the angular resolution a Gaussian function with the
width of

σ = (12.5± 0.2)◦ (61)
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5.4 Angular correlation

5.4.1 Random coincidences

We measured a counting rate of

NRandom = (0.025± 0.001)
1

s
(62)

for the random coincidences.

5.4.2 Angular distribution

To get the parameters needed to determine the correct angular distribution,
we had to �t a convolution of the theoretical angular distribution and a Gaus-
sian function with the width we determined before from the angular resolution.
Since we had systematic errors (f.e. shift) in the angular resolution measure-
ment, we had to con�rm, that these errors doesn't e�ect the �t parameters
that much. We also showed, that the error of the angular resolution is insignif-
icant as well.
As a result we got the angular resolution

W (Θ) = (1.14± 0.04) ·
(
1 + (−2.84± 0.15) · cos(Θ)2 + (3.38± 0.16) · cos(Θ)4

)
(63)

and the anisotropy

A = (0.5± 0.2) (64)

5.4.3 Assignment of the γ − γ cascade

With the parameters we could easily �nd out that the spin series of the γ − γ
cascade is 0 → 2 → 0. And therefore the theoretical angular distribution
should be

W (Θ) = 1− 3 · cos(Θ)2 + 4 · cos(Θ)4 (65)

That means the theoretical value for the parameter a1 is in 2-sigma-range
of the measured value and for a2 it's in the 4-sigma-range. The theoretical
anisotropy is

A = −3 + 4 = 1 (66)

and so it's in 3-sigma-range of the measured value.

5.4.4 Verifying the angular resolution

With the theoretical angular distribution, we tried to reconstruct the angular
resolution and got the width of a Gaussian function

σ = (13± 2)◦ (67)
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You can see, it's in 1-sigma-range of the measured value. This shows again,
that the main systematic error wasn't necessarily the angular resolution. We
suspect the random coincidence measurement for the di�erence of our param-
eters to the theoretical prognosis.
We saw that an o�set e�ected the �t parameters dramatically. And since
we did measure over night it's very likely that there were the same e�ects as
in our third measurement. We may also should have measured the random
coincidences for every angle to be sure, that they are uniformly distributed.
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6.1 Manually noted data

Figure 30: Page 1/12
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Figure 31: Page 2/12
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