
Abstract

In order to investigate the phenomenon of electromagnetic induced transparency (EIT), several
preliminary measurements need to be performed.
In a first step, the lasing threshold is determined to be ILT = (83.4± 0.1) mA. Above this
threshold, the laser can be used. In a first step, a rubidium sample, consisting out of 85Rb and
87Rb, is analysed. For that, three different spectroscopy methods are used, namely absorption,
fluorescence and saturation. With each of those methods, the hyperfine transitions between the
levels 52S1/2 and 52P1/2 of rubidium can be determined. Since there is no absolute scale available,
the peaks are given with reference to the lowest one. For simplicity, the peaks are labelled with
T1 to T8, ordered after frequency. The transition values found with saturation spectroscopy are:
T1 = (0± 45) MHz, T2 = (796± 45) MHz, T3 = (1506± 45) MHz, T4 = (1870± 46) MHz, T5 =
(4532± 46) MHz, T6 = (4903± 45) MHz, T7 = (6829± 45) MHz and T8 = (7645± 46) MHz. All
those values are in good accordance with literature.

With these transitions, further physical constant, like the hyperfine constant of both rubidium
isotopes, can be determined. The hyperfine constants determined with the saturation spec-
troscopy are: A87 = h · (398± 16) MHz, A87 = h · (408± 16) MHz, A85 = h · (122± 11) MHz and
A85 = h · (123± 11) MHz. All those values are in good accordance with literature.
Also the mixture of the rubidium isotopes can be gathered by determining the peak heights.
The abundance of 87Rb is calculated with different peaks and is found to be 30± 4% using the
first and third peak in saturation spectroscopy.

The spectroscopy measurement is needed, since the laser should be locked onto one specific tran-
sition frequency for the EIT experiment. The desired frequency can be locked. In order to obtain
knowledge about the stability of the locking, a frequency stability measurement is performed.
The measurement showed, that the laser frequency is stable over the whole measurement time
of 10 minutes.

The last preliminary measurement for the EIT experiment, is the determination of the beat note.
Here, two overlapping beams realize a different frequency shift from an AOM each, leading to a
beat note. With the beat note measurement, a linear dependency between the applied shift at
the AOMs and the measured beat note can be found.
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1 Introduction

1 Introduction
Electromagnetically Induced Transparency (EIT) is a quantum interference effect, that renders
an otherwise absorbing medium transparent to a probe laser in the presence of a coupling field,
provided by a pump laser [1]. By this manipulation of the optical properties of the medium,
it is possible to produce light with very small group velocities. Specifically, it is possible to
produce stopped light [2]. This is achieved by turning off the pump laser that prepares the
medium, which then "traps" the light of the probe beam inside the medium. Stopped light has
many exciting applications, such as quantum memory, which is used for quantum information
processing [3] and highly sensitive interferometers [4]. Further applications of EIT include laser
cooling of atoms [5].

In this report, preliminary measurements for EIT are performed. In the first week, the lasing
threshold is determined, followed by spectroscopic measurements of rubidium. For that, three
different spectroscopy methods are used, specifically absorption spectroscopy, fluorescence spec-
troscopy and saturation spectroscopy. From these measurements, several physical quantities are
determined. Those are the hyperfine transitions of rubidium, the composition of the Rb isotopes
85Rb and 87Rb in the sample and the hyperfine constants of 85Rb and 87Rb.

In the second week, the laser frequency is locked, using PID controllers. The frequency stability
of this lock-in is then determined. Furthermore, the setup is changed in preparation of the
EIT measurement. For that, the laser is splitted into a pump and probe beam, which are
then modulated to two different frequencies. After recombination of the beams, a beat note
measurement is performed.

1



2 Theory

2 Theory
In this section the basic concepts for the hyperfine structure are introduced, which is analysed for
85Rb and 87Rb in this experiment. Also, the working principle of a laser in general is explained,
with special regards to grating stabilized laser heads. In addition to that, all elements in the
optical path are explained briefly. If not stated otherwise, the sources used are Atomic Physics
by Foot [5] and Laser Spectroscopy by Demtröder [6].

2.1 Different atom structures

Electrons which orbit a nucleus move accordingly to the coulomb potential created by the nu-
cleus. Calculating these orbits classically shows, that electrons can only follow discrete orbits.
Due to the existence of several orbits with different energies, energy differences can be observed
as spectral lines. Looking closer at the electromagnetic interaction between the orbital angular
momentum L and spin S of the electrons (coupling into the total angular momentum J), it can
be found that the energy levels are slightly shifted and splitted due to the orientation of the
spin. The resulting splitting is called fine structure, where the splitting is small compared to the
previous energy difference. Since the nucleus obtains a nuclear spin I, which interacts with the
total angular momentum J of the electrons (coupling into the total atomic angular momentum
F), there are further splittings, which are called hyperfine structure.

2.1.1 Fine structure

The coupling of angular momentum L and spin S of electrons orbiting a nucleus, leads to J
(total angular momentum) with its new quantum number J . This is called LS-coupling and is
given by:

J = L + S, (1)
|L− S| ≤ J ≤ |L+ S|. (2)

Here, J can take only values in integer steps. The total magnetic moment of the electrons can
be calculated with:

µJ = gJ
µB
~

J, (3)

with µB = e~
2me

the Bohr magneton and gJ the Landé factor:

gJ = 1 + J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1) . (4)

The exact configuration of an atom in the LS-coupling is often described using term symbols.
These are generally written as n2S+1LJ , where n is the principal quantum number and L the
orbital angular momentum quantum number, written using spectroscopic notation. In this
notation L is expressed in capital letters, with S for L = 0 or P for L = 1.

2.1.2 Hyperfine structure

To obtain the hyperfine structure, the previous total angular momentum J of the electrons is
coupled with the nuclear spin I of the nucleus. This coupling results in the total atomic angular
momentum F, with its quantum number F and is calculated with:

F = I + J, (5)
|I − J | ≤ F ≤ |I + J |. (6)

2



2 Theory

As before, also F can only realize values in integer steps.

The splitting of the energy levels in the hyperfine structure is given by:

∆EHFS = A

2 [F (F + 1)− I(I + 1)− J(J + 1)] , (7)

with A the hyperfine constant. With Equation 7, one can then determine the energy difference
of states with the same I and J and neighbouring F , which means F2 = F1 + 1. This difference
is given by:

∆EF2=F1+1 = A(F1 + 1), (8)

with F1 < F2. In order to estimate A from a spectral measurement, the energy difference can
be rewritten in terms of ν, the frequency of the corresponding emitted photon:

∆E = h∆ν. (9)

Here, h is the Planck constant. Thus, rewriting Equation 7 and 8 leads to:

A = h∆ν
F1 + 1 . (10)

With Equation 10 the hyperfine constant A can be calculated by measuring the frequency ∆ν
for a transition with constant I and J and neighbouring F .

2.1.3 Rubidium

In this experiment, the hyperfine transitions lines between the 52S1/2 and 52P1/2 states of 85Rb
and 87Rb are of interest. Both states obtain a spin of S = 1

2 and total angular momentum
J = 1

2 . The transitions of interest are between L = 0 and L = 1. The ground state of 85Rb has
a nuclear spin of I = 5

2 . Therefore, F can only take the values F = 2 or F = 3 (according to
Equation 6) for both states. The ground state of 87Rb obtains a nuclear spin of I = 3

2 . Thus,
only F = 1 and F = 2 are possible. In Figure 33 and Figure 34 in the Appendix, the hyperfine
splitting of 85Rb and 87Rb can be seen. The fine-structure transition between the 52S1/2 and
52P1/2 states is called D1 line and differs slightly for both isotopes [7, 8].

The aim of this experiment is to record the spectrum of 85Rb and 87Rb isotopes caused by
hyperfine transitions. Possible transitions need to fulfill ∆L = ±1 due to the selection rules.
The expected transitions between the 52S1/2 and 52P1/2 states of the two rubidium isotopes,
along with their differences to the 87RbF=1

F=2 (see Equation 11) can be found in Table 1. This
transition is used as comparison, since it has the smallest energy difference. Since only transitions
between 52S1/2 and 52P1/2 are expected, in the following transitions are denoted by:

ARbFL=P
FL=S

, (11)

with A the mass number and FL=P and FL=S indicating the exact hyperfine states of the upper
52P1/2 and lower 52S1/2 states, respectively. An example for this notation is 85RbF=2

F=3, referring
to the transition from the 85Rb state 52P1/2 with F = 2 to the 52S1/2 state with F = 3.

3



2 Theory

Tab. 1: Here, literature values for the hyperfine transitions of 85Rb and
87Rb are displayed. The transitions are labelled according to Equation 11.
The frequency differences compared to the 87RbF=1

F=2 are given as frequency
offset. In addition to that, also the absolute values are given [7, 8].

Transition Frequency offset [MHz] Absolute value [THz]

87RbF=1
F=2 0 377.10439

87RbF=2
F=2 814.5 377.10521

85RbF=2
F=3 1518.56 377.10591

85RbF=3
F=3 1880.15 377.10627

85RbF=2
F=2 4554.3 377.10895

85RbF=3
F=2 4915.88 377.10931

87RbF=1
F=1 6834.68 377.11123

87RbF=2
F=1 7649.18 377.11204

2.2 Spectroscopy methods

In order to obtain knowledge about the hyperfine structure of rubidium, or an atom in general,
spectroscopy methods are used. In the following, three different spectroscopy methods are ex-
plained. Namely absorption, fluorescence and saturation spectroscopy. Besides their differences,
they all have in common, that they measure photons via a photodiode, where the intensity of
the measured peaks is proportional to the probability of the transition.
Photons are produced with a laser and directed onto the rubidium cell. These photons then
excite the rubidium to a higher atomic state, if they have an appropriate frequency. This state
then spontaneously decays by emitting a photon with the exact same frequency as the incoming
photon. This decay is isotropic. That is why the beam after the cell significantly lacks the
transition frequency. If there is already an excited atom, which is hit by a photon with the
right frequency, the atom can de-excite via stimulated emission. This de-excitation produces a
photon radiating in the same direction as the incoming photon.
In the following subsections, the three methods are explained. If not stated otherwise, this
section is based on Laser Spectroscopy by Demtröder [6].

2.2.1 Fluorescence spectroscopy

In fluorescence spectroscopy, photons from spontaneous de-excitations are measured. This is
achieved by putting a photodiode next to the sample. Hereby, the photodiode needs to be
placed perpendicular to the incoming laser beam, in order to avoid the measurement of the laser
photons. The recorded spectrum of the sample will show peaks at its spectral lines.

2.2.2 Absorption spectroscopy

In case of absorption spectroscopy, the photodiode is placed in the laser beam path behind the
sample. Since the laser beam covers a range of frequencies in this experiment periodically (see
subsubsection 2.3.2), there are some photons which excite the sample atoms to higher states
and other photons, which just pass through the sample. In the case that the photons excite
the sample atoms, the beam intensity behind the sample is smaller for this certain frequency.
Since the de-excitation of the sample atoms happens through the isotropic spontaneous emission,

4
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only few photons radiate in the same direction as the laser beam. Thus, at certain frequencies,
corresponding to the spectral lines, less photons will be detected. Therefore, the recorded
spectrum will show dips at the spectral lines.

2.2.3 Saturation spectroscopy

There are different broadening effects, affecting the width of spectral lines. One of those effects
is the Doppler broadening, caused by the thermal movement of the atoms in the sample. If those
atoms move parallel to the propagation direction of the laser photons, the frequency of these
photons is Doppler shifted. Therefore, also laser frequencies slightly below or above the actual
transition frequency are able to excite atoms, which are moving parallel to the laser beam. In
total, this causes a broadening of the measured line width due to thermal movements of the
atoms. The distribution of velocity of the atoms will follow a Maxwell-Boltzmann distribution,
since we are looking only in beam direction, this broadening will be of a Gaussian shape.

In order to overcome this broadening effect at room temperature, saturation spectroscopy is
used. Otherwise cooling the sample to millikelvin temperatures would be necessary to overcome
the thermal Doppler broadening. The idea of saturation spectroscopy is, that a strong pump
beam (high laser intensity) is directed onto the sample from one direction. From the opposite
direction, a weaker probe beam, with the exact same frequency, but less intensity, is directed
onto the sample. This is done, by using a mirror and a neutral density filter (see Figure 5). The
weaker probe beam is then detected by a photodiode.
There are three different cases: first, the laser frequency is slightly below the transition energy.
In this case, the pump beam will excite atoms moving towards the pump beam laser source, say
with a velocity v, due to the Doppler shift. Alongside this, the probe beam will excite atoms
moving in the exact opposite direction, now with −v, since these are Doppler shifted towards
the probe beam. Therefore, the pump and probe beam excite different atoms. Like for the
absorption spectrum discussed before, this will cause a lower intensity for the recorded probe
beam. In the second case, the laser frequency is slightly above the transition energy, which leads
to the same result. The only difference is, that the pump beam now excites atoms with −v and
the probe beam those with v.

In the last case, the frequency of the pump beam matches the transition energy perfectly. In
this case, only atoms with v = 0 m

s are excited by the pump beam, since all atoms moving along
the laser propagation are Doppler shifted. Since v = 0 m

s , the probe beam can excite the same
atoms as the pump beam and vice versa. Because the probe beam is much stronger, it will cause
many atoms to be in the excited state. The weaker probe beam, however, meets these atoms
and will cause stimulated emission. Therefore, the intensity of the probe beam at exactly the
transition frequency is higher than for frequencies slightly apart. Thus, the detected spectrum
will show a peak inside the absorption dip. Since this peak arises from atoms with v = 0 m

s
(in beam direction), the peak is not affected by Doppler broadening effects. The line width of
this peak results from the natural line width, which is influenced by the even smaller Lamb-dip.
Hereby, the peak follows a Lorentzian shape:

L(ν) = A

1 +
(
ν−νmean

γ

)2 + L0, (12)

with A the amplitude, νmean the mean value of the curve, γ the width of the distribution and
L0 its offset. An example for the spectral measurement using saturation spectroscopy can be
seen in Figure 1.
Besides the general idea of saturation spectroscopy, there is an additional phenomenon, called
cross-over, which occurs in saturation spectroscopy, if two transition frequencies ν1 and ν2 are
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Fig. 1: Example spectrum for saturation spectroscopy, with the peak
sharp peak inside the absorption dip, which arises from stimulated emis-
sion from the probe beam [9].

close together. If the laser is tuned at ν1 or ω2, a saturation peak appears, as explained before,
from the sample atoms with v = 0 m

s . If the laser frequency is at ν = (ν1 + ν2)/2, a group of
atoms with vcross is saturated. The atoms in this velocity class are addressed by pump and probe
beam. Both frequencies ν1 and ν2 excite their respective transition. This produces an overlap
leading to this additional peak in the middle of the single ν1 and ν2 peaks. This additional peak
can make the whole saturation spectroscopy harder, since more peaks appear. Nevertheless, it
can also help to identify double peaks and therefore help to identify the whole spectrum.

2.3 Laser

In order to run this experiment, photons are needed which are radiated onto the sample. Since
the setup requires high precision of the beam, frequency stability and frequency manipulation,
a laser is needed. For better frequency manipulation, a grating can be placed in front of the
laser. In this experiment, such a grating laser is used. In the following, the basic concepts of
lasers, as well as grating lasers, are introduced. If not stated otherwise, this section is based on
Atomic Physics by Foot [5] and Laser Spectroscopy by Demtröder [6].

2.3.1 Basic concept

A laser, Light Amplification by Stimulated Emission of Radiation, is used to produce coherent
light at a certain wavelength (monochromatic) in the same phase. Lasers are build out of three
main components, an active laser medium, an energy pump and an optical resonator.

If an atom of the active medium is in an excited state, it can decay via spontaneous emission
into a lower state, by emitting a photon with exactly the energy difference of the energy lev-
els. Therefore, this photon obtains a certain wavelength. If such a photon hits other excited
atoms, it will cause stimulated emission, which produces an additional photon with the same
wavelength, polarization, phase and direction. These two photons then can interact again with
other excited atoms. This leads to many photons with the exact same parameters and therefore
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produces amplified light.

In order to keep the laser running, there needs to be an appropriate amount of atoms in an
exited state. This is also called population inversion and requires an energy pump. Without an
energy pump, the previous emitted photons will only excite other atoms, which will not lead to
stimulated emission. Only with population inversion, the rate of stimulated emission is higher
than the one for absorption and therefore amplification is achieved. The minimal power needed
to obtain this inversion, is called lasing threshold.

The last important component, the optical resonator, is used to create standing waves, which
leads to a selection of a wavelength, due to constructive and destructive interference. It is also
used to focus the light and redirect the photons on the active medium, in order to have a high
rate of stimulated emission. This cavity is build out of mirrors, one with a reflectivity of 100%
and one which is slightly transparent. This transparent mirror then lets some photons pass,
which form the laser beam.

2.3.2 Grating laser head

With the basic setup, only one specific wavelength can be produced, depending on the optical
resonator. For spectroscopy purposes, a range of wavelengths is needed. In order to achieve
this, a diode laser with a grating stabilized head, the DL pro 020011 by Toptica, is used. The
following explanation is based on the manuals for the laser controller [10] and its head [11],
for general knowledge about the working of a gratin,g Atomic Physics by Foot [5] and Laser
Spectroscopy by Demtröder [6] are used.

In this experiment, a laser diode is the source of light. Such a laser diode has a linewidth of
around 100 MHz. Its emission frequency can be tuned by adjusting either the current applied to
the diode, or the temperature. Adjusting one of these two parameters at a time, while the other
is held constant, can lead to (large) discontinuous hops in the emitted frequency. Such hops
are called mode hops. The range where no such hops occur and the frequency can be adjusted
continuously, is called mode-hop-free range.

For spectroscopy measurements, this linewidth should be chosen as narrow as possible without
mode-hops. Here, the grating laser head comes into play. The grating improves the linewidth,
as well as the mode-hop-free range. The grating functions as follows: The light emitted by the
front end of the laser diode is collimated onto a reflective grating (see Figure 2). The grating
is positioned in such a way, that the first diffraction order of the grating is reflected back to-
wards the laser diode. This is called Littrow-setup and can be seen as the blue beam hitting
the grating. The back reflected beam is again collimated and focused onto the laser diode.
Since the feedback from the grating is higher than from the front end of the laser diode, a new
resonator forms between the grating and the back end of the laser diode. This new resonator
has a linewidth of around 1 MHz, which is significantly smaller than for the laser diode itself.
In order to get a continuous range of frequencies, the grating can be moved with the help of a
piezo element.

The laser controller offers different settings, in order to obtain an appropriate mode-hop-free
frequency range for the experiment. To scan over a certain range, a changing voltage can be
applied to the piezo element. This voltage can be set with scan offset and scan amplitude.
Here, scan offset is the voltage baseline applied to the piezo element and scan amplitude
is the maximum voltage added to the baseline. The voltage is continuously adjusted between
the minimum and maximum voltage, this change can be set to a sinusoidal or triangular shape.
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Fig. 2: Sketch for a grating, placed in front of the laser diode. The grating
consists of many small ramps with length d at a certain angle θB. If the
grating is placed in a way that the beam is reflected back at an angle
θB (blue ray), one calls this the Littrow setup. The grating is used to
increase the size of the optical resonator, in order to adjust the frequency
of the emitted laser beam [12].

The frequency of this oscillation can be set with scan frequency. Here the triangular shape is
used.
Also the laser diode current can be set with set current, with its respective ramp slope, called
feed forward. The ramp used for this current change is proportional to the piezo scan ramp.
For a rather rough setting, also the temperature can be varied with the temperature parameter.
All these settings need to be adjusted precisely, in order to obtain a mode-hop-free range in the
wanted frequency window. This frequency range depends on the laser diode current, the piezo
offset and amplitude, as well as on the temperature. For a good setting, all parameters influence
each other and need to be adjusted accordingly.

2.4 Elements in the optical path

In order to set up this experiment, several different optical elements are used. In the following,
the used elements are introduced briefly. This section is again based on [5] and [6] if not stated
otherwise.

2.4.1 Optical isolator

An optical isolator is used, in order to block the laser beam from re-entering the laser cavity.
This is needed to prevent unwanted optical feedback from the resonator. Therefore, this isolator
is placed right behind the output of the laser. The principle working of such an optical isolator
can be seen in Figure 35 in the attachment. The isolator uses two polarization filters and a
Faraday rotator. This setup enables, that light is only transmitted into one direction [6].

2.4.2 Polarizing beam splitter

A polarizing beam splitter splits the laser beam into a transmitted and reflected beam. Thereby,
the beam is splitted into two beams of orthogonal polarizations. This is achieved by gluing two
prisms together, which consist out of a birefringent material.
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2.4.3 Wave-plates

A wave plate changes the polarization of an incoming light beam. Wave plates consist out
of birefringent materials, which obtain different refractive indices for the incoming light beam,
depending on its polarization. Therefore, different polarizations of the incoming beam experience
different phase shifts. These shifts can be varied by changing the thickness of the plates, as well as
its orientation in the beam path. Two very common wave plates are the half-wave plate (HWP)
and the quarter-wave plate (QWP). The HWP shifts the phase of the incoming beam by π,
which corresponds to half of the wavelength. This shift leads to the change of the polarization
axis for linear polarized light or to the change of handedness for circular polarized light. A QWP
shifts the phase by π/2, corresponding to a quarter of a wavelength. This shift converts linear
polarized light into circular polarized light and vice versa. Since the phase shift depends on the
wavelength, a given wave-plate only works in a certain wavelength range.

2.4.4 Neutral density filter

A neutral density filter (ND filter) is used to reduce the intensity of all incoming wavelengths
equally. Therefore, such a ND filter can prevent a photodiode from saturating without distorting
the spectrum. The used ND filter has a continuous range of optical densities, which means, that
the filter has a range in which intensities can be reduced. The filter is also observed to be
reflective, thus, it should be placed at an angle in the beam path.

2.4.5 Fabry–Pérot interferometer

The Fabry–Pérot interferometer (FPI) is an optical resonator. It consists out of two partially
transmitting mirrors, or a material which reflects at its outer layers. If the length L of the
material or the distance between the mirrors is fixed, this is also called an etalon. When
entering the etalon from the left side (or passing the first mirror), it propagates to the right
(second mirror) where the light gets partially reflected. This reflected light is again reflected
by the first mirror and therefore again directed onto the second one. Now two (or more) light
beams interfere. This interference can be constructive or destructive depending on the thickness
L and the wavelength of the incoming light. The interference is constructive, if the wavelength
is an integer multiple of half the thickness:

λ = nL

2 , n ∈ N. (13)

Therefore, the measured transition spectrum behind the etalon consists out of thin peaks at the
resonating wavelengths and vanishes otherwise. The frequency difference between two peaks
(resulting from higher modes) can be found at a distance δν with:

δν = c

2L, (14)

which is wavelength independent. Here δν is often referred as free spectral range (FSR). c in
Equation 14 is the speed of light in the etalon. Since the FSR depends only on L, the spectrum
shows thin equidistant peaks at the distance of δν. The width of the peaks is characterized by
the finesse F , which is defined as:

F := δλ

FWHM , (15)

with δλ the FSR in wavelengths and FWHM the full-width-half-maximum of the peak. In this
experiment an FPI with a FSR of 750 MHz (the manual is wrong here) and finesse of 300 is
used. The FPI peaks are used later, in order to calibrate the measured spectrum to the right
frequencies. In order to achieve these equidistant peaks, a mode-hop-free range needs to be
found.

9



2 Theory

2.4.6 Acousto-optical modulator

An acousto-optical modulator (AOM) (see Figure 3) is used to manipulate the wavelength of
a laser by a small amount. Hereby, an AOM uses sound-waves with a modulable frequency Ω
in order to shift the frequency ω of the laser beam by multiples of its own amount, depending
on the order of diffraction. The AOM consists out of a crystal in which ultrasonic waves are
introduced. These sound waves lead to a periodic modulation of density in the crystal, which
acts like a lattice. The lattice constant Λ is equal to the wavelength λ of the sound wave. Thus,
the incident light beam is scattered at a lattice with variable lattice constant. Therefore, the
beam can be found at all angles satisfying [13]:

sin(θn) = λ

2Λ , (16)

with θn the Bragg-angle. Different to a normal lattice, the outgoing beam frequency ωout depends
on the order of diffraction m with [13]:

ωout = ωin +m · Ω, m ∈ Z. (17)

AOMs are used in order to create a small frequency difference between two beams created with
the same laser [13].

Fig. 3: Sketch of AOM working principle [14].

2.4.7 Polarization maintaining fibre

Polarization maintaining fibres (PMF) are used in order to overcome large distances in the beam
path, without the need of placing lots of mirrors. It maintains the polarization of the incoming
light. These fibres often consist out of a core, where the light is passed through, with a cladding
structure around it (see Figure 36 in the attachment). In some fibres, in this cladding there are
stress-applying parts, which produce a mechanical stress, leading to the formation of a fast and
slow axis in the fibre. This fast and slow axis lead to a different transmission velocities through
the fibre, depending on the polarization axis of the incident beam. In order to maintain the
polarization and get the most intensity out of the fibre, the polarization of the incident beam
needs to be aligned with the slow axis and should have an incident angle of less than 1.8° [15].

2.5 Beat note

Preliminary measurements for the EIT setup include the measurement of the beat note of two
overlapping light beams. This beat note originates from the slight frequency shift obtained from
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the AOMs. At one point, the laser beam is splitted with a PBS. Both resulting rays are directed
through their own AOM, causing a shift in frequency, leading to two different frequencies which
are now called f1 and f2. Later, those two beams are reunited. This reunion leads to a beat
note, since two waves with slightly different frequencies overlap. This overlap of two different
oscillations can be calculated using trigonometric identities:

cos(2πf1t) + cos(2πf2t) = 2 cos
(

2πf1 + f2
2 t

)
︸ ︷︷ ︸

carrier

cos
(

2πf1 − f2
2 t

)
︸ ︷︷ ︸

envelope

. (18)

Here, the envelope of the wave leads to the measured beat note fbeat, which can directly be
calculated with:

fbeat = f1 − f2. (19)

Since the beat note gives directly the difference between the two frequencies, the difference can
be set with very high precision, down to the hertz range.
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3 Methods
In this section, the procedures for all measurements are explained, as well as an in depth expla-
nation about all the important setup steps, with their specific problems.

3.1 Lasing threshold measurement

In a first step, the lasing threshold needs to be determined. For this measurement, a power
meter is used, which can measure the power of the laser beam. The setup for this measurement
can be seen in Figure 4. To prevent the laser from re-entering the laser cavity, an isolator is
placed behind the laser. The power meter can be screwed onto the table to make the results
reproducible. The power meter range can be set from microwatt up to milliwatt. In order to
perform the measurement with the power meter, different laser currents are applied to the laser
diode by changing set current, without any periodic variation from the grating or the current
itself.

DL

ISO

Power meter

Fig. 4: Setup for the lasing threshold measurement with a power meter.
The diode laser (DL) is placed in front of the isolator (ISO).

3.2 Configuration of the spectroscopy measurement setup

The setup for the spectroscopy measurement can be seen in Figure 5. The configuration itself
can be split into two separate part: first, the adjustment of all elements in the optical path, and
second, the optimization of the laser diode settings. These two different parts are explained in
the next two subsections.

3.2.1 Setup of the optical elements

In order to set all elements up, the laser diode is turned on with an additional variation of the
frequency from the grating. This variation is set to 10 Hz. For the positioning of the elements,
a laser viewing card, as well as a holder with a piece of millimeter paper is used. To see the
laser beam on the millimeter paper, a smartphone camera is used. A good setup requires, that
the height of the beam (above the table) is constant at every optical element. This is crucial,
since in this experiment at several points laser beams need to overlap, which is hard to achieve,
if the beam height changes at every element. In order to check for the height, the holder with
the millimeter paper is used. Here, the height should match the height of the FPI input hole. In
addition to that, the beam should be directed to the middle of each optical element, to achieve
the best control of the beam. This is even more important for the EIT setup, as explained later.

Now all elements, apart from the Rb cell and the ND filter, are set up with this in mind. Here,
the HWP1 is adjusted in such a way, that (almost) the complete intensity of the laser beam,
passing the PBS, is directed onto M1. The distribution of intensity after a beam splitter is
measured with the power meter. This is done after every beam splitter to check for the wanted
distribution. The top row in Figure 5 is arranged in this way, so it is possible to switch between
the setups at any time, by just turning HWP1.
For later measurements (part 2), the laser signal needs to be locked to a certain frequency. Since
in the second part, AOMs are used, which change the frequency, already in this setup the AOM
needs to be positioned and set to the right order of diffraction (1. order). The AOM has a
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DL

ISO
HWP1 PBS1

Second part

M1
AOM

M2

Blocker
HWP2

M3
M4

M5M6

PBS2

RB

QWP

FPIFPI

ND

PD

PD
PD

Fig. 5: Schematic setup for the spectral measurement. The used elements
are the diode laser (DL), isolator (ISO), half-wave plates (HWP), quarter-
wave plate (QWP), polarizing beam splitter (PBS), acousto-optical mod-
ulator (AOM), rubidium cell (RB), neutral density filter (ND), photo-
diode (PD), Fabry-Pérot interferometer (FPI) and mirrors (M1) - (M6).
Also the beam path for the second part of the experiment is drawn as
dotted line. The dotted optical devices are only used in some parts. The
ND filter is used for absorption and saturation spectroscopy. The ma-
genta PD is used for absorption spectroscopy, the blue PD for saturation
and the green PD for fluorescence.

small hole for the incoming laser beam. In order to adjust the height of the beam, as well as the
intensities for the different orders, the AOM offers 4 screws. These screws are adjusted until the
AOM has the same height as the laser beam and the intensitiy of the wanted order is maximal.
To identify the orders, the AOM is turned off, resulting in only the 0th order remaining. For
the adjustment of the mirrors behind an AOM, one should keep in mind, that the wanted order
hits the mirror in the middle. To prevent any unwanted signals from different orders, blockers
are used to only let the wanted order pass.
For the further beam path, the HWP2 is turned in such a way, that half of the intensity is directed
to each of the two beam paths. To ensure, that enough intensity for the FPI measurement and
spectral measurement is available. In order to obtain a signal at M4 for the back-reflected beam
from M3, the QWP is needed, which acts as an HWP, since the beam passes twice. This QWP
is adjusted, that the intensity at M4 is maximal.
Both the FPI and the photodiode (PD) are connected to an oscilloscope. In order to adjust
the last two mirrors M5 and M6, which direct the beam into the FPI, the FPI signal at the
oscilloscope is maximized. At this point, the peaks probably will not show the expected equidis-
tant structure, since the laser settings need to be adjusted. The same is done for the PD, by
changing the position of the PD itself or the mirrors in front of it. The different positions of the
photodiode come from the different spectroscopy methods used in this experiment. The exact
positions are explained in the following sections.
To set up the Rb cell, the beam should hit the cell in the middle. The cell should also stand with
a small angle in the path, to avoid direct back-reflections from the ends of the cell. The same
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holds for the ND filter, which should stand in the path at a small angle. To choose the strength
of the ND filter, the signal at the oscilloscope is observed, until it has the best signal-to-noise
ratio. In this experiment, the filter is set to the biggest optical density. It can also be observed,
that very small adjustments can lead to significant differences in the PD signal. Therefore, the
filter is moved carefully.

3.2.2 Optimization of the diode laser settings

The main goal in the optimization of the laser settings is to achieve a mode-hop-free range
within the wanted frequency range. The frequency range strongly depends on the temperature,
set current, scan offset, scan amplitude and the feed forward setting. All these settings influence
if mode-hops occur. An example for settings with mode-hops and one for a mode-hop-free range
can be seen in Figure 6.

(a) Mode hops. (b) Mode-hop free.

Fig. 6: Example for a mode-hop-free range and a range with mode hops.
The signal from the PD can be seen in magenta and the FPI signal in
cyan. The blue signal is used as a trigger. In a) it can be seen, that the
FPI signal does not show equidistant peaks with the same height, also
leading to distortions in the PD signal, indicated by the square shaped
dips. The settings for a) are scan offset: 20.0 V, scan amplitude: 20.0Vpp,
set current: 168.89 mA and feed forward: −0.007. In b) the wanted
equidistant structure of the FPI peaks is visible. Therefore, the PD signal
also shows a smooth ramp. The settings for b) are scan offset: 12.2 V scan
amplitude:15.9Vpp set current: 165.38 mA and feed forward: −0.64.

In order to adjust the parameters, the saturation spectroscopy setup with the inserted rubidium
cell, is used. To firstly find the right frequency range, a rough estimate with the temperature
and set current is made, until first absorption peaks are visible. After this, the temperature
is held constant, since changing the temperature has big influences on the frequency and the
temperature always needs around 5 minutes to stabilize.
After the rough laser current is found, the scan range is broadened by changing the scan ampli-
tude. For further adjustments of the peaks on the triangular ramp, the scan offset can help. If
the ramp roughly matches the wanted frequency range, a mode-hop-free range should be found.
In order to find the equidistant peak structure (indicating a mode-hop-free range), one should
look at the influence of each individual setting. Here, some settings lead to additional peaks
in the FPI spectrum and other settings lead to a shift of those, or to both. Also the heights
of the peaks are influenced. Knowing which setting influences which exact property in the FPI
spectrum helps to find the equidistant peak structure, with peaks of the same height. To get a
better feeling for all these adjustments, it is easier to start with a smaller scan offset and scan
amplitude and then slowly increasing both by maintaining a mode-hop-free range.
Once the settings are adjusted in such a way, that the FPI peaks indicate a mode-hop-free range,
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and the ramp is wide enough for all peaks to be visible, the spectral measurements can start.
For each spectroscopy method, there can be slight shifts in the settings, as well as adjustments
in the arrangement of the optical elements, like an ND filter. Adjusting optical elements only
slightly can lead to massive improvements of the measured signal. For the best signal, many
iterations of re-arranging the setup and adjusting the laser settings are needed.

3.3 Fluorescence

For the fluorescence spectroscopy, the photodiode is moved to the according position, see Fig-
ure 5. It is positioned almost perpendicular to the rubidium cell. As explained in the previous
section, all adjustments are made until a mode-hop-free range occurs within the wanted fre-
quency range. An appropriate example for the fluorescence measurement can be seen in Figure 7,
which shows the expected peaks onto the triangular ramp.

Fig. 7: Fluorescence spectrum recorded with an oscilloscope. The ma-
genta signal comes from the photodiode, which is placed next to the
rubidium cell. As expected, there is an underlying triangular ramp with
clearly visible peaks onto it. The cyan signal comes from the FPI and
shows the wanted equidistant structure. The blue square signal is used
as a trigger.

3.4 Absorption

For absorption spectroscopy, the photodiode is placed like shown in Figure 5. Here, the PD
is placed behind the ND filter, to avoid saturating it. This happens often, thus, sometimes an
additional ND filter needs to be used. The positioning of the PD also blocks the laser beam from
reaching M3. Therefore, the light is not reflected back into the rubidium cell. Also the laser
settings are adjusted, until a mode-hop-free range is achieved. An example for the measurement
of the absorption spectrum can be seen in Figure 8, which shows the expected dips on the
triangular ramp.
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Fig. 8: Absorption spectrum recorded with an oscilloscope. The magenta
signal comes from the photodiode, which is placed behind the rubidium
cell. As expected, there is an underlying triangular ramp with 6 clearly
visible dips. The cyan signal comes from the FPI and shows the wanted
equidistant structure. The blue square signal is used as a trigger.

3.5 Saturation

To perform saturation spectroscopy, the photodiode is placed at the appropriate position, see
Figure 5. Here, the photodiode is placed behind M4. In order to obtain a saturation signal, the
ND filter is crucial. Even small changes in the position of the filter can improve the measured
spectrum drastically. Also the positioning of the photodiode, or the adjustment of M3 and M4
can improve the measurement a lot. It is crucial to adjust M3 in such a way, that the incoming
and reflected beam are overlapping and therefore passing the rubidium cell in the same position.
If not adjusted properly, one will only see absorption and no peaks inside the absorption dips.

Besides these problems, at one point some oscillating background is measured , see Figure 9a.
Such a background makes measurements impossible, since the oscillations have approximately
the same height as the saturation peaks. The source of the oscillations is thought to be back
reflections from the FPI. This thesis is underlined by the fact, that blocking the signal to the FPI
stops the oscillations in the PD signal. In order to cancel this oscillating background, the setup
needs to be adjusted in order to prevent those back reflections. For example this can be done
by re-arranging mirrors 5 and 6, that there is an small incident angle into the FPI opening, or
again adjusting all optical elements. If the oscillations vanish, measurements can be performed
again. An example measurement of saturation spectroscopy can be seen in Figure 9b, which
shows clear peaks inside the absorption dips.
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(a) Oscillating background. (b) Saturation spectrum.

Fig. 9: Saturation spectrum recorded with an oscilloscope. The magenta
signal comes from the photodiode, which is placed behind M4. a) shows an
oscillating background, which needs to be avoided. b) shows, as expected,
an underlying triangular ramp with the expected saturation peaks inside
absorption dips. The cyan signal comes from the FPI and shows the
wanted equidistant structure. The blue square signal is used as a trigger.

3.6 Lock-in method

In order to perform an EIT measurement, it is crucial to keep the laser beam at a constant
frequency. This can be achieved by locking the laser. For this, the laser controller offers an
easy to handle mode, in which so called Lock points are offered. One of these lock points can
then be chosen, to keep the laser beam at a constant frequency. In order the keep it constant,
PID controllers are used. In the following, the basic concepts of the Lock-in method and PID
controllers are introduced briefly.

(a) Error signal. (b) Possible lock points.

Fig. 10: In a) the error signal (blue), obtained by processing the PD signal
(red), can clearly be seen. Here, the x-axis is the piezo voltage applied to
the grating. The y-axis is in Volt. This error signal is then used, to detect
possible lock points, which are indicated in b). Since top-of-fringe locking
is selected, the lock points are placed at the peaks in the spectrum, which
are found by zero-crossings of the error signal.

The PID controller needs an error signal e(t) as input. This error signal is obtained by processing
the signal from the photodiode. It is needed as an indicator for the later locking. There are two
types of locking: side-of-fringe and top-of-fringe locking. In side-of-fringe locking, the lock point
is on a flank of a peak, for the top-of-fringe locking, the lock point can be found directly at the
peak. In this experiment, top-of-fringe locking is used. In Figure 10a, such an error signal can
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be seen in blue. The error signal for top-of-fringe locking can be calculated with:

e(t) = Iset − Imeas(t), (20)

with Iset the set intensity (or voltage) at the lock point and Imeasured the measured intensity
at the photodiode. For a good working of the PID feedback loop, the error signal needs to be
optimized. For this there are four different parameters. In the laser controller manual [10], there
is an detailed explanation, which parameters should be adjusted. This manual is also helpful
for the setup explained in subsubsection 3.2.2. With an appropriate error signal and automatic
lock point detection, all possible lock points should be visible, as shown in Figure 10b. One
can now select one of these lock points, which starts the PID feedback loop (see Figure 12). In
Figure 11 it can be seen how the screen looks like, when a lock point is selected. To optimize
the feedback loop, the settings at the PID controller are improved.
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Fig. 11: Here, a lock point is selected from one of the possible lock points.
To have a rough indicator for the stability of the frequency, there is a red
ball, which moves around at the start of the lock-in process, but stabilizes
for the PID settings. Here, the ball has already stabilized at the lock
point.

In general, a PID is used in order to hold a given variable constant and counteract forces
that bring it out of equilibrium. Here, the PID controller is used in order to hold the error
signal at e(t) = 0, since in top-of-fringe locking, e(t) = 0 is used as the locking point (if the
intensity left and right of it significantly deviates from 0). For this regulation, the PID controller
calculates a correction signal u(t), which is influenced by three main components: Proportional
term, Integral term and Derivative term. These components influence the calculation of u(t)
by adjusting the strength of the respective term constant, named KP, KI and KD. Hereby, the
proportional term counteracts constant deviations, the integral term reacts to slow changes, by
integrating over a given time and the derivative term reacts to fast changes. The correction
signal can be calculated with:

u(t) = KP · e(t) +KI

∫
e(t) dt+KD

de(t)
dt

. (21)

Further, an overall gain can be set, which increases all parameters with the same factor. In
the case that the locking fails, since the frequency is too far off (error signal too far off), there
is the possibility to Re-Lock the laser. The schematic diagram for Re-locking can be seen in
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Figure 13. If the error signal deviates too much from the wanted value, the state is called Out-
of-Lock. If this is the case, the controller waits for an adjustable delay. If the system returned
into the locked state, the feedback loop continuous. If the system is after the delay still in the
Out-of-Lock state, the PID controller settings (the parameters K) are reset. After the reset, a
Re-Lock scan is initiated, if the system has returned to the In-Lock state.

Fig. 12: Here, a schematic of the feedback loop of an PID controller is
shown [10].

Fig. 13: Here, a schematic of the process for Re-Locking is shown [10].

If all these steps are done and all parameters are optimally set, the laser is locked to a certain
frequency. For measurements, it is crucial to know, how long the laser can hold this stable
frequency. The next chapter explains briefly, how such a measurement can be performed.

3.6.1 Frequency stability measurement

In order to obtain knowledge about the time duration the laser controller can hold the laser beam
frequency constant, a frequency stability measurement is performed. For this measurement, the
setup shown in Figure 5 is used with the laser beam frequency locked in, while the photodiode is
placed in the spot for saturation spectroscopy. This is needed to constantly create an error signal
needed for the PID controller. Different than before, an oscillating voltage is applied to the FPI,
which is produced by an arbitrary waveform generator (AWG). This generator produces a sine
wave with a given frequency. This AWG is applied to the FPI, in order to change the size of
the optical cavity. This is done by a piezo element mounted onto a mirror inside the FPI. This
piezo element now changes the size of the resonator according to the applied wave. Without this
change, the FPI signal would be a straight line, since no frequency modulation is present (the
laser is locked). Changing the size of the cavity leads to moments in time, where the frequency
of the laser fits to the cavity size, leading to constructive interference. Otherwise the cavity
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size leads to destructive interference. This again creates peaks in the FPI spectrum, which give
insights about the frequency stability of the locked laser frequency. The laser frequency is stable,
if the peak distance remains constant over time, since an unstable laser frequency would lead to
slightly different peak distances. An example for this measurement at one time, can be seen in
Figure 14.

Fig. 14: Stability measurement of the Lock-in signal with the FPI. Here,
an oscillating voltage (magenta) is applied to the FPI, to see if the laser
frequency changes over time. This is observed at the FPI signal (cyan),
if the peaks move over time. The blue signal is again used as a trigger.

3.7 Configuration of the EIT setup

The setup for the EIT measurement (with the preliminary beat note measurement) can be seen
in Figure 15. As for the spectral setup, the configuration can be split into two main parts:
first, the setup of all optical devices and second, the optimization of the laser settings, especially
selecting the right frequency with the Lock-in method. These are explained in the next two
subsections.

3.7.1 Setup of the optical elements

For the setup of the most elements in this part, the same methods and procedures apply, which
are already explained in subsubsection 3.2.1.
Now the HWP1 is turned in such a way, that the full intensity is directed to HWP2. This
wave-plate is then turned in a way, that half the intensity goes to each AOM. The two AOMs
are adjusted in a way, that only the +1 (or -1) orders are passed to the mirrors behind. This
is crucial, since choosing different orders makes the beat note measurement later impossible,
because the shift of a single order is too big to be resolved with the laser controller. For further
measurements, it is also important to know the exact difference between the two frequencies,
which could not be achieved, if different orders are used. To indicate the two different beam
polarizations and frequencies, they are drawn purple and orange for the parts they are separated.
If they are again aligned, they are drawn red again.
The two beams are re-aligned at the PBS3 and then together directed onto M6. Here, it is very
important, that the beams hit the PBS perfectly in the middle and at the same height, to ensure
the proper alignment afterwards. Small deviations here can lead to big deviations at the input
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Fig. 15: Schematic setup for the EIT/beat note measurement. The used
elements are the diode laser (DL), isolator (ISO), half-wave plates (HWP),
quarter-wave plate (QWP), polarizing beam splitter (PBS), acousto-
optical modulators (AOM), optional neutral density filters (ND) (not
drawn), photodiode (PD), light to fibre coupler (fibre in/out), polariza-
tion maintaining fibre (PMF), EIT chamber (filled with rubidium gas),
a lens and mirrors (M1) - (M6). To differentiate the beams splitted by
PBS2, there are two colours used (orange and purple) to indicate the dif-
ferent polarizations. These beams then reunite at PBS3 and are directed
onto the fibre. After PBS4, the beams are again separated, which only
let the purple one pass to the PD. To measure the beat note after the
fibre, there is an additional mirror Mbeat placed, and a photodiode. For
the EIT measurements, those elements are removed. Also the beam path
to the first part is drawn as a dotted line.

of the fibre. In order to adjust this, the mirrors M2 to M5 need to be aligned very carefully. It
is already checked, that the AOMs emit the beam at the wanted height.
After this alignment is done, there is a HWP, which is used for further adjustments of the
polarization. After this wave-plate, there is the input to the polarization maintaining fibre.
This fibre needs to be hit very precisely, because otherwise nothing will pass. To record if the
beam passes the fibre, the power meter is placed right at the output of the fibre. In order to
hit the fibre perfectly, it is necessary, that all mirrors behind the AOMs are adjusted. The
fibre-alignment process takes two days in this experiment.
The two QWPs in this setup are aligned in such a way, that the output at the photodiode is
maximized. This is achieved by carefully rotating one QWP at a time. In this step, the biggest
problem is the alignment of the beam at the optical elements, since in this experiment, the
achieved intensity behind the fibre is so small, that the beam is not visible with a laser viewer
card or the camera of a smartphone. Thus, the alignment needs the constant help of the power
meter or the photodiode.
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3.7.2 Optimization of the diode laser settings and Lock-in signal

In order to run the EIT measurement, a certain frequency needs to be selected. This is held
constant with the help of the PID controller. This uses the lock-in method. The laser can only
be locked with the help of the first setup, see Figure 5. For this the HWP1 is turned in such a
way, that the beam is directed to the first part again. Here, the saturation spectroscopy setup is
used, because the laser is locked onto the small peaks inside the absorption dips. Then the laser
is locked onto the wanted transition. Since only one photodiode is available, it is not possible to
have a continuous monitoring of the locking. Nevertheless, after locking, the HWP1 is turned
again, that the laser reaches part 2. After this, measurements can be performed.

3.8 Beat note measurement

For the beat note measurement, the setup shown in Figure 15 is used. Here, the mirror Mbeat is
inserted, which directs the beam onto the photodiode. For the measurement of the beat note, the
frequency difference between the beams with different polarizations is important. This difference
is set with the two AOMs in this part. The frequency shift at an AOM depends on the used
sound wave. The sound wave frequency is manipulated by the arbitrary waveform generator
(AWG). The frequency difference occurs from the difference between the AWG frequencies. An
example for the beat note measurement can be seen in Figure 16, which shows a clearly visible
peak at 200 Hz, which is the set frequency difference at the AWGs.
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Fig. 16: Example measurement for the beat note between the two different
beams. For the measurement, a PD is used. The beat note occurs due
to the different frequency shifts at the AOMs. Here, an example for a
frequency difference of 200 Hz can be seen. As one can see, there is a
clear peak at 200 Hz, as expected.
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4 Analysis and Results

4.1 Lasing threshold measurement

Before any of the other measurements could be started, the lasing threshold needs to be deter-
mined, to get a better understanding of the laser. The lasing threshold is measured as explained
in subsection 3.1, with the help of a power meter. The measurement results can be seen in
Figure 17.
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Fig. 17: Here, the laser power in mW is plotted against the set laser
current in mA. The inset shows a range around the lasing threshold with
additional measurements in smaller steps. The axes of the inset have the
same units as the large plot. Additionally, the estimated lasing threshold
with its uncertainty is displayed in green.

The lasing threshold corresponds to the current, at which the laser starts to deliver a measurable
output. This can be detected by the spontaneous increase in the detected power. With this, the
current for the lasing threshold is determined to be:

ILT = (83.4± 0.1) mA. (22)

It can also be seen, that for larger currents, the beam intensity is nearly linear, as expected. For
later measurements, currents in the region between 150 mA and 180 mA are chosen. The reason
for that is, that higher laser intensities lead to bigger absorption and fluorescence effects.

4.2 Absorption spectroscopy

After optimizing and fine-tuning the setup and the laser, the following laser parameters are
selected for the absorption spectroscopy: temperature: 24.0 °C, scan offset: 15.3 V, scan ampli-
tude: 23.6Vpp, set current: 163.36 mA, feed forward: −0.56 and a scan frequency of 10 Hz.

Before analysing the absorption spectroscopy measurement, a calibration of the channels is
needed. There are 300000 channels. The calibration is performed by analysing the FPI spectrum,
which is recorded during each spectroscopy measurement. The frequency difference between two
FPI peak-channels during the laser current modulation is equal to the free spectral range (FSR)
of the FPI. The FSR of the FPI is given in the instructions as 700 MHz [16]. Despite that, a
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value of 750 MHz is later chosen in the analysis of the spectra, as it is the FSR directly printed
on the FPI.

In Figure 18, the FPI measurement recorded during the absorption spectroscopy measurement
is shown. The peaks are found using scipy.signal.find_peaks [17] and the uncertainties are
estimated to be ±500 channels. It can be seen, that the peak channels are not equidistant,
which can be traced back to the laser current modulation not being as linear as expected. More
precisely, the difference between two consecutive peak channels varies between 12055 and 18216
channels for this measurement. To account for this systematic deviation, it is chosen to perform
a linear interpolation between two consecutive peak channels, instead of a linear fit. The linear
interpolation is performed using scipy.interpolate.interp1d [17]. With this interpolation,
the FPI spectrum and the spectroscopy measurement can be converted from a channel axis to
a frequency axis. Furthermore, the coordinate origin of this axis is arbitrarily set on a peak.
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Fig. 18: In this plot the FPI spectrum, read out with the oscilloscope
during the absorption spectroscopy measurement, is shown. Additionally,
the identified peak channels, together with the estimated uncertainties of
±500 channels, are plotted in red. It can be seen, that the peak channels
are not equidistant.

In the following, the respective FPI spectrum used for the channel-frequency conversion is al-
ways shown in addition to the spectroscopy measurement. For the absorption spectroscopy
measurement, such a plot can be found in Figure 19. When plotting the raw data from the
oscilloscope, the data is noisy and shows a double line effect. Such a double line effect is typical
for oscilloscopes and arises most probable from internal reflections. As a consequence, a moving
average over 10 data points is performed with pandas.DataFrame.rolling [18] to smoothen
the data. Additionally, an uncertainty of 0.5 % is estimated for each data point.
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Fig. 19: In the upper plot the FPI spectrum is shown and in the lower plot
the absorption spectrum is displayed. Both spectra are read out with the
oscilloscope. The channel frequency-conversion is performed to plot the
spectra on a frequency axis. Additionally for the upper plot, the identified
peaks for the FPI, together with the estimated uncertainties, are shown.
The peaks are now equidistant. For the absorption spectroscopy plot, a
moving average is performed to smoothen the noisy data.

During the laser current modulation, not only the laser frequency changes, but also the intensity,
as can be seen in the laser threshold measurement in Figure 17. To account for the linear
background of the photodiode measurement, a linear fit of the form

A = a · ν + b, (23)

with A being the amplitude in mV and ν being the frequency difference to the lowest peak
in MHz, is performed with scipy.optimize.curve_fit [17]. For that, data outside the Rb
spectrum is selected, which is indicated in orange, see Figure 20. The linear fit, together with
the absorption spectrum, is shown in Figure 20.
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Fig. 20: In the upper plot the FPI spectrum is shown and in the lower plot
the absorption spectrum is displayed. Both spectra are read out with the
oscilloscope. The channel frequency-conversion is performed to plot the
spectra on a frequency axis. Additionally for the upper plot, the identified
peaks for the FPI, together with the estimated uncertainties, are shown.
The peaks are now equidistant. For the absorption spectroscopy plot, a
moving average is performed to smoothen the noisy data. To subtract
the linear background, a linear fit (brown) is performed with the orange
data.

It is noticeable, that the underground is not linear. Nevertheless, this only changes the am-
plitudes of the peaks and not the peak positions. Possible reasons for the deviation from the
expected linear background will be discussed later.
To correct for this background, the linear fit is used and subtracted from the data in the following
way:

Acorr = A− (aν + b), (24)

∆Acorr =
√

∆A2 + (∆aν)2 + (a∆ν)2 + ∆b2, (25)

with Acorr being the corrected amplitude, a being the slope of the linear background fit, b being
the intercept of the linear fit and ν being the frequency. The background corrected absorption
spectrum can be found in Figure 21.
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Fig. 21: In the upper plot the FPI spectrum is shown and in the lower plot
the absorption spectrum is displayed. Both spectra are read out with the
oscilloscope. The channel frequency-conversion is performed to plot the
spectra on a frequency axis. Additionally for the upper plot, the identified
peaks for the FPI, together with the estimated uncertainties, are shown.
The peaks are now equidistant. For the absorption spectroscopy plot, a
moving average is performed to smoothen the noisy data and the linear
background is subtracted.

Now the absorption spectrum can be analysed. The absorption peaks can be approximated by
Gaussian distributions of the form:

y = A exp
(
−(ν − µ)2

2σ2

)
, (26)

with y as the amplitude in mV and ν as the frequency difference to the lowest FPI peak in MHz.
To get better fits, the data points are restricted to an area, where a clear peak is visible. Again,
scipy.optimize.curve_fit [17] is used to fit this model to the measured data.
As one can see in Figure 21, some peaks are close together. More precisely, the second and third
peak, and the fifth and sixth peak are close to each other. As a consequence, a different fitting
model is used, which takes the overlap of the two peaks into account. For that, the sum of two
Gaussian distributions is used

y = A1 exp
(
−(ν − µ1)2

2σ2
1

)
+A2 exp

(
−(ν − µ2)2

2σ2
2

)
, (27)

with the index 1 indicating the left peak of the two closely laying peaks and the index 2 indicating
the right peak. Once more, the data points are restricted to an area around the double peak
and the fit is performed using scipy.optimize.curve_fit [17].
In Figure 22 the background corrected absorption spectrum is displayed. Additionally, the
performed single Gaussian fits are displayed in orange and the double Gaussian fits in red.
Furthermore, the respective restricted areas are shown with black lines.
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Fig. 22: In the upper plot the FPI spectrum is shown and in the lower
plot the absorption spectrum is displayed. Both spectra are read out
with the oscilloscope. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally, for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. For the absorption spectroscopy
plot, a moving average is performed to smoothen the noisy data and the
linear background is subtracted. The first and fourth peak are fitted
with a singular Gaussian from Equation 26, which is displayed in orange.
The second and third peak, and the fifth and six peak are fitted using
the double Gaussian fit function from Equation 27, which is displayed in
blue. The black lines indicate the area in which the data contributes to
the fit.

To assess the goodness of the fits for our two used models, we use the reduced χ2-value:

χ2 =
∑
N

(Amodel −Ameas)2

∆A2
meas

, (28)

χ2
red = χ2

N − f
, (29)

where N is the number of data points, Ameas is the measured amplitude, Amodel is the amplitude
from the fit at the same position, ∆Ameas is the uncertainty of the measured value and f is the
number of degrees of freedom. For a value of χ2

red ≈ 1, one can assume that the used model is
appropriate for the measured data. For the absorption fits, the reduced χ2-values are in a range
of 0.08 to 0.73. This shows, that all fits have a good quality, but the small χ2

red-value of 0.08
indicates an overestimation for the uncertainties.

The relevant fitting parameters for further calculations, namely the amplitude and the mean,
are summarised with their uncertainties and the corresponding χ2

red-values in the attachment in
Table 12. The uncertainty of the amplitude is directly calculated from the covariance matrix.

28



4 Analysis and Results

It should be mentioned, that the uncertainties on the amplitudes are all on the order of a few
µV, which is a significant underestimation of the true uncertainty. This will be discussed later.

For the uncertainty of the mean, the standard error is calculated:

σ̂ = σ√
N
, (30)

with σ as the standard deviation of the Gaussian and N as the number of data points used for
the fit. The standard error is then propagated with the uncertainty of the frequency, as the
least-square method used for the fit by scipy.optimize.curve_fit [17] is not considering the
uncertainty of the frequency:

∆µ =
√
σ̂2 + ∆ν2. (31)

4.3 Fluorescence spectroscopy

After further optimizing and fine-tuning the setup and the laser, the following laser parameters
are selected for the fluorescence spectroscopy: temperature: 24.0 °C, scan offset: 12.2 V, scan
amplitude: 15.9Vpp, set current: 165.39 mA, feed forward: −0.64 and a scan frequency of 10 Hz.

The analysis for the fluorescence spectroscopy is performed in the same manner as for the ab-
sorption spectroscopy subsection 4.2. Here, again a channel-frequency conversion is performed,
using the measured FPI peaks shown in Figure 37 in the attachment. Again, a linear interpo-
lation is performed. Due to oscilloscope effects, once again a moving average is performed and
the uncertainty of each value is estimated to be 0.5 %. The plot for the spectrum on a frequency
axis is also shown in the attachment in Figure 38. To account for the linear background of
the photodiode measurement, again a linear fit of the form in Equation 23 is performed with
scipy.optimize.curve_fit [17]. For that, data outside the rubidium spectrum and between
the two main peaks (where no peak is expected) is selected, which is indicated in orange, see
Figure 23. The linear fit, together with the fluorescence spectrum, is shown in Figure 23. This
fit is then subtracted to correct the data.
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Fig. 23: In the upper plot the FPI spectrum is shown and in the lower plot
the fluorescence spectrum is displayed. Both spectra are read out with the
oscilloscope. The channel frequency-conversion is performed to plot the
spectra on a frequency axis. Additionally for the upper plot, the identified
peaks for the FPI, together with the estimated uncertainties, are shown.
The peaks are now equidistant. For the fluorescence spectroscopy plot,
a moving average is performed to smoothen the noisy data. To subtract
the linear background, a linear fit (brown) is performed with the orange
data.

In comparison to the absorption spectroscopy background, it is visible, that the expected linear
background is indeed linear. Possible reasons for that are further optimizations of the laser
settings at the laser controller and the experimental setup.
The background corrected fluorescence spectrum can be found in Figure 24.
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Fig. 24: In the upper plot the FPI spectrum is shown and in the lower
plot the fluorescence spectrum is displayed. Both spectra are read out
with the oscilloscope. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. For the fluorescence spectroscopy
plot, a moving average is performed to smoothen the noisy data and the
linear background is subtracted.

This time, only peak 2 and 3 are close to each other and therefore only for those peaks the
double Gaussian fitting model (see Equation 27) is used, whereas the other peaks are fitted with
a single Gaussian (see Equation 26). The fits are performed using scipy.optimize.curve_fit
[17].

In Figure 25 the background corrected fluorescence spectrum is displayed. Additionally, the
performed single Gaussian fits are displayed in orange and the double Gaussian fit in blue.
Furthermore, the respective restricted areas are indicated with black lines.
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Fig. 25: In the upper plot the FPI spectrum is shown and in the lower
plot the fluorescence spectrum is displayed. Both spectra are read out
with the oscilloscope. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. For the fluorescence spectroscopy
plot, a moving average is performed to smoothen the noisy data and the
linear background is subtracted. The first and fourth peak are fitted with
a singular Gaussian from Equation 26, which is displayed in orange. The
second and third peak are fitted using the double Gaussian fit function
from Equation 27, which is displayed in blue. The black lines indicate
the area in which the data contributes to the fit.

The reduced χ2-values for the fits are once again in a desired range with values ranging from 0.28
to 0.37. Again, the relevant fitting parameters for further calculations, namely the amplitude
and the mean, are summarised with their uncertainties and the corresponding χ2

red-values in
Table 13 in the attachment. Analogously, the uncertainty of the amplitude is directly calculated
from the covariance matrix, whereas for the uncertainty of the mean, the standard error is
calculated and then propagated with the uncertainty of the frequency (see Equation 30). Again,
it is noticeable, that the uncertainties on the amplitudes are all on the order of a few µV, which
is a significant underestimation of the true uncertainty. This will also be discussed later.

4.4 Saturation spectroscopy

After optimizing and fine-tuning the setup and the laser, the following laser parameters are
selected for the saturation spectroscopy: temperature: 24.0 °C, scan offset: 20.467 V, scan am-
plitude: 21.66Vpp, set current: 164.42 mA, feed forward: −0.72 and a scan frequency of 10 Hz.

Different to before, the photodiode data is gathered with the laser controller software, since the
saturation spectrum can be seen better there, compared to the oscilloscope. Thus, the photodi-
ode data does not need an moving average, since the gathered data is less noisy and shows no
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double line effects. Therefore, the estimated uncertainty on this data is 0.1 % of each data point.
Due to the different gathering, a different number of channels is present (1018 channel). The
FPI peaks, see Figure 39 in the attachment, are again found using scipy.signal.find_peaks
[17] and the uncertainties are estimated to be ±2 channels. Nevertheless, the procedure for the
channel-frequency conversion explained in subsection 4.2 is the same. This is done by using
the data of the FPI peaks, see Figure 39 in the attachment. The plot for the spectrum on a
frequency axis can be found in Figure 40 in the attachment.
As explained in subsection 4.2 a linear fit (see Equation 23) is performed, to subtract the linear
background arising from the frequency changes created by the laser controller. For that, data
outside the rubidium spectrum and between the two main peaks (where no peak is expected) is
selected, which is indicated in orange, see Figure 23. The linear fit, together with the absorption
spectrum, is shown in Figure 23. This fit is then subtracted to correct the data.
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Fig. 26: In the upper plot the FPI spectrum is shown and in the lower
plot the saturation spectrum is displayed. Both spectra are read out with
the laser controller. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. To subtract the linear background
from the saturation spectroscopy data, a linear fit (brown) is performed
with the orange data.

Once again, it is noticeable, that the underground is not linear. Nevertheless, this only changes
the amplitudes of the peaks and not the peak positions. Possible reasons for the deviation from
the expected linear background will be discussed later.
The background corrected saturation spectrum can be found in Figure 27.
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Fig. 27: In the upper plot the FPI spectrum is shown and in the lower
plot the saturation spectrum is displayed. Both spectra are read out with
the laser controller. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. For the saturation spectroscopy
plot the linear background is subtracted.

As already mentioned in subsubsection 2.2.3, the saturation peaks are of a Lorentzian form. To
fit the saturation peaks, the following Lorentzian formula introduced in Equation 12 is used and
fitted with scipy.optimize.curve_fit [17]:

L(ν) = A

1 +
(
ν−νmean

γ

)2 + L0. (32)

Again, the data is restricted to an area around the peaks for better fits. In Figure 28 the
background corrected saturation spectrum is displayed. Additionally, the performed Lorentzian
fits are displayed in orange. Furthermore, the respective restricted areas are indicated by the
width of each fit.
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Fig. 28: In the upper plot the FPI spectrum is shown and in the lower
plot the saturation spectrum is displayed. Both spectra are read out with
the laser controller. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties,
are shown. The peaks are now equidistant. For the saturation spec-
troscopy plot the linear background is subtracted. The peaks are fitted
with Lorentzian distribution from Equation 12, which is displayed in or-
ange. The areas in which the data contributes to the fit are indicated by
the width of each fit.

The reduced χ2-values for the fits are once again in a good range with values ranging from
0.05 to 1.30, with the reduced χ2-value of 0.05 indicating the overestimation of uncertainties.
Again, the relevant fitting parameters for further calculations, namely the amplitude and the
mean, are summarised with their uncertainties and the corresponding χ2

red-values in Table 14
in the attachment. Analogously, the uncertainty of the amplitude is directly calculated from
the covariance matrix, whereas for the uncertainty of the mean, the standard error is calculated
and then propagated with the uncertainty of the frequency. Different to the other spectroscopy
measurements, the uncertainties for the amplitudes are now in a reasonable range.

4.5 Comparison of the spectroscopy results

With the performed spectroscopy measurements, several physical quantities can be calculated
for each method, respectively. In the following, the hyperfine structure of 85Rb and 87Rb is
studied, the composition of the two rubidium isotopes is analysed and the hyperfine constants
of the two isotopes are calculated. In addition to that, all values are compared with literature
values.

4.5.1 Identification of the 85Rb and 87Rb transitions

With the results obtained with the three spectroscopy methods, it is possible to identify the
transitions of 85Rb and 87Rb. From the spectroscopy measurements, only relative frequency
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differences can be deducted. As a consequence, the frequency differences to the lowest peak,
identified as 87RbF=1

F=2, are calculated:

δν
(
RbF=i

F=j

)
= ν

(
RbF=i

F=j

)
− ν

(
87RbF=1

F=2

)
, (33)

∆(δν) =
√

∆
(
ν
(
RbF=i

F=j

))2
+ ∆

(
ν
(

87RbF=1
F=2

))2
. (34)

The measured frequency differences, together with the literature transitions, are displayed in
Figure 29.
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Fig. 29: The Rb spectroscopy results for the frequency difference to the
lowest peak,87RbF=1

F=2, are compared in this plot. The transitions are
labelled according to Equation 11. The expected frequency differences
of 87Rb and 85Rb are shown in red and green. The uncertainties for the
different spectroscopy methods are also shown.

It is visible, that most of the found peaks are in good accordance to theoretically expected
transitions. For the absorption and fluorescence spectroscopy, the expected 85Rb peaks could
not be identified with either of the two theoretically expected peaks. One of the reasons for that
is the Doppler-broadening, which leads to a significant overlap of the peaks in these measurement
regimes. For the saturation spectroscopy, a cross-over resonance appears, as already explained
in subsubsection 2.2.3. It is found to be exactly in the middle of the two close transitions of
85Rb, which reinforces its identification as the cross-over. These cross-overs will not be evaluated
in the further analysis.

The identified measured transitions are summarised in Table 2. For further references, the
transitions are labelled by T1 to T8.
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Tab. 2: The literature values for the hyperfine transitions of 85Rb [7] and
87Rb [8], and the measured transitions from spectroscopy are displayed.
The transitions are labelled according to Equation 11 and enumerated by
T1 to T8. The frequency differences compared to the 87RbF=1

F=2 transition
are given in MHz. The cross-over resonances are not distinct atomic level
transitions as explained in subsubsection 2.2.3.

Transition Expected [MHz] Saturation [MHz] Absorption [MHz] Fluorescence [MHz]

T1: 87RbF=1
F=2 0 0± 45 0± 32 0± 44

T2: 87RbF=2
F=2 814.5 796± 45 756± 32 794± 44

T3: 85RbF=2
F=3 1518.56 1506± 45

1667± 32

1633± 44Cross-over 1699.36 1682± 45

T4: 85RbF=3
F=3 1880.15 1870± 46

T5: 85RbF=2
F=2 4554.3 4532± 46

4874± 32

4855± 44Cross-over 4735.09 4715± 45

T6: 85RbF=3
F=2 4915.88 4903± 45

T7: 87RbF=1
F=1 6834.68 6829± 45 6795± 32 -

T8: 87RbF=2
F=1 7649.18 7645± 46 7664± 32 -

4.5.2 Estimation of the Rb composition in the cell

The Rb composition of the cell can be estimated from the amplitude-ratio of two corresponding
85Rb and 87Rb peaks. The transitions with comparable transition probabilities between 85Rb
and 87Rb are (T1 and T3), (T2 and T4), (T5 and T7) and (T6 and T8). For the saturation
spectroscopy, the following amplitude ratios can be estimated to get the percentage of 87Rb in
the cell:

P87 ≈
A1

A1 +A3
, (35)

P87 ≈
A2

A2 +A4
, (36)

P87 ≈
A7

A5 +A7
, (37)

P87 ≈
A8

A6 +A8
. (38)

The Ai describe the amplitude of the corresponding transition Ti.The uncertainties are calculated
as exemplary shown for Equation 35:

∆P87 = 1
(A1 +A3)2

√
(A1 ·∆A3)2 + (A3 ·∆A1)2. (39)

For the fluorescence spectroscopy, further considerations need to be made. As can be seen in
Table 2, the T3 and T4 transitions could not be separated. As a consequence, one can use the
measured value and apply it to Equation 35 and Equation 36 and combine them in the following
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way:

P87 ≈
A1 +A2

A1 +A2 +Ax +Ax
, (40)

with Ax being the not separable and not identified transition. The uncertainties are calculated
as follows:

∆P87 = 1
(A1 +A2 +Ax +Ax)2

√
(2Ax)2 ·∆A2

1 + (2Ax)2 ·∆A2
2 + (2(A1 +A2))2 · 2 ·∆A2

x. (41)

Analogous considerations for the absorption spectroscopy can be made, which lead to:

P87 ≈
A7 +A8

A7 +A7 +Ax +Ax
, (42)

with Ax again being the not separable and not identified transition. The uncertainties are
calculated analogously as for the other abundances. A summary of the calculated relative
abundances of 87Rb can be found in Table 3.

Tab. 3: Percentage of 87Rb in the glass cell, calculated with Equation 35
to Equation 42 for the respective spectra.

Spectrum Equation 87Rb percentage in cell [%]

Saturation Equation 35 30± 4

Saturation Equation 36 22± 3

Saturation Equation 37 11± 8

Saturation Equation 38 23± 4

Absorption Equation 40 25.599± 0.010

Absorption Equation 42 22.035± 0.012

Fluorescence Equation 40 22.27± 0.05

It is noticeable, that the uncertainties on the 87Rb abundances are very small and underes-
timating the true uncertainty. This effect comes from the already small uncertainties on the
amplitudes, obtained by the fits to the absorption and fluorescence spectra. For the saturation
spectroscopy, the large relative uncertainty on the third value is prominent. A possible reason
for that is the relatively small amplitude of T7, which has a large relative uncertainty. The
other values from the saturation spectroscopy are in good accordance with the literature value
of (27.83± 0.20) % [8].

4.5.3 Determination of the hyperfine constant

Finally, the hyperfine structure constants of 85Rb and 87Rb can be calculated from the frequency
difference between two consecutive peaks. Each pair of consecutive peaks is separated in Table 2
by the horizontal blue lines. As explained in the theory part, the calculation is given by

A = h
δν

F1 + 1 , (43)

where ∆ν is the frequency-difference between the two consecutive peaks and F1 is the smaller
of the two quantum numbers F .
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As can be seen in Table 2, the hyperfine constant for 85Rb can only be calculated with the
saturation measurement, whereas for 87Rb, also the fluorescence and absorption measurements
can be used. The calculated hyperfine constants, together with the literature values are shown
in Table 4. The uncertainties on the hyperfine structure are again calculated by Gaussian
propagation of uncertainties.

Tab. 4: The literature values for the hyperfine constants of 85Rb and
87Rb [7, 8], and the calculated hyperfine constants from spectroscopy are
displayed. All values are given in MHz with h being Planck’s constant.
The values are ordered according to the separation of the values needed
for calculation in Table 2.

Literature [MHz] Saturation [MHz] Absorption [MHz] Fluorescence [MHz]

A87 h · 407.25 h · 398± 16 h · 378± 23 h · 396± 31

A85 h · 120.53 h · 122± 11 - -

A85 h · 120.53 h · 123± 11 - -

A87 h · 407.25 h · 408± 16 h · 435± 23 -

All the listed results are in good accordance with the literature values.

4.6 Lock-in frequency stability measurement

The frequency stability of the locked in laser is measured as explained in subsubsection 3.6.1.
In the analysis, peaks are found using scipy.signal.find_peaks [17] and the uncertainties are
estimated to be ±2 channels. For that, four measurements over the course of 10 minutes are
taken. An exemplary measurement can be found in Figure 30. For the other three measurements,
the plots can be found in the attachment in Figure 41, Figure 42 and Figure 43.
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Fig. 30: The FPI measurement of the locked-in frequency. The FPI was
put into resonance with the locked-in frequency with a piezo element.
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The differences between two consecutive peaks are found for each measurement and the uncer-
tainty is propagated using Gaussian propagation of uncertainties. The results of the differences
can be found in Table 5.

Tab. 5: In this table the channel differences between two consecutive FPI
peaks for the four frequency stability measurements are summarised. The
indices indicate the peak number.

c2-c1 c3-c2 c4-c3

Meas. 1 340± 4 338± 4 338± 4

Meas. 2 338± 4 338± 4 340± 4

Meas. 3 339± 4 339± 4 338± 4

Meas. 4 339± 4 339± 4 338± 4

It can be directly seen, that the frequency is stable over a period of at least 10 minutes.

4.7 Beat note measurement

We set one AOM on a fixed frequency. The frequency applied to the other AOM is varied. The
resulting difference in frequency can be measured as a beat note when measuring the frequency
with the laser controller. Again, the peaks are found using scipy.signal.find_peaks [17]
and the uncertainties are estimated to be ±10 Hz. An exemplary measurement can be found
in Figure 31. For the other nine measurements the plots can be found in the attachment in
Figure 44 to Figure 52.
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Fig. 31: The beat note measurement for a set frequency difference of the
AOMs of 0.1 kHz. Additionally, the found peak and its uncertainty is
shown in red.

The found beat note frequencies are summarised with the set frequency differences of the AOMs
in Table 6.

40



4 Analysis and Results

Tab. 6: In this table, the set frequency differences between the AOMs and
the measured beat note frequencies are summarised and given in KHz.
The values are ordered by the measurement number.

Frequency difference between the AOMs [KHz] Beat note frequencies [KHz]

0.1 0.10± 0.01

0.2 0.20± 0.01

0.3 0.30± 0.01

3 3.00± 0.01

16 16.02± 0.01

186 186.20± 0.01

240 240.15± 0.01

109 108.97± 0.01

69.42 69.30± 0.01

0.01 0.01± 0.01

One can directly see from the table, that for small frequency differences in the AOMs, the beat
note frequency shows almost no deviation from the expectation. For frequency differences above
approximately 60 kHz, the measured beat note is slightly off. The relative deviation from the
expectation is small, but the uncertainties on the peak positions are underestimated for these
higher frequency differences.

Despite that, the found beat note frequencies can then be plotted against the set frequency
differences between the two AOMs, to study the behaviour of the AOMs in relation to their
frequency difference. Such a plot can be found in Figure 32. Additionally, a linear fit of the
form:

fbeat(δνAOM) = a · δνAOM + b, (44)

with fbeat the beat note frequency and δνAOM the difference between the AOM frequencies, is
performed using scipy.optimize.curve_fit [17].
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Fig. 32: The beat note frequencies are plotted against the set frequency
differences of the AOMs. Additionally, a linear fit of the data is per-
formed.

The found parameters for the linear fit are found to be:

a = (1.000 70± 0.000 04) kHz, b = (−0.023± 0.004) kHz. (45)

From this, it can be concluded, that the linear relation between the frequency difference between
the AOMs and the beat note holds true. From the fit parameters, it can also be seen, that there
is a small offset b = (−0.023± 0.004) kHz, which is not compatible with 0 Hz as expected. This
is probably due to the underestimation of the uncertainties for higher beat note frequencies.
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5 Discussion
At the end of this protocol, first, a brief summary with all the relevant steps and important
results is given. After this, there is a more in depth discussion about problematic parts in the
experiment.

5.1 Summary of the results

In the first part of this experiment, three different spectroscopy methods were used to analyse a
sample filled with 85Rb and 87Rb gas. The three methods used are fluorescence, absorption and
saturation spectroscopy. From the three different measurements, the energy structure of the two
rubidium isotopes could be determined for each method. In addition, also the composition of
the gas was determined, as well as the hyperfine constants for 85Rb and 87Rb.
Due to the setup, only frequency differences between the peaks could be measured. Here, the
87RbF=1

F=2 transition is set as the reference point, since this transition has the smallest frequency.
In Table 7 the frequency differences for the hyperfine transitions are shown for all three methods.
For comparison, also the literature values are given. As can be seen, the measured values
for the 87Rb transitions are in good compatibility with literature, for all methods. Due to
the Doppler broadening, the adjacent peaks of 85Rb could not be differentiated for absorption
and fluorescence spectroscopy and therefore lie in between the two expected transitions. For
saturation spectroscopy, they can be distinguished, as well as the cross-over resonance, which is
a relict of the saturation spectroscopy method. For saturation spectroscopy, all measurements
are in good accordance with literature. For fluorescence spectroscopy, the transitions T7 and T8
were not found.

Tab. 7: The literature values for the hyperfine transitions of 85Rb [7] and
87Rb [8], and the measured transitions from spectroscopy are displayed.
The transitions are labelled according to Equation 11 and enumerated by
T1 to T8. The frequency differences compared to the 87RbF=1

F=2 transition
are given in MHz. The cross-over resonances are not distinct atomic level
transitions as explained in subsubsection 2.2.3.

Transition Expected [MHz] Saturation [MHz] Absorption [MHz] Fluorescence [MHz]

T1: 87RbF=1
F=2 0 0± 45 0± 32 0± 44

T2: 87RbF=2
F=2 814.5 796± 45 756± 32 794± 44

T3: 85RbF=2
F=3 1518.56 1506± 45

1667± 32

1633± 44Cross-over 1699.36 1682± 45

T4: 85RbF=3
F=3 1880.15 1870± 46

T5: 85RbF=2
F=2 4554.3 4532± 46

4874± 32

4855± 44Cross-over 4735.09 4715± 45

T6: 85RbF=3
F=2 4915.88 4903± 45

T7: 87RbF=1
F=1 6834.68 6829± 45 6795± 32 -

T8: 87RbF=2
F=1 7649.18 7645± 46 7664± 32 -

From the heights of the measured peaks, the composition of rubidium in the sample could be
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determined. The found values can be seen in Table 8. The literature value for the percentage of
87Rb is given with (27.83± 0.20) % [8]. As can be seen, the determined values for absorption and
fluorescence spectroscopy obtain very small uncertainties, which are not reasonable. Possible
reasons for this are discussed in the next section. Nevertheless, the determined values for
saturation spectroscopy show very good accordance with literature, besides the third one. This
is most likely due to the relative small amplitude, compared to the other peaks.

Tab. 8: Percentage of 87Rb in the glass cell, calculated with Equation 35
to Equation 42 for the respective spectra.

Spectrum Equation 87Rb percentage in cell [%]

Saturation Equation 35 30± 4

Saturation Equation 36 22± 3

Saturation Equation 37 11± 8

Saturation Equation 38 23± 4

Absorption Equation 40 25.599± 0.010

Absorption Equation 42 22.035± 0.012

Fluorescence Equation 40 22.27± 0.05

In a last analysis step of the spectroscopy data, the hyperfine constants for 85Rb and 87Rb were
determined, using Equation 10. Again, all three methods were used. The results can be seen
in Table 9. Due to the Doppler broadening, the transitions T3, T4 and T5, T6 could not be
resolved. Therefore, the hyperfine constants for 85Rb could not be determined with the data
from absorption and fluorescence spectroscopy. With the data from saturation spectroscopy,
also the hyperfine constant for 85Rb could be determined. Nevertheless, all calculated constants
are in good accordance with literature.

Tab. 9: The literature values for the hyperfine constants of 85Rb and
87Rb, and the calculated hyperfine constants from spectroscopy are dis-
played. All values are given in MHz with h being Planck’s constant. The
values are ordered according to the separation of the values needed for
calculation in Table 2.

Literature [MHz] Saturation [MHz] Absorption [MHz] Fluorescence [MHz]

A87 h · 407.25 h · 398± 16 h · 378± 23 h · 396± 31

A85 h · 120.53 h · 122± 11 - -

A85 h · 120.53 h · 123± 11 - -

A87 h · 407.25 h · 408± 16 h · 435± 23 -

For an EIT measurement, the laser frequency needs to be stable. In order to achieve this, the
laser controller can lock the laser frequency. In a frequency stability measurement, the duration
of frequency stability was measured. This was done with the FPI. The frequency is stable if the
measured FPI peaks show no drift, which means that the peak position differences are constant
over time. Here, four measurements are performed over the course of 10 minutes between the
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first and last measurement. The results for the peak position differences can be seen in Table 10.
As can be seen, the peak position differences do not change over time. This implies, that the
frequency is stable over at least 10 minutes.

Tab. 10: In this table the channel differences between two consecutive
FPI peaks for the four frequency stability measurements are summarised.
The indices indicate the peak number.

c2-c1 c3-c2 c4-c3

Meas. 1 340± 4 338± 4 338± 4

Meas. 2 338± 4 338± 4 340± 4

Meas. 3 339± 4 339± 4 338± 4

Meas. 4 339± 4 339± 4 338± 4

Another preliminary measurement for EIT is the beat note measurement. This measurement is
needed to study the frequency detuning between the two laser beams. A beat note occurred,
since there were two separate beams, which realized different frequency shifts from the respective
AOM. In Table 11 the set frequency differences between the AOMs, with the according beat
note frequency, can be seen. It is expected, that the set frequency difference between the AOMs,
directly refers to the measured beat note. As can be seen, for small differences, there is almost
no deviation from the expectation. For higher differences, there are significant deviations, within
the uncertainties. Possible causes are discussed in the next section. However, from the found
values, a linear fit was performed, which can be used to calculate the beat note from the set
frequency difference between the AOMs. The fit parameters are:

a = (1.000 70± 0.000 04) kHz, b = (−0.023± 0.004) kHz,
indicating the expected linear behavior.

Tab. 11: In this table, the set frequency differences between the AOMs
and the measured beat note frequencies are summarised and given in
KHz. The values are ordered by the measurement number.

Frequency difference between the AOMs [KHz] Beat note frequencies [KHz]

0.1 0.10± 0.01

0.2 0.20± 0.01

0.3 0.30± 0.01

3 3.00± 0.01

16 16.02± 0.01

186 186.20± 0.01

240 240.15± 0.01

109 108.97± 0.01

69.42 69.30± 0.01

0.01 0.01± 0.01
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5.2 Discussion of the results

The measurement of the rubidium sample with three different spectroscopy methods all showed
good accordance with the literature values for the hyperfine transition frequencies of rubidium.
Also the advantages and disadvantages of the single methods can be seen. From the different
analysis steps, it can be seen, that saturation spectroscopy delivers the best results, because it
was able to resolve all expected hyperfine transitions, and additionally two cross-over transitions,
which were used to identify the single transitions. Due to this resolution, the analysis of related
physical quantities was enabled. Besides the fact, that the uncertainties on the transition with
saturation spectroscopy are the highest, the measured values are the closest to the literature
values. This indicates, that the uncertainties on the frequency differences might be too big. The
reason for this could be the number of data points in the interval chosen for the Lorentzian fit.
Here, for the most peaks, only around 20 data points are used. In order to lower the uncertainty,
a higher resolution of the data should be used.
The absorption and fluorescence measurement showed good accordance for the found peaks.
However, these two methods have problems in resolving closely separated transitions, as it is
the case for the transitions T3, T4 and T5, T6. The reason for that is Doppler broadening. Here,
the measured values just gave a rough estimate of the transition frequencies. Thus, if such
closely spaced transitions should be resolved, saturation spectroscopy should be used instead.
For measuring transitions, which are not effected by Doppler broadening, it can be better to use
absorption or fluorescence spectroscopy instead of saturation spectroscopy, since setting those
two methods up is easier and faster, resulting in measurement values within the same range of
uncertainties.

Besides the benefits of each method, there is a clear systematic uncertainty, resulting from the
non-linearity of the underground. Such a non-linearity can be seen for absorption and saturation
spectroscopy, see Figure 20 and Figure 26. This systematic deviation in the underground do
not affect the peak positions, but their heights. This systematic uncertainty is not respected in
the error propagation. Thus, the uncertainties on the found abundances should be bigger than
the ones presented. A possible reason for this is, that the triangular ramp, applied to the piezo
element moving the grating, did not have a constant slope. This could be improved by changing
some settings at the laser controller.
Another possible systematic uncertainty introduced for the absorption and fluorescence mea-
surement is the usage of the oscilloscope as the read-out device. With the additional effect of
the double line in the oscilloscope data, the signal-to-noise ratio is significantly worse. This
leads to larger uncertainties on the amplitudes, which leads to the precision of the fits being
significantly overestimated. To overcome this, the laser controller software can be used as the
read-out device, since for that no double line effect were observed. Therefore, the signal-to-noise
ratio is improved.

From the spectroscopy measurements, also the abundance of the two rubidium isotopes in the
sample was estimated. As can be seen in Table 8, the uncertainties on the last three values
definitely undershoot the real uncertainties. This is with high certainty due to the fits of the
peaks. Since there are so many data points, which due to their uncertainty are compatible with
the fits (see reduced χ2 values), the uncertainty on the amplitude parameter is undershot by
scipy.optimize.curve_fit by at least two orders of magnitude. This effect had no influence
on the uncertainties of the mean values, since they are calculated not only from the result of
the curve fit, but from an Gaussian error propagation, taking the uncertainties from the FPI
calibration into account.

For the frequency stability measurement it could be seen, that the frequency was stable over the
measurement duration of 10 minutes. To obtain a better understanding of the duration, longer
measurements should be performed.
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To guarantee the correct locking of the frequency, a second photodiode should be used, which
is placed in the spectral measurement setup. With a second photodiode, the locking can be
continuously ensured during an EIT or beat note measurement.

For the beat note measurement, the laser beam intensity was in the order of µW, which was due
to the PMF. This lead to a very hard adjustment of the beam path. Here, an even better light
to fibre coupling should have been achieved. Since no further improvements by adjusting the
beam path were observed, the relative position of the PMF in the light to fibre coupler should
be improved.
Nevertheless, the beat note measurement showed some underestimation of the uncertainties for
higher beat note frequencies, since the uncertainty was estimated for all at once to 0.01 kHz.

47



References

References
[1] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. “Electromagnetically

Induced Transparency: Optics in Coherent Media”. In: Reviews of Modern Physics 77.2
(2005), pp. 633–673. doi: 10.1103/RevModPhys.77.633.

[2] D Palani, D Hoenig, and L Karpa. “In situ ac Stark shift detection in light storage spec-
troscopy”. In: Journal of Physics B: Atomic, Molecular and Optical Physics 54.16 (Sept.
2021), p. 165402. doi: 10.1088/1361-6455/ac2001.

[3] Marin Soljacic et al. “Electromagnetically induced transparency in microcavities”. In: Na-
ture 422.6930 (2004), pp. 415–418. doi: 10.1038/nature01597.

[4] Zhimin Shi et al. “Enhancing the spectral sensitivity of interferometers using slow-light
media”. In: Optics Letters 38.10 (2013), pp. 1764–1766. doi: 10.1364/OL.38.001764.

[5] Christopher J. Foot. Atomic Physics. Oxford Master Series in Physics. Oxford: Oxford
University Press, 2005. isbn: 0-19-850695-3.

[6] Wolfgang Demtröder. Laser Spectroscopy: Basic Concepts and Instrumentation. 2nd. Springer
Berlin Heidelberg, 1996. isbn: 978-3-662-08262-1.

[7] Daniel A. Steck. Rubidium 85 D Line Data. Revision 2.3.3, 28 May 2024. url: http:
//steck.us/alkalidata.

[8] Daniel A. Steck. Rubidium 87 D Line Data. Revision 2.3.3, 28 May 2024. url: http:
//steck.us/alkalidata.

[9] Lcorman. Example of Photodiode Response in a Saturated Absorption Experiment. Wiki-
media Commons. Labels in French. Wavelength axis not perfectly calibrated. 2008.

[10] TOPTICA Photonics AG. DLC pro Digital Laser Controller Manual. M-063 Version 16.
Gräfelfing, Germany: TOPTICA Photonics AG, 2020.

[11] TOPTICA Photonics AG. DL pro Grating Stabilized Diode Laser Head Manual. M-30
Version 01. Lochhamer Schlag 19, D-82166 Graefelfing, Germany: TOPTICA Photonics
AG, 2011.

[12] Patrick87. Blazed Grating. Wikimedia Commons. Diffraction at a blazed grating. 2012.
[13] Ricardo E Silva et al. “All-fiber 10 MHz acousto-optic modulator of a fiber Bragg grating

at 1060 nm wavelength”. In: Opt. Express 23.20 (Oct. 2015), pp. 25972–25978. doi: 10.
1364/OE.23.025972.

[14] Michael Lenz. Prinzip eines AOMs. Wikimedia Commons. acousto optical modulator.
2009.

[15] Omur Sezerman and Garland Best. “Accurate Alignment Preserves Polarization”. In: Laser
Focus World (1997). url: https://www.ozoptics.com/ALLNEW_PDF/ART0001.pdf.

[16] Albert-Ludwigs-Universität Freiburg. Electromagnetically induced transparency. Freiburg
im Breisgau 2023.

[17] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[18] Wes McKinney. Data structures for statistical computing in Python. 2010. url: https:
//doi.org/10.25080/Majora-92bf1922-00.

[19] Vigneshdm1990. Faraday isolator. Wikimedia Commons. Faraday isolator allows the trans-
mission of light in only one direction. 2020.

i

https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1088/1361-6455/ac2001
https://doi.org/10.1038/nature01597
https://doi.org/10.1364/OL.38.001764
http://steck.us/alkalidata
http://steck.us/alkalidata
http://steck.us/alkalidata
http://steck.us/alkalidata
https://doi.org/10.1364/OE.23.025972
https://doi.org/10.1364/OE.23.025972
https://www.ozoptics.com/ALLNEW_PDF/ART0001.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/Majora-92bf1922-00
https://doi.org/10.25080/Majora-92bf1922-00


6 Attachment A

6 Attachment A

6.1 Tables and graphics

Fig. 33: Hyperfine structure of 85Rb for the 52S1/2 and 52P1/2 levels. Also
the D-1 line for 85Rb is shown [7].
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Fig. 34: Hyperfine structure of 87Rb for the 52S1/2 and 52P1/2 levels. Also
the D-1 line for 87Rb is shown [8].
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Fig. 35: Working principle of a Faraday isolator for blocking light from
re-entering the laser cavity [19].

Fig. 36: Cross section of a PMF with different approaches. The dotted
lines represent the slow axis [15].
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Tab. 12: In this table, the fitted parameters for the amplitude and the
mean for the absorption spectroscopy are shown. The first and fourth
peak are fitted using a singular Gaussian distribution from Equation 26.
The second and third, and the fifth and sixth peak are fitted using a
double Gaussian model from Equation 27. The uncertainties for the am-
plitude are directly taken for the fit and the uncertainties on the mean are
calculated by propagating the standard error with the frequency uncer-
tainty, which was not considered during the fitting process. Additionally,
all χ2

red-values are shown.

Peak number Amplitude [mV] Mean (frequency to lowest FPI peak) [MHz] χ2
red

1 −7.458± 0.005 1194± 23 0.08

2 −6.912± 0.006 1950± 23
0.73

3 −20.882± 0.003 2861± 23

4 −16.471± 0.004 6068± 23 0.33

5 −3.225± 0.004 7989± 23
0.13

6 −6.085± 0.004 8858± 23
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Fig. 37: In this plot the FPI spectrum, read out with the oscilloscope dur-
ing the fluorescence spectroscopy measurement, is shown. Additionally,
the identified peak channels, together with the estimated uncertainties of
±500 channels, are plotted in red. It can be seen, that the peak channels
are not equidistant.
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Fig. 38: In the upper plot the FPI spectrum is shown and in the lower
plot the fluorescence spectrum is displayed. Both spectra are read out
with the oscilloscope. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties, are
shown. The peaks are now equidistant. For the fluorescence spectroscopy
plot, a moving average is performed to smoothen the noisy data.

Tab. 13: In this table, the fitted parameters for the amplitude and the
mean for the fluorescence spectroscopy are shown. The first and fourth
peak are fitted using a singular Gaussian distribution from Equation 26.
The second and third are fitted using a double Gaussian model from
Equation 27. The uncertainties for the amplitude are directly taken for
the fit and the uncertainties on the mean are calculated by propagating
the standard error with the frequency uncertainty, which was not consid-
ered during the fitting process. Additionally, all χ2

red-values are shown.

Peak number Amplitude [mV] Mean (frequency to lowest FPI peak) [MHz] χ2
red

1 0.723± 0.002 1120± 31 0.28

2 0.545± 0.003 1913± 31
0.32

3 2.212± 0.002 2753± 31

4 1.467± 0.002 5975± 31 0.37
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Fig. 39: In this plot the FPI spectrum, read out with the laser controller
during the saturation spectroscopy measurement, is shown. Additionally,
the identified peak channels, together with the estimated uncertainties of
±2 channels, are plotted in red. It can be seen, that the peak channels
are not equidistant.
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Fig. 40: In the upper plot the FPI spectrum is shown and in the lower
plot the saturation spectrum is displayed. Both spectra are read out with
the laser controller. The channel frequency-conversion is performed to
plot the spectra on a frequency axis. Additionally for the upper plot, the
identified peaks for the FPI, together with the estimated uncertainties,
are shown. The peaks are now equidistant.
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Tab. 14: In this table, the fitted parameters for the amplitude and the
mean for the saturation spectroscopy are shown. The peaks are fitted
using a Lorentzian distribution. The uncertainties for the amplitude are
directly taken for the fit and the uncertainties on the mean are calculated
by propagating the standard error with the frequency uncertainty, which
was not considered during the fitting process. Additionally, all χ2

red-values
are shown.

Peak number Amplitude [mV] Mean (frequency to lowest FPI peak) [MHz] χ2
red

1 0.52± 0.08 864.90± 22.29 0.80

2 0.50± 0.07 1661.33± 21.72 0.06

3 1.19± 0.10 2370.54± 21.65 1.30

4 3.02± 0.10 2546.20± 22.20 1.17

5 1.73± 0.15 2735.24± 23.82 0.48

6 0.81± 0.10 5379.45± 23.02 0.05

7 1.12± 0.09 5580.09± 22.01 1.01

8 1.44± 0.15 5767.18± 23.32 0.72

9 0.10± 0.08 7694.30± 22.06 0.05

10 0.42± 0.10 8510.53± 22.73 0.08
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Fig. 41: The FPI measurement of the locked-in frequency. The FPI was
put into resonance with the locked-in frequency with a piezo element.
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Fig. 42: The FPI measurement of the locked-in frequency. The FPI was
put into resonance with the locked-in frequency with a piezo element.
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Fig. 43: The FPI measurement of the locked-in frequency. The FPI was
put into resonance with the locked-in frequency with a piezo element.
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Fig. 44: The beat note measurement for a set frequency difference of the
AOMs of 0.2 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 45: The beat note measurement for a set frequency difference of the
AOMs of 0.3 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 46: The beat note measurement for a set frequency difference of the
AOMs of 3 kHz. Additionally, the found peak and its uncertainty is shown
in red.
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Fig. 47: The beat note measurement for a set frequency difference of
the AOMs of 16 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 48: The beat note measurement for a set frequency difference of the
AOMs of 186 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 49: The beat note measurement for a set frequency difference of the
AOMs of 240 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 50: The beat note measurement for a set frequency difference of the
AOMs of 109 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 51: The beat note measurement for a set frequency difference of the
AOMs of 69.42 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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Fig. 52: The beat note measurement for a set frequency difference of the
AOMs of 0.01 kHz. Additionally, the found peak and its uncertainty is
shown in red.
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7.1 Python-Code

[ ]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.signal import find_peaks
import scipy.interpolate as interp

fig_width = 16 # Adjust to match your document
fig_height = 9
base_fontsize = fig_width # Scale with figure width

import matplotlib as mpl
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
import matplotlib.font_manager as font_manager
mpl.rcParams['font.family']='serif'
mpl.rcParams['figure.figsize'] = (fig_width, fig_height)
#cmfont = font_manager.FontProperties(fname=mpl.get_data_path() + '/fonts/ttf/,→cmr10.ttf')
#mpl.rcParams['font.serif']=cmfont.get_name()
mpl.rcParams['mathtext.fontset']='cm'
mpl.rcParams['axes.unicode_minus']=False

fontsize = base_fontsize*1.4
plt.rcParams.update({

"font.size": fontsize,
"axes.labelsize": fontsize,
"xtick.labelsize": fontsize,
"ytick.labelsize": fontsize,
"legend.fontsize": fontsize

})
plt.rcParams['figure.constrained_layout.use'] = True

[ ]: def gaus(x, amplitude, mean, stddev):
return amplitude * np.exp(-((x - mean) / stddev) ** 2 / 2)

def doppelgaus(x, amp1, mean1, stddev1, amp2, mean2, stddev2):
return amp1 * np.exp(-((x - mean1) / stddev1) ** 2 / 2) + amp2 * np.exp(-((x - mean2) /

↪→ stddev2) ** 2 / 2)
def Chi2(meas, fit, sigma):

return np.sum([((i-j)/k)**2 for i,j,k in zip(fit,meas,sigma)])
def gerade(x, a, b):

return a*x+b
def lorentz(x, amp, mean, std, offset):

return amp/(1+((x-mean)/std)**2)+offset

[ ]: path = r"C:\Users\jsoro\Desktop\Studium\Master\2. Semester\FP2\EIT\Daten"
savepath = r"C:\Users\jsoro\Desktop\Studium\Master\2. Semester\FP2\EIT\Plots"

[ ]: saving = True

1 Laser threshold

[ ]: threshold = r"\Laserthreshold.csv"
lt = path + threshold
df_lt = pd.read_csv(lt, sep=";")
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[ ]: # Create figure with 16:9 aspect ratio
fig, ax = plt.subplots(figsize=(16, 9))

# Main scatter plot
ax.scatter(df_lt["LaserCurrent_mA"], df_lt["PowerMeter_mW"], marker="x", s=100,␣

↪→label="Laser threshold measurement")
ax.axvline(83.4, color="darkgreen", label="Estimated laser threshold")
ax.axvline(83.3, linestyle="dashed", color="darkgreen")
ax.axvline(83.5, linestyle="dashed", color="darkgreen")
ax.axvspan(83.3, 83.5, alpha=0.4, color="green")
#ax.set_title("Laser threshold")
ax.set_ylabel("Power [mW]")
ax.set_xlabel("Set current [mA]")
ax.grid()
ax.legend(loc=2)

axins = plt.axes([0.65, 0.2, 0.30, 0.30])
axins.scatter(df_lt["LaserCurrent_mA"][35:44], df_lt["PowerMeter_mW"][35:44], marker="x",␣

↪→s=100)
axins.axvline(83.4, color="darkgreen")
axins.axvline(83.3, linestyle="dashed", alpha=0.3, color="darkgreen")
axins.axvline(83.5, linestyle="dashed", alpha=0.3, color="darkgreen")
axins.axvspan(83.3, 83.5, alpha=0.1, color="green")

x1, x2 = axins.set_xlim(83, 84) # Adjust X-limits
y1,y2 = axins.set_ylim(-0.05, 1.52) # Adjust Y-limits
axins.grid()
mark_inset(ax, axins, loc1=2, loc2=3, fc="none", ec="0.5")

if saving == True:
plt.savefig(savepath + r"\Threshold.pdf", dpi=150, bbox_inches="tight")

plt.show()

2 Spectroscopy literature values

[ ]: MHz_lit = [0, 814.5, 1518.6, 1880.2, 4554.4, 4916.0, 6834.7, 7649.2]

3 Absorption spectroscopy

[ ]: absorp = r"\23.csv"
absorption = path + absorp
df_absorption = pd.read_csv(absorption,header=None, sep=",", skiprows=2

, names=["FPI", "PD", "Trigger"], index_col=False)
df_absorption["running"] = df_absorption["PD"].rolling(10, min_periods=1, center=True).

↪→sum()/10
df_absorption.iloc[:, :] = df_absorption.iloc[:, :] * 1000 #transform everything to mV
df_absorption["del_running"] = 0.005*df_absorption["running"]
df_absorption
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3.1 FPI calibration

[ ]: #Generate frequencies
FSR = 750 #MHz

[ ]: peaks, _ = find_peaks(df_absorption["FPI"], height=1.2, distance=500)
del_peaks = 500
difference = np.diff(peaks)

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_absorption.index, df_absorption["FPI"], label="FPI signal")
for i in range(0,len(peaks)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks[i]-del_peaks, linestyle="dashed", color="red")
plt.axvline(peaks[i]+del_peaks, linestyle="dashed", color="red")
plt.axvspan(peaks[i]-del_peaks, peaks[i]+del_peaks, alpha=0.4, color="mistyrose")

else: # No label for subsequent plots
plt.axvline(peaks[i], color="red")
plt.axvline(peaks[i]-del_peaks, linestyle="dashed", color="red")
plt.axvline(peaks[i]+del_peaks, linestyle="dashed", color="red")
plt.axvspan(peaks[i]-del_peaks, peaks[i]+del_peaks, alpha=0.4, color="mistyrose")

frame1.set_xticklabels([])
plt.xlim(0,df_absorption.index[-1])
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_absorption.index[5:-4], df_absorption["running"][5:-4], color="green",␣

↪→label="Photodiode signal")
plt.grid()
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.xlim(0,df_absorption.index[-1])
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\FPI_peaks.pdf", dpi=150, bbox_inches="tight")

plt.show()

peaks, difference

[ ]: plt.plot(df_absorption.index, df_absorption["FPI"], label="FPI signal")
for i in range(0,len(peaks)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks[i]-del_peaks, linestyle="dashed", color="red")
plt.axvline(peaks[i]+del_peaks, linestyle="dashed", color="red")
plt.axvspan(peaks[i]-del_peaks, peaks[i]+del_peaks, alpha=0.4, color="mistyrose")

else: # No label for subsequent plots
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plt.axvline(peaks[i], color="red")
plt.axvline(peaks[i]-del_peaks, linestyle="dashed", color="red")
plt.axvline(peaks[i]+del_peaks, linestyle="dashed", color="red")
plt.axvspan(peaks[i]-del_peaks, peaks[i]+del_peaks, alpha=0.4, color="mistyrose")

plt.xlim(0,df_absorption.index[-1])
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
if saving == True:

plt.savefig(savepath + r"\FPI_a.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: # Create the expected evenly spaced grid
expected_peaks = np.linspace(0, len(df_absorption), num=len(peaks))
# Interpolation function
interp_func = interp.interp1d(peaks, expected_peaks, kind='linear',␣

↪→fill_value="extrapolate")
# Generate corrected values
df_absorption["conversion"] = interp_func(df_absorption.index)
#look if everything is equally spaced now
equal = np.diff(df_absorption["conversion"][peaks])
#convert to frequency
del_peaks_abs = FSR*(del_peaks)/equal[0]

[ ]: #Calculate frequencies and move the 0 point to the third peak
moving = 2
df_absorption["frequency"] = FSR*(df_absorption["conversion"])/equal[0]-moving*FSR
df_absorption

3.1.1 Defining limits for plots

[ ]: #lower level and #upper level both index and xlim
ll_a_id = (df_absorption["frequency"] > -200).idxmax()
ul_a_id = (df_absorption["frequency"] > df_absorption["frequency"][peaks[-2]]+200).idxmax()
ll_a_plot = df_absorption["frequency"][(df_absorption["frequency"] > -200).idxmax()]
ul_a_plot = df_absorption["frequency"][(df_absorption["frequency"] >␣

↪→df_absorption["frequency"][peaks[-2]]+200).idxmax()]

3.2 Analysis

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["FPI"][ll_a_id:

↪→ul_a_id], label="FPI signal")
for i in range(-moving, len(peaks)-moving):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

else:
plt.axvline(FSR*i, color="red")
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plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

frame1.set_xticklabels([])
plt.xlim(ll_a_plot,ul_a_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["running"][ll_a_id:

↪→ul_a_id]
, color="green", label="Photodiode signal")

plt.grid()
plt.xlabel("Frequency difference to lowest FPI peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_a_plot,ul_a_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\absorption_freq.pdf", dpi=150, bbox_inches="tight")

plt.show()

3.2.1 Removing underground

[ ]: low_a1 = -200
high_a1 = 500
low_a2 = 9_500#3900
high_a2 = df_absorption["frequency"][peaks[-2]]+200#5100
low_a3 = 10_000
high_a3 = df_absorption["frequency"][peaks[-2]]+200

low_a = [(df_absorption["frequency"] > low_a1).idxmax(), (df_absorption["frequency"] >␣
↪→low_a2).idxmax()]

high_a = [(df_absorption["frequency"] > high_a1).idxmax(), (df_absorption["frequency"] >␣
↪→high_a2).idxmax()]

[ ]: x_fit = np.concatenate([
df_absorption["frequency"][low_a[0]:high_a[0]],
df_absorption["frequency"][low_a[1]:high_a[1]]

])

y_fit = np.concatenate([
df_absorption["running"][low_a[0]:high_a[0]],
df_absorption["running"][low_a[1]:high_a[1]]

])

del_y_fit = np.concatenate([
df_absorption["del_running"][low_a[0]:high_a[0]],
df_absorption["del_running"][low_a[1]:high_a[1]]

])

bg_a, del_bg_a = curve_fit(gerade, x_fit, y_fit, sigma=del_y_fit, absolute_sigma=True)
x_values_a = np.linspace(low_a1, high_a3, 1000)
fit_a = gerade(x_values_a, *bg_a)
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df_absorption["clean"] =␣
↪→df_absorption["running"]-(bg_a[0]*df_absorption["frequency"]+bg_a[1])

df_absorption["del_clean"] = np.sqrt(df_absorption["del_running"]**2
+(np.

↪→sqrt(del_bg_a[0][0])*df_absorption["frequency"])**2
+(bg_a[0]*del_peaks_abs)**2+del_bg_a[1][1])

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["FPI"][ll_a_id:

↪→ul_a_id], label="FPI signal")
for i in range(-moving, len(peaks)-moving):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

else:
plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

frame1.set_xticklabels([])
plt.xlim(ll_a_plot,ul_a_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(x_values_a, fit_a, color="maroon", label="Linear underground fit")
for i in range(len(low_a)):

if i == 0:
plt.plot(df_absorption["frequency"][low_a[i]:high_a[i]],␣

↪→df_absorption["running"][low_a[i]:high_a[i]]
, color="orange", label="Data for linear fit")

else:
plt.plot(df_absorption["frequency"][low_a[i]:high_a[i]],␣

↪→df_absorption["running"][low_a[i]:high_a[i]], color="orange")
plt.plot(df_absorption["frequency"][high_a[0]:low_a[1]],␣

↪→df_absorption["running"][high_a[0]:low_a[1]], color="green", label="Photodiode signal")
plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_a_plot,ul_a_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\absorption_bg.pdf", dpi=150, bbox_inches="tight")

plt.show()
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3.3 Finding the peaks

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["FPI"][ll_a_id:

↪→ul_a_id], label="FPI signal")
for i in range(-moving, len(peaks)-moving):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

else:
plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

frame1.set_xticklabels([])
plt.xlim(ll_a_plot,ul_a_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["clean"][ll_a_id:

↪→ul_a_id], color="green", label="Data after underground subtraction")

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_a_plot,ul_a_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\absorption_clean.pdf", dpi=150, bbox_inches="tight")

plt.show()

[ ]: peaks_a_low = [800, 1800, 5800, 7800]
peaks_a_low = [(df_absorption["frequency"] > i).idxmax() for i in peaks_a_low]
peaks_a_high = [1400, 3500, 6500, 9300]
peaks_a_high = [(df_absorption["frequency"] > i).idxmax() for i in peaks_a_high]
amp_a = [-7, -7, -20, -16.5, -4, -6] # Amplitudes
mean_a = [1100, 2000, 2800, 6050, 8000, 8800] # Means
std_a = [200, 200, 200, 500, 200, 200] # Standard deviations

[ ]: #Peak 1
fit_g1_a, fitcov_g1_a = curve_fit(gaus, df_absorption["frequency"][peaks_a_low[0]:

↪→peaks_a_high[0]], df_absorption["clean"][peaks_a_low[0]:peaks_a_high[0]], p0=[amp_a[0],␣
↪→mean_a[0], std_a[0]], sigma=df_absorption["del_clean"][peaks_a_low[0]:peaks_a_high[0]],␣
↪→absolute_sigma=True)

x_fit_g1_a = df_absorption["frequency"][peaks_a_low[0]:peaks_a_high[0]]
y_fit_g1_a = gaus(df_absorption["frequency"][peaks_a_low[0]:peaks_a_high[0]], *fit_g1_a)
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x_plot_g1_a = np.linspace(ll_a_plot,ul_a_plot, 2000)
y_plot_g1_a = gaus(x_plot_g1_a, *fit_g1_a)

amp_g1_a = fit_g1_a[0]
del_amp_g1_a = np.sqrt(fitcov_g1_a[0][0])
mean_g1_a = fit_g1_a[1]
del_mean_g1_a = np.sqrt((fit_g1_a[2]/np.

↪→sqrt(peaks_a_high[0]-peaks_a_low[0]))**2+del_peaks_abs**2)

#Doublepeak 1
fit_dg1_a, fitcov_dg1_a = curve_fit(doppelgaus, df_absorption["frequency"][peaks_a_low[1]:

↪→peaks_a_high[1]], df_absorption["clean"][peaks_a_low[1]:peaks_a_high[1]], p0=[amp_a[1],␣
↪→mean_a[1], std_a[1], amp_a[2], mean_a[2], std_a[2]],␣
↪→sigma=df_absorption["del_clean"][peaks_a_low[1]:peaks_a_high[1]], absolute_sigma=True)

x_fit_dg1_a = df_absorption["frequency"][peaks_a_low[1]:peaks_a_high[1]]
y_fit_dg1_a = doppelgaus(df_absorption["frequency"][peaks_a_low[1]:peaks_a_high[1]],␣

↪→*fit_dg1_a)
x_plot_dg1_a = np.linspace(ll_a_plot,ul_a_plot, 2000)
y_plot_dg1_a = doppelgaus(x_plot_dg1_a, *fit_dg1_a)

amp1_dg1_a = fit_dg1_a[0]
del_amp1_dg1_a = np.sqrt(fitcov_dg1_a[0][0])
mean1_dg1_a = fit_dg1_a[1]
del_mean1_dg1_a = np.sqrt((fit_dg1_a[2]/np.

↪→sqrt(peaks_a_high[1]-peaks_a_low[1]))**2+del_peaks_abs**2)
amp2_dg1_a = fit_dg1_a[3]
del_amp2_dg1_a = np.sqrt(fitcov_dg1_a[3][3])
mean2_dg1_a = fit_dg1_a[4]
del_mean2_dg1_a = np.sqrt((fit_dg1_a[5]/np.

↪→sqrt(peaks_a_high[1]-peaks_a_low[1]))**2+del_peaks_abs**2)

#Peak 2
fit_g2_a, fitcov_g2_a = curve_fit(gaus, df_absorption["frequency"][peaks_a_low[2]:

↪→peaks_a_high[2]], df_absorption["clean"][peaks_a_low[2]:peaks_a_high[2]], p0=[amp_a[3],␣
↪→mean_a[3], std_a[3]], sigma=df_absorption["del_clean"][peaks_a_low[2]:peaks_a_high[2]],␣
↪→absolute_sigma=True)

x_fit_g2_a = df_absorption["frequency"][peaks_a_low[2]:peaks_a_high[2]]
y_fit_g2_a = gaus(df_absorption["frequency"][peaks_a_low[2]:peaks_a_high[2]], *fit_g2_a)
x_plot_g2_a = np.linspace(ll_a_plot,ul_a_plot, 2000)
y_plot_g2_a = gaus(x_plot_g2_a, *fit_g2_a)

amp_g2_a = fit_g2_a[0]
del_amp_g2_a = np.sqrt(fitcov_g2_a[0][0])
mean_g2_a = fit_g2_a[1]
del_mean_g2_a = np.sqrt((fit_g2_a[2]/np.

↪→sqrt(peaks_a_high[0]-peaks_a_low[0]))**2+del_peaks_abs**2)

#Doublepeak 2
fit_dg2_a, fitcov_dg2_a = curve_fit(doppelgaus, df_absorption["frequency"][peaks_a_low[3]:

↪→peaks_a_high[3]], df_absorption["clean"][peaks_a_low[3]:peaks_a_high[3]], p0=[amp_a[4],␣
↪→mean_a[4], std_a[4], amp_a[5], mean_a[5], std_a[5]],␣
↪→sigma=df_absorption["del_clean"][peaks_a_low[3]:peaks_a_high[3]], absolute_sigma=True)
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x_fit_dg2_a = df_absorption["frequency"][peaks_a_low[3]:peaks_a_high[3]]
y_fit_dg2_a = doppelgaus(df_absorption["frequency"][peaks_a_low[3]:peaks_a_high[3]],␣

↪→*fit_dg2_a)
x_plot_dg2_a = np.linspace(ll_a_plot,ul_a_plot, 2000)
y_plot_dg2_a = doppelgaus(x_plot_dg2_a, *fit_dg2_a)

amp1_dg2_a = fit_dg2_a[0]
del_amp1_dg2_a = np.sqrt(fitcov_dg2_a[0][0])
mean1_dg2_a = fit_dg2_a[1]
del_mean1_dg2_a = np.sqrt((fit_dg2_a[2]/np.

↪→sqrt(peaks_a_high[3]-peaks_a_low[3]))**2+del_peaks_abs**2)
amp2_dg2_a = fit_dg2_a[3]
del_amp2_dg2_a = np.sqrt(fitcov_dg2_a[3][3])
mean2_dg2_a = fit_dg2_a[4]
del_mean2_dg2_a = np.sqrt((fit_dg2_a[5]/np.

↪→sqrt(peaks_a_high[3]-peaks_a_low[3]))**2+del_peaks_abs**2)

[ ]: #calculating reduced chi2 values
chi2red1_a = Chi2(df_absorption["clean"][peaks_a_low[0]:peaks_a_high[0]], y_fit_g1_a,␣

↪→df_absorption["del_clean"][peaks_a_low[0]:peaks_a_high[0]])/
↪→(peaks_a_high[0]-peaks_a_low[0]-3)

chi2red2_a = Chi2(df_absorption["clean"][peaks_a_low[1]:peaks_a_high[1]], y_fit_dg1_a,␣
↪→df_absorption["del_clean"][peaks_a_low[1]:peaks_a_high[1]])/
↪→(peaks_a_high[1]-peaks_a_low[1]-6)

chi2red3_a = Chi2(df_absorption["clean"][peaks_a_low[2]:peaks_a_high[2]], y_fit_g2_a,␣
↪→df_absorption["del_clean"][peaks_a_low[2]:peaks_a_high[2]])/
↪→(peaks_a_high[2]-peaks_a_low[2]-3)

chi2red4_a = Chi2(df_absorption["clean"][peaks_a_low[3]:peaks_a_high[3]], y_fit_dg2_a,␣
↪→df_absorption["del_clean"][peaks_a_low[3]:peaks_a_high[3]])/
↪→(peaks_a_high[3]-peaks_a_low[3]-6)

[ ]: print("Amplitude for the 1.Peak:", amp_g1_a, "+-", del_amp_g1_a)
print("Mean for the 1.Peak:", mean_g1_a, "+-", del_mean_g1_a)
print("Reduced chi^2-value:", chi2red1_a, "\n")

print("Amplitude for the 2.Peak:", amp1_dg1_a, "+-", del_amp1_dg1_a)
print("Mean for the 2.Peak:", mean1_dg1_a, "+-", del_mean1_dg1_a)
print("Amplitude for the 3.Peak:", amp2_dg1_a, "+-", del_amp2_dg1_a)
print("Mean for the 3.Peak:", mean2_dg1_a, "+-", del_mean2_dg1_a)
print("Reduced chi^2-value:", chi2red2_a, "\n")

print("Amplitude for the 4.Peak:", amp_g2_a, "+-", del_amp_g2_a)
print("Mean for the 4.Peak:", mean_g2_a, "+-", del_mean_g2_a)
print("Reduced chi^2-value:", chi2red3_a, "\n")

print("Amplitude for the 5.Peak:", amp1_dg2_a, "+-", del_amp1_dg2_a)
print("Mean for the 5.Peak:", mean1_dg2_a, "+-", del_mean1_dg2_a)
print("Amplitude for the 6.Peak:", amp2_dg2_a, "+-", del_amp2_dg2_a)
print("Mean for the 6.Peak:", mean2_dg2_a, "+-", del_mean2_dg2_a)
print("Reduced chi^2-value:", chi2red4_a, "\n")

[ ]: a_1 = 0
del_a_1 = np.sqrt(2)*del_mean_g1_a
a_2 = mean1_dg1_a - mean_g1_a
del_a_2 = np.sqrt(del_mean1_dg1_a**2 + del_mean_g1_a**2)
a_3 = mean2_dg1_a - mean_g1_a
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del_a_3 = np.sqrt(del_mean2_dg1_a**2 + del_mean_g1_a**2)
a_4 = mean_g2_a - mean_g1_a
del_a_4 = np.sqrt(del_mean_g2_a**2 + del_mean_g1_a**2)
a_5 = mean1_dg2_a - mean_g1_a
del_a_5 = np.sqrt(del_mean1_dg2_a**2 + del_mean_g1_a**2)
a_6 = mean2_dg2_a - mean_g1_a
del_a_6 = np.sqrt(del_mean2_dg1_a**2 + del_mean_g1_a**2)

rel_means_a = [a_1,a_2,a_3,a_4,a_5,a_6]
del_rel_means_a = [del_a_1,del_a_2,del_a_3,del_a_4,del_a_5,del_a_6]

for i in range(len(rel_means_a)):
print(f"{i+1}.Peak position relative to first peak:{rel_means_a[i]} +-␣

↪→{del_rel_means_a[i]}")

[ ]: plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["clean"][ll_a_id:
↪→ul_a_id], color="green", label="Data after underground subtraction")

plt.plot(x_plot_g1_a, y_plot_g1_a, label=f"{mean_g1_a:.2f} $\pm$ {del_mean_g1_a:.2f} MHz")
plt.plot(x_plot_dg1_a, y_plot_dg1_a, label=f"{mean1_dg1_a:.2f} $\pm$ {del_mean1_dg1_a:.2f}␣

↪→MHz\n{mean2_dg1_a:.2f} $\pm$ {del_mean2_dg1_a:.2f} MHz")
plt.plot(x_plot_g2_a, y_plot_g2_a, label=f"{mean_g2_a:.2f} $\pm$ {del_mean_g2_a:.2f} MHz")
plt.plot(x_plot_dg2_a, y_plot_dg2_a, label=f"{mean1_dg2_a:.2f} $\pm$ {del_mean1_dg2_a:.2f}␣

↪→MHz\n{mean2_dg2_a:.2f} $\pm$ {del_mean2_dg2_a:.2f} MHz")

for i in range(0,len(peaks_a_low)):
plt.axvline(df_absorption["frequency"][peaks_a_low[i]], ls="-", color='black')
plt.axvline(df_absorption["frequency"][peaks_a_high[i]], ls="-", color='black')

plt.xlim(ll_a_plot,ul_a_plot)
plt.grid()
plt.legend()
if saving == True:

plt.savefig(savepath + r"\absorption_fits.pdf", dpi=150, bbox_inches="tight")

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["FPI"][ll_a_id:

↪→ul_a_id], label="FPI signal")
for i in range(-moving, len(peaks)-moving):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

else:
plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs, FSR*i+del_peaks_abs, alpha=0.4, color="mistyrose")

frame1.set_xticklabels([])
plt.xlim(ll_a_plot,ul_a_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))
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#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_absorption["frequency"][ll_a_id:ul_a_id], df_absorption["clean"][ll_a_id:

↪→ul_a_id], color="green", label="Data after underground subtraction")
plt.plot(x_plot_g1_a, y_plot_g1_a, color="orange", label=f"Single Gaussian absorption peak␣

↪→fit")
plt.plot(x_plot_dg1_a, y_plot_dg1_a, color="blue", label=f"Double Gaussian absorption peak␣

↪→fit")
plt.plot(x_plot_g2_a, y_plot_g2_a, color="orange")
plt.plot(x_plot_dg2_a, y_plot_dg2_a, color="blue")

for i in range(0,len(peaks_a_low)):
plt.axvline(df_absorption["frequency"][peaks_a_low[i]], ls="-", color='black')
plt.axvline(df_absorption["frequency"][peaks_a_high[i]], ls="-", color='black')

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_a_plot,ul_a_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\absorption.pdf", dpi=150, bbox_inches="tight")

plt.show()

3.3.1 Abundance and hyperfine

[ ]: #abundance
abundance_a = (amp_g1_a+amp1_dg1_a)/(amp_g1_a+amp1_dg1_a+2*amp2_dg1_a)
del_abundance_a = np.sqrt(((2*amp2_dg1_a)/

↪→((amp_g1_a+amp1_dg1_a+2*amp2_dg1_a)**2))**2*del_amp_g1_a**2+(2*amp2_dg1_a/
↪→((amp_g1_a+amp1_dg1_a+2*amp2_dg1_a)**2))**2*del_amp1_dg1_a**2+(2*(amp_g1_a+amp1_dg1_a)/
↪→((amp_g1_a+amp1_dg1_a+2*amp2_dg1_a)**2))**2*2*del_amp2_dg1_a**2)

abundance_a2 = (amp1_dg2_a+amp2_dg2_a)/(amp1_dg2_a+amp2_dg2_a+2*amp_g2_a)
del_abundance_a2 = np.sqrt(((2*amp_g2_a)/

↪→((amp1_dg2_a+amp2_dg2_a+2*amp_g2_a)**2))**2*del_amp1_dg2_a**2+(2*amp_g2_a/
↪→((amp1_dg2_a+amp2_dg2_a+2*amp_g2_a)**2))**2*del_amp2_dg2_a**2+(2*(amp1_dg2_a+amp2_dg2_a)/
↪→((amp1_dg2_a+amp2_dg2_a+2*amp_g2_a)**2))**2*2*del_amp_g2_a**2)

#hyperfine
hyper_a1_87 = a_2/2
del_hyper_a1_87 = np.sqrt((del_a_2/2)**2+(del_a_1/2)**2)
hyper_a2_87 = (a_6-a_5)/2
del_hyper_a2_87 = np.sqrt((del_a_6/2)**2+(del_a_5/2)**2)
#hyperfine 85 not possible (low resolution)

abundance_a, del_abundance_a, abundance_a2, del_abundance_a2, hyper_a1_87,␣
↪→del_hyper_a1_87, hyper_a2_87, del_hyper_a2_87
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4 Fluorescence spectroscopy

[ ]: fluor = r"\21.csv"
fluorescence = path + fluor
df_fluorescence = pd.read_csv(fluorescence,header=None, sep=",", skiprows=2, names=["FPI",␣

↪→"PD", "Trigger"], index_col=False)
df_fluorescence["running"] = df_fluorescence["PD"].rolling(10, min_periods=1, center=True).

↪→sum()/10
df_fluorescence.iloc[:, :] = df_fluorescence.iloc[:, :] * 1000 #transform everything to mV
df_fluorescence["del_running"] = 0.005*df_fluorescence["running"]
df_fluorescence

4.1 FPI calibration

[ ]: peaks_f, _ = find_peaks(df_fluorescence["FPI"], height=400, distance=5000)
del_peaks_f = 500
difference_f = np.diff(peaks_f)

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_fluorescence.index, df_fluorescence["FPI"], label="FPI signal")
for i in range(0,len(peaks_f)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_f[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_f[i]-del_peaks_f, linestyle="dashed", color="red")
plt.axvline(peaks_f[i]+del_peaks_f, linestyle="dashed", color="red")
plt.axvspan(peaks_f[i]-del_peaks_f, peaks_f[i]+del_peaks_f, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_f[i], color="red")
plt.axvline(peaks_f[i]-del_peaks_f, linestyle="dashed", color="red")
plt.axvline(peaks_f[i]+del_peaks_f, linestyle="dashed", color="red")
plt.axvspan(peaks_f[i]-del_peaks_f, peaks_f[i]+del_peaks_f, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(0,df_fluorescence.index[-1])
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_fluorescence.index[5:-4], df_fluorescence["running"][5:-4], color="green",␣

↪→label="Photodiode signal")
plt.grid()
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.xlim(0,df_fluorescence.index[-1])
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\FPI_peaks_f.pdf", dpi=150, bbox_inches="tight")

plt.show()
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peaks_f, difference_f

[ ]: plt.plot(df_fluorescence.index, df_fluorescence["FPI"], label="FPI signal")
for i in range(0,len(peaks_f)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_f[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_f[i]-del_peaks_f, linestyle="dashed", color="red")
plt.axvline(peaks_f[i]+del_peaks_f, linestyle="dashed", color="red")
plt.axvspan(peaks_f[i]-del_peaks_f, peaks_f[i]+del_peaks_f, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_f[i], color="red")
plt.axvline(peaks_f[i]-del_peaks_f, linestyle="dashed", color="red")
plt.axvline(peaks_f[i]+del_peaks_f, linestyle="dashed", color="red")
plt.axvspan(peaks_f[i]-del_peaks_f, peaks_f[i]+del_peaks_f, alpha=0.4,␣

↪→color="mistyrose")
plt.xlim(0,df_fluorescence.index[-1])
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
if saving == True:

plt.savefig(savepath + r"\FPI_f.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: # Create the expected evenly spaced grid
expected_peaks_f = np.linspace(0, len(df_fluorescence), num=len(peaks_f))
# Interpolation function
interp_func_f = interp.interp1d(peaks_f, expected_peaks_f, kind='linear',␣

↪→fill_value="extrapolate")
# Generate corrected values
df_fluorescence["conversion"] = interp_func_f(df_fluorescence.index)
#look if everything is equally spaced now
equal_f = np.diff(df_fluorescence["conversion"][peaks_f])
#convert to frequency
del_peaks_abs_f = FSR*(del_peaks_f)/equal_f[0]

[ ]: #Calculate frequencies and move the 0 point
moving_f = 13
df_fluorescence["frequency"] = FSR*(df_fluorescence["conversion"])/equal_f[0]-moving_f*FSR
df_fluorescence

4.1.1 Defining limits for plots

[ ]: #lower level and #upper level both index and xlim
ll_f_id = (df_fluorescence["frequency"] > -200).idxmax()
ul_f_id = (df_fluorescence["frequency"] > df_fluorescence["frequency"][peaks_f[-3]]+200).

↪→idxmax()
ll_f_plot = df_fluorescence["frequency"][(df_fluorescence["frequency"] > -200).idxmax()]
ul_f_plot = df_fluorescence["frequency"][(df_fluorescence["frequency"] >␣

↪→df_fluorescence["frequency"][peaks_f[-3]]+200).idxmax()]
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4.2 Analysis

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["FPI"][ll_f_id:

↪→ul_f_id], label="FPI signal")
for i in range(-moving_f, len(peaks_f)-moving_f):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_f_plot,ul_f_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["running"][ll_f_id:

↪→ul_f_id], color="green", label="Photodiode signal")
plt.grid()
plt.xlabel("Frequency difference to lowest FPI peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_f_plot,ul_f_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\fluorescence_freq.pdf", dpi=150, bbox_inches="tight")

plt.show()

4.3 Removing background

[ ]: low_f1 = -200
high_f1 = 500
low_f2 = 4000
high_f2 = 5000
low_f3 = 6700
high_f3 = df_fluorescence["frequency"][peaks[-2]]-200

low_f = [(df_fluorescence["frequency"] > low_f1).idxmax(), (df_fluorescence["frequency"] >␣
↪→low_f2).idxmax(), (df_fluorescence["frequency"] > low_f3).idxmax()]

high_f = [(df_fluorescence["frequency"] > high_f1).idxmax(), (df_fluorescence["frequency"]␣
↪→> high_f2).idxmax(), (df_fluorescence["frequency"] > high_f3).idxmax()]
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[ ]: x_fit_f = np.concatenate([
df_fluorescence["frequency"][low_f[0]:high_f[0]],
df_fluorescence["frequency"][low_f[1]:high_f[1]],
df_fluorescence["frequency"][low_f[2]:high_f[2]]

])

y_fit_f = np.concatenate([
df_fluorescence["running"][low_f[0]:high_f[0]],
df_fluorescence["running"][low_f[1]:high_f[1]],
df_fluorescence["running"][low_f[2]:high_f[2]]

])

del_y_fit_f = np.concatenate([
df_fluorescence["del_running"][low_f[0]:high_f[0]],
df_fluorescence["del_running"][low_f[1]:high_f[1]],
df_fluorescence["del_running"][low_f[2]:high_f[2]]

])

bg_f, del_bg_f = curve_fit(gerade, x_fit_f, y_fit_f, sigma=del_y_fit_f,␣
↪→absolute_sigma=True)

x_values_f = np.linspace(low_f1, high_f3, 1000)
fit_f = gerade(x_values_f, *bg_f)

df_fluorescence["clean"] =␣
↪→df_fluorescence["running"]-(bg_f[0]*df_fluorescence["frequency"]+bg_f[1])

df_fluorescence["del_clean"] = np.sqrt(df_fluorescence["del_running"]**2
+(np.sqrt(del_bg_f[0][0])*df_fluorescence["frequency"])**2

+(bg_f[0]*del_peaks_abs_f)**2+del_bg_f[1][1])

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["FPI"][ll_f_id:

↪→ul_f_id], label="FPI signal")
for i in range(-moving_f, len(peaks_f)-moving_f):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_f_plot,ul_f_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
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frame2=fig1.add_axes((0,0,1,.6))
plt.plot(x_values_f, fit_f, color="maroon", label="Linear underground fit")
for i in range(len(low_f)):

if i == 0:
plt.plot(df_fluorescence["frequency"][low_f[i]:high_f[i]],␣

↪→df_fluorescence["running"][low_f[i]:high_f[i]], color="orange", label="Data for linear␣
↪→fit")

else:
plt.plot(df_fluorescence["frequency"][low_f[i]:high_f[i]],␣

↪→df_fluorescence["running"][low_f[i]:high_f[i]], color="orange")
plt.plot(df_fluorescence["frequency"][high_f[0]:low_f[1]],␣

↪→df_fluorescence["running"][high_f[0]:low_f[1]], color="green", label="Photodiode␣
↪→signal")

plt.plot(df_fluorescence["frequency"][high_f[1]:low_f[2]],␣
↪→df_fluorescence["running"][high_f[1]:low_f[2]], color="green")

plt.plot(df_fluorescence["frequency"][high_f[2]:ul_f_id],␣
↪→df_fluorescence["running"][high_f[2]:ul_f_id], color="green")

plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_f_plot,ul_f_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))
plt.grid()

if saving == True:
plt.savefig(savepath + r"\fluorescence_bg.pdf", dpi=150, bbox_inches="tight")

plt.show()

4.4 Finding the peaks

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["FPI"][ll_f_id:

↪→ul_f_id], label="FPI signal")
for i in range(-moving_f, len(peaks_f)-moving_f):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_f_plot,ul_f_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))
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#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["clean"][ll_f_id:

↪→ul_f_id], color="green", label="Data after underground subtraction")

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_f_plot,ul_f_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\fluorescence_clean.pdf", dpi=150, bbox_inches="tight")

plt.show()

[ ]: peaks_f_low = [750, 1800, 5500]
peaks_f_low = [(df_fluorescence["frequency"] > i).idxmax() for i in peaks_f_low]
peaks_f_high = [1400, 3500, 6500]
peaks_f_high = [(df_fluorescence["frequency"] > i).idxmax() for i in peaks_f_high]
amp_f = [0.9, 0.9, 2.3, 1.5] # Amplitudes
mean_f = [1100, 2000, 2800, 6000] # Means
std_f = [200, 200, 200, 200] # Standard deviations

[ ]: #Peak 1
fit_g1_f, fitcov_g1_f = curve_fit(gaus, df_fluorescence["frequency"][peaks_f_low[0]:

↪→peaks_f_high[0]], df_fluorescence["clean"][peaks_f_low[0]:peaks_f_high[0]],␣
↪→p0=[amp_f[0], mean_f[0], std_f[0]], sigma=df_fluorescence["del_clean"][peaks_f_low[0]:
↪→peaks_f_high[0]], absolute_sigma=True, maxfev=2000000)

x_fit_g1_f = df_fluorescence["frequency"][peaks_f_low[0]:peaks_f_high[0]]
y_fit_g1_f = gaus(df_fluorescence["frequency"][peaks_f_low[0]:peaks_f_high[0]], *fit_g1_f)
x_plot_g1_f = np.linspace(ll_f_plot, ul_f_plot, 2000)
y_plot_g1_f = gaus(x_plot_g1_f, *fit_g1_f)

amp_g1_f = fit_g1_f[0]
del_amp_g1_f = np.sqrt(fitcov_g1_f[0][0])
mean_g1_f = fit_g1_f[1]
del_mean_g1_f = np.sqrt((fit_g1_f[2]/np.

↪→sqrt(peaks_f_high[0]-peaks_f_low[0]))**2+del_peaks_abs_f**2)

#Doublepeak 1
fit_dg1_f, fitcov_dg1_f = curve_fit(doppelgaus,␣

↪→df_fluorescence["frequency"][peaks_f_low[1]:peaks_f_high[1]],␣
↪→df_fluorescence["clean"][peaks_f_low[1]:peaks_f_high[1]], p0=[amp_f[1], mean_f[1],␣
↪→std_f[1], amp_f[2], mean_f[2], std_f[2]],␣
↪→sigma=df_fluorescence["del_clean"][peaks_f_low[1]:peaks_f_high[1]],␣
↪→absolute_sigma=True, maxfev=2000000)

x_fit_dg1_f = df_fluorescence["frequency"][peaks_f_low[1]:peaks_f_high[1]]
y_fit_dg1_f = doppelgaus(df_fluorescence["frequency"][peaks_f_low[1]:peaks_f_high[1]],␣

↪→*fit_dg1_f)
x_plot_dg1_f = np.linspace(ll_f_plot, ul_f_plot, 2000)
y_plot_dg1_f = doppelgaus(x_plot_dg1_f, *fit_dg1_f)

amp1_dg1_f = fit_dg1_f[0]
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del_amp1_dg1_f = np.sqrt(fitcov_dg1_f[0][0])
mean1_dg1_f = fit_dg1_f[1]
del_mean1_dg1_f = np.sqrt((fit_dg1_f[2]/np.

↪→sqrt(peaks_f_high[1]-peaks_f_low[1]))**2+del_peaks_abs_f**2)
amp2_dg1_f = fit_dg1_f[3]
del_amp2_dg1_f = np.sqrt(fitcov_dg1_f[3][3])
mean2_dg1_f = fit_dg1_f[4]
del_mean2_dg1_f = np.sqrt((fit_dg1_f[5]/np.

↪→sqrt(peaks_f_high[1]-peaks_f_low[1]))**2+del_peaks_abs_f**2)

#Peak 2
fit_g2_f, fitcov_g2_f = curve_fit(gaus, df_fluorescence["frequency"][peaks_f_low[2]:

↪→peaks_f_high[2]], df_fluorescence["clean"][peaks_f_low[2]:peaks_f_high[2]],␣
↪→p0=[amp_f[3], mean_f[3], std_f[3]], sigma=df_fluorescence["del_clean"][peaks_f_low[2]:
↪→peaks_f_high[2]], absolute_sigma=True, maxfev=2000000)

x_fit_g2_f = df_fluorescence["frequency"][peaks_f_low[2]:peaks_f_high[2]]
y_fit_g2_f = gaus(df_fluorescence["frequency"][peaks_f_low[2]:peaks_f_high[2]], *fit_g2_f)
x_plot_g2_f = np.linspace(ll_f_plot, ul_f_plot, 2000)
y_plot_g2_f = gaus(x_plot_g2_f, *fit_g2_f)

amp_g2_f = fit_g2_f[0]
del_amp_g2_f = np.sqrt(fitcov_g2_f[0][0])
mean_g2_f = fit_g2_f[1]
del_mean_g2_f = np.sqrt((fit_g2_f[2]/np.

↪→sqrt(peaks_f_high[2]-peaks_f_low[2]))**2+del_peaks_abs_f**2)

[ ]: #calculating reduced chi2 values
chi2red1_f = Chi2(df_fluorescence["clean"][peaks_f_low[0]:peaks_f_high[0]], y_fit_g1_f,␣

↪→df_fluorescence["del_clean"][peaks_f_low[0]:peaks_f_high[0]])/
↪→(peaks_f_high[0]-peaks_f_low[0]-3)

chi2red2_f = Chi2(df_fluorescence["clean"][peaks_f_low[1]:peaks_f_high[1]], y_fit_dg1_f,␣
↪→df_fluorescence["del_clean"][peaks_f_low[1]:peaks_f_high[1]])/
↪→(peaks_f_high[1]-peaks_f_low[1]-6)

chi2red3_f = Chi2(df_fluorescence["clean"][peaks_f_low[2]:peaks_f_high[2]], y_fit_g2_f,␣
↪→df_fluorescence["del_clean"][peaks_f_low[2]:peaks_f_high[2]])/
↪→(peaks_f_high[2]-peaks_f_low[2]-3)

[ ]: print("Amplitude for the 1.Peak:", amp_g1_f, "+-", del_amp_g1_f)
print("Mean for the 1.Peak:", mean_g1_f, "+-", del_mean_g1_f)
print("Reduced chi^2-value:", chi2red1_f, "\n")

print("Amplitude for the 2.Peak:", amp1_dg1_f, "+-", del_amp1_dg1_f)
print("Mean for the 2.Peak:", mean1_dg1_f, "+-", del_mean1_dg1_f)
print("Amplitude for the 3.Peak:", amp2_dg1_f, "+-", del_amp2_dg1_f)
print("Mean for the 3.Peak:", mean2_dg1_f, "+-", del_mean2_dg1_f)
print("Reduced chi^2-value:", chi2red2_f, "\n")

print("Amplitude for the 4.Peak:", amp_g2_f, "+-", del_amp_g2_f)
print("Mean for the 4.Peak:", mean_g2_f, "+-", del_mean_g2_f)
print("Reduced chi^2-value:", chi2red3_f, "\n")

[ ]: f_1 = 0
del_f_1 = np.sqrt(2)*del_mean_g1_f
f_2 = mean1_dg1_f - mean_g1_f
del_f_2 = np.sqrt(del_mean1_dg1_f**2 + del_mean_g1_f**2)
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f_3 = mean2_dg1_f - mean_g1_f
del_f_3 = np.sqrt(del_mean2_dg1_f**2 + del_mean_g1_f**2)
f_4 = mean_g2_f - mean_g1_f
del_f_4 = np.sqrt(del_mean_g2_f**2 + del_mean_g1_f**2)

rel_means_f = [f_1,f_2,f_3,f_4]
del_rel_means_f = [del_f_1,del_f_2,del_f_3,del_f_4]

for i in range(len(rel_means_f)):
print(f"{i+1}.Peak position relative to first peak:{rel_means_f[i]} +-␣

↪→{del_rel_means_f[i]}")

[ ]: plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["clean"][ll_f_id:
↪→ul_f_id], color="green", label="Data after underground subtraction")

plt.plot(x_plot_g1_f, y_plot_g1_f, label=f"{mean_g1_f:.2f} $\pm$ {del_mean_g1_f:.2f} MHz")
plt.plot(x_plot_dg1_f, y_plot_dg1_f, label=f"{mean1_dg1_f:.2f} $\pm$ {del_mean1_dg1_f:.2f}␣

↪→MHz\n{mean2_dg1_f:.2f} $\pm$ {del_mean2_dg1_f:.2f} MHz")
plt.plot(x_plot_g2_f, y_plot_g2_f, label=f"{mean_g2_f:.2f} $\pm$ {del_mean_g2_f:.2f} MHz")

for i in range(0,len(peaks_f_low)):
plt.axvline(df_fluorescence["frequency"][peaks_f_low[i]], ls="-", color='black')
plt.axvline(df_fluorescence["frequency"][peaks_f_high[i]], ls="-", color='black')

plt.xlim(ll_f_plot,ul_f_plot)
plt.grid()
plt.legend()
if saving == True:

plt.savefig(savepath + r"\fluorescence_fits.pdf", dpi=150, bbox_inches="tight")

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["FPI"][ll_f_id:

↪→ul_f_id], label="FPI signal")
for i in range(-moving_f, len(peaks_f)-moving_f):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_f, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_f, FSR*i+del_peaks_abs_f, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_f_plot,ul_f_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
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plt.plot(df_fluorescence["frequency"][ll_f_id:ul_f_id], df_fluorescence["clean"][ll_f_id:
↪→ul_f_id], color="green", label="Data after underground subtraction")

plt.plot(x_plot_g1_f, y_plot_g1_f, color="orange", label=f"Single Gaussian fluorescence␣
↪→peak fit")

plt.plot(x_plot_dg1_f, y_plot_dg1_f, color="blue", label=f"Double Gaussian fluorescence␣
↪→peak fit")

plt.plot(x_plot_g2_f, y_plot_g2_f, color="orange")

for i in range(0,len(peaks_f_low)):
plt.axvline(df_fluorescence["frequency"][peaks_f_low[i]], ls="-", color='black')
plt.axvline(df_fluorescence["frequency"][peaks_f_high[i]], ls="-", color='black')

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_f_plot,ul_f_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\fluorescence.pdf", dpi=150, bbox_inches="tight")

plt.show()

4.4.1 Abundance and hyperfine

[ ]: #abundance
abundance_f = (amp_g1_f+amp1_dg1_f)/(amp_g1_f+amp1_dg1_f+amp2_dg1_f)
del_abundance_f = np.sqrt(((amp2_dg1_f)/

↪→((amp_g1_f+amp1_dg1_f+amp2_dg1_f)**2))**2*del_amp_g1_f**2+(amp2_dg1_f/
↪→((amp_g1_f+amp1_dg1_f+amp2_dg1_f)**2))**2*del_amp1_dg1_f**2+((amp_g1_f+amp1_dg1_f)/
↪→((amp_g1_f+amp1_dg1_f+amp2_dg1_f)**2))**2*del_amp2_dg1_f**2)

abundance_f = (amp_g1_f+amp1_dg1_f)/(amp_g1_f+amp1_dg1_f+2*amp2_dg1_f)
del_abundance_f = np.sqrt(((2*amp2_dg1_f)/

↪→((amp_g1_f+amp1_dg1_f+2*amp2_dg1_f)**2))**2*del_amp_g1_f**2+(2*amp2_dg1_f/
↪→((amp_g1_f+amp1_dg1_f+2*amp2_dg1_f)**2))**2*del_amp1_dg1_f**2+(2*(amp_g1_f+amp1_dg1_f)/
↪→((amp_g1_f+amp1_dg1_f+2*amp2_dg1_f)**2))**2*del_amp2_dg1_f**2)

#hyperfine (85 not possible due to too low resolution)
hyper_f_87 = f_2/2
del_hyper_f_87 = np.sqrt((del_f_2/2)**2+(del_f_1/2)**2)

abundance_f, del_abundance_f, hyper_f_87, del_hyper_f_87

5 Saturation spectroscopy

[ ]: satur = r"\Week 2\saturation.csv"
saturation = path + satur
df_saturation = pd.read_csv(saturation,header=None, sep=";", skiprows=1, names=["Piezo",␣

↪→"PD", "FPI"], index_col=False)
df_saturation.iloc[:, :] = df_saturation.iloc[:, :] * 1000 #transform everything to mV
df_saturation["del_PD"] = 0.001*df_saturation["PD"]
df_saturation
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5.1 FPI calibration

[ ]: peaks_s, _ = find_peaks(df_saturation["FPI"], height=2.5, distance=50)
del_peaks_s = 2
difference_s = np.diff(peaks_s)

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_saturation.index, df_saturation["FPI"], label="FPI signal")
for i in range(0,len(peaks_s)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_s[i]-del_peaks_s, linestyle="dashed", color="red")
plt.axvline(peaks_s[i]+del_peaks_s, linestyle="dashed", color="red")
plt.axvspan(peaks_s[i]-del_peaks_s, peaks_s[i]+del_peaks_s, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_s[i], color="red")
plt.axvline(peaks_s[i]-del_peaks_s, linestyle="dashed", color="red")
plt.axvline(peaks_s[i]+del_peaks_s, linestyle="dashed", color="red")
plt.axvspan(peaks_s[i]-del_peaks_s, peaks_s[i]+del_peaks_s, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(0,df_saturation.index[-1])
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_saturation.index, df_saturation["PD"], color="green", label="Photodiode␣

↪→signal")
plt.grid()
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.xlim(0,df_saturation.index[-1])
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\FPI_peaks_s.pdf", dpi=150, bbox_inches="tight")

plt.show()

peaks_s, difference_s

[ ]: plt.plot(df_saturation.index, df_saturation["FPI"], label="FPI signal")
for i in range(0,len(peaks_s)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_s[i]-del_peaks_s, linestyle="dashed", color="red")
plt.axvline(peaks_s[i]+del_peaks_s, linestyle="dashed", color="red")
plt.axvspan(peaks_s[i]-del_peaks_s, peaks_s[i]+del_peaks_s, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots
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plt.axvline(peaks_s[i], color="red")
plt.axvline(peaks_s[i]-del_peaks_s, linestyle="dashed", color="red")
plt.axvline(peaks_s[i]+del_peaks_s, linestyle="dashed", color="red")
plt.axvspan(peaks_s[i]-del_peaks_s, peaks_s[i]+del_peaks_s, alpha=0.4,␣

↪→color="mistyrose")
plt.xlim(0,df_saturation.index[-1])
plt.xlabel("Channel")
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
if saving == True:

plt.savefig(savepath + r"\FPI_s.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: # Create the expected evenly spaced grid
expected_peaks_s = np.linspace(0, len(df_saturation), num=len(peaks_s))
# Interpolation function
interp_func_s = interp.interp1d(peaks_s, expected_peaks_s, kind='linear',␣

↪→fill_value="extrapolate")
# Generate corrected values
df_saturation["conversion"] = interp_func_s(df_saturation.index)
#look if everything is equally spaced now
equal_s = np.diff(df_saturation["conversion"][peaks_s])
#convert to frequency
del_peaks_abs_s = FSR*(del_peaks_s)/equal_s[0]

[ ]: #Calculate frequencies and move the 0 point to the third peak
df_saturation["frequency"] = FSR*(df_saturation["conversion"])/equal_s[0]
df_saturation

5.1.1 Defining limits for plots

[ ]: ll_s_plot = df_saturation["frequency"][0]
ul_s_plot = df_saturation["frequency"].iloc[-1]

5.2 Analysis

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_saturation["frequency"], df_saturation["FPI"], label="FPI signal")
for i in range(len(peaks_s)):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")

7 Attachment B

B.22



frame1.set_xticklabels([])
plt.xlim(ll_s_plot,ul_s_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_saturation["frequency"], df_saturation["PD"], color="green", label="Photodiode␣

↪→signal")
plt.grid()
plt.xlabel("Frequency difference to lowest FPI peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_s_plot,ul_s_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\saturation_freq.pdf", dpi=150, bbox_inches="tight")

plt.show()

5.3 Removing background

[ ]: low_s1 = df_saturation["frequency"][0]
high_s1 = 200
low_s2 = 3300
high_s2 = 4800
low_s3 = 9300
high_s3 = df_saturation["frequency"].iloc[-2]

low_s = [(df_saturation["frequency"] > low_s1).idxmax(), (df_saturation["frequency"] >␣
↪→low_s2).idxmax(), (df_saturation["frequency"] > low_s3).idxmax()]

high_s = [(df_saturation["frequency"] > high_s1).idxmax(), (df_saturation["frequency"] >␣
↪→high_s2).idxmax(), (df_saturation["frequency"] > high_s3).idxmax()]

[ ]: x_fit_s = np.concatenate([
df_saturation["frequency"][low_s[0]:high_s[0]],
df_saturation["frequency"][low_s[1]:high_s[1]],
df_saturation["frequency"][low_s[2]:high_s[2]]

])

y_fit_s = np.concatenate([
df_saturation["PD"][low_s[0]:high_s[0]],
df_saturation["PD"][low_s[1]:high_s[1]],
df_saturation["PD"][low_s[2]:high_s[2]]

])

del_y_fit_s = np.concatenate([
df_saturation["del_PD"][low_s[0]:high_s[0]],
df_saturation["del_PD"][low_s[1]:high_s[1]],
df_saturation["del_PD"][low_s[2]:high_s[2]]

])

bg_s, del_bg_s = curve_fit(gerade, x_fit_s, y_fit_s, sigma=del_y_fit_s,␣
↪→absolute_sigma=True)

x_values_s = np.linspace(low_s1, high_s3, 1000)
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fit_s = gerade(x_values_s, *bg_s)

df_saturation["clean"] = df_saturation["PD"]-(bg_s[0]*df_saturation["frequency"]+bg_s[1])
df_saturation["del_clean"] = np.sqrt(df_saturation["del_PD"]**2+(np.

↪→sqrt(del_bg_s[0][0])*df_saturation["frequency"])**2
+(bg_s[0]*del_peaks_abs_s)**2+del_bg_s[1][1])

fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_saturation["frequency"], df_saturation["FPI"], label="FPI signal")
for i in range(len(peaks_f)):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_s_plot,ul_s_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(x_values_s, fit_s, color="maroon", label="Linear underground fit")
for i in range(len(low_s)):

if i == 0:
plt.plot(df_saturation["frequency"][low_s[i]:high_s[i]],␣

↪→df_saturation["PD"][low_s[i]:high_s[i]], color="orange", label="Data for linear fit")
else:

plt.plot(df_saturation["frequency"][low_s[i]:high_s[i]],␣
↪→df_saturation["PD"][low_s[i]:high_s[i]], color="orange")

plt.plot(df_saturation["frequency"][high_s[0]:low_s[1]], df_saturation["PD"][high_s[0]:
↪→low_s[1]], color="green", label="Photodiode signal")

plt.plot(df_saturation["frequency"][high_s[1]:low_s[2]], df_saturation["PD"][high_s[1]:
↪→low_s[2]], color="green")

plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_s_plot,ul_s_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))
plt.grid()

if saving == True:
plt.savefig(savepath + r"\saturation_bg.pdf", dpi=150, bbox_inches="tight")
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plt.show()

5.4 Finding the peaks

[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_saturation["frequency"], df_saturation["FPI"], label="FPI signal")
for i in range(len(peaks_s)):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_s_plot,ul_s_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_saturation["frequency"], df_saturation["clean"], color="green", label="Data␣

↪→after underground subtraction")

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_s_plot,ul_s_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\saturation_clean.pdf", dpi=150, bbox_inches="tight")

plt.show()

[ ]: peaks_s_low = [760, 1580, 2310, 2480, 2660, 5380, 5520, 5700, 7600, 8420]
peaks_s_low = [(df_saturation["frequency"] > i).idxmax() for i in peaks_s_low]
peaks_s_high = [890, 1780, 2390, 2570, 2760, 5480, 5650, 5800, 7760, 8570]
peaks_s_high = [(df_saturation["frequency"] > i).idxmax() for i in peaks_s_high]
amp_s = [0.4, 0.4, .9, 1.5, 4, 0.1, 4, 1, 4, 0.4] # Amplitudes
mean_s = [840, 1680, 2360, 2550, 2715, 5400, 5580, 5750, 7680, 8500] # Means
std_s = [40]*10 # Standard deviations
offset_s = [-2.8, -1.1, -5.8, -4.8, -3.4, -2.2, -3, -2.5, 0.2, -0.2]
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[ ]: amplitudes_s = []
del_amplitudes_s = []
means_s = []
del_means_s = []
x_plot_s = []
y_plot_s = []
chi2red = []

for i in range(len(peaks_s_low)):
fit, fitcov = curve_fit(lorentz, df_saturation["frequency"][peaks_s_low[i]:

↪→peaks_s_high[i]], df_saturation["clean"][peaks_s_low[i]:peaks_s_high[i]], p0=[amp_s[i],␣
↪→mean_s[i], std_s[i], offset_s[i]], sigma=df_saturation["del_clean"][peaks_s_low[i]:
↪→peaks_s_high[i]], absolute_sigma=True, maxfev=2000000)

x_fit = df_saturation["frequency"][peaks_s_low[i]:peaks_s_high[i]]
y_fit = lorentz(df_saturation["frequency"][peaks_s_low[i]:peaks_s_high[i]], *fit)
x_plot_s.append(np.linspace(df_saturation["frequency"][peaks_s_low[i]]

,df_saturation["frequency"][peaks_s_high[i]], 2000))
y_plot_s.append(lorentz(np.linspace(df_saturation["frequency"][peaks_s_low[i]]

,df_saturation["frequency"][peaks_s_high[i]],␣
↪→2000), *fit))

amplitudes_s.append(fit[0])
del_amplitudes_s.append(np.sqrt(fitcov[0][0]))
means_s.append(fit[1])
del_means_s.append(np.sqrt((fit[2]/np.

↪→sqrt(peaks_s_high[i]-peaks_s_low[i]))**2+del_peaks_abs_s**2))
chi2 = Chi2(df_saturation["clean"][peaks_s_low[i]:peaks_s_high[i]], y_fit,␣

↪→df_saturation["del_clean"][peaks_s_low[i]:peaks_s_high[i]])/
↪→(peaks_s_high[i]-peaks_s_low[i]-4)

chi2red.append(chi2)

[ ]: for i in range(len(peaks_s_low)):
print(f"Amplitude for the {i+1}.Peak: {amplitudes_s[i]} +- {del_amplitudes_s[i]}")
print(f"Mean for the {i+1}.Peak: {means_s[i]} +- {del_means_s[i]}")
print(f"Reduced chi^2-value: {chi2red[i]}" "\n")

[ ]: rel_means_s = [i-means_s[0] for i in means_s]
del_rel_means_s = [np.sqrt(i**2 + del_means_s[0]**2) for i in del_means_s]

for i in range(len(peaks_s_low)):
print(f"{i+1}.Peak position relative to first peak: {rel_means_s[i]} +-␣

↪→{del_rel_means_s[i]}")

[ ]: plt.plot(df_saturation["frequency"], df_saturation["clean"], color="green", label="Data␣
↪→after underground subtraction")

for i in range(len(peaks_s_low)):
plt.plot(x_plot_s[i], y_plot_s[i], label=f"{means_s[i]:.2f} $\pm$ {del_means_s[i]:.2f}␣

↪→MHz")

plt.xlim(ll_s_plot,ul_s_plot)
plt.grid()
plt.legend()
if saving == True:

plt.savefig(savepath + r"\saturation_fits.pdf", dpi=150, bbox_inches="tight")

7 Attachment B

B.26



[ ]: fig1 = plt.figure()
#FPI plot
frame1=fig1.add_axes((0,.6,1,.4))
plt.plot(df_saturation["frequency"], df_saturation["FPI"], label="FPI signal")
for i in range(len(peaks_s)):

if i == 0:
plt.axvline(FSR*i, color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
else:

plt.axvline(FSR*i, color="red")
plt.axvline(FSR*i-del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvline(FSR*i+del_peaks_abs_s, linestyle="dashed", color="red")
plt.axvspan(FSR*i-del_peaks_abs_s, FSR*i+del_peaks_abs_s, alpha=0.4,␣

↪→color="mistyrose")
frame1.set_xticklabels([])
plt.xlim(ll_s_plot,ul_s_plot)
plt.ylabel("Amplitude [mV]")
plt.grid()
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -1.7))

#PD plot
frame2=fig1.add_axes((0,0,1,.6))
plt.plot(df_saturation["frequency"], df_saturation["clean"], color="green", label="Data␣

↪→after underground subtraction")

for i in range(len(peaks_s_low)):
if i == 0:

plt.plot(x_plot_s[i], y_plot_s[i], color="orange", label=f"Saturation peaks")
else:

plt.plot(x_plot_s[i], y_plot_s[i], color="orange")

plt.grid()
plt.xlabel("Frequency difference to lowest FPI Peak [MHz]")
plt.ylabel("Amplitude [mV]")
plt.xlim(ll_s_plot,ul_s_plot)
plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -0.25))

if saving == True:
plt.savefig(savepath + r"\saturation.pdf", dpi=150, bbox_inches="tight")

plt.show()

5.4.1 Abundance and hyperfine

[ ]: #abundance
abundance_s1 = amplitudes_s[0]/(amplitudes_s[0]+amplitudes_s[2])
del_abundance_s1 = 1/(amplitudes_s[0]+amplitudes_s[2])**2*np.

↪→sqrt(amplitudes_s[2]**2*del_amplitudes_s[0]**2+amplitudes_s[0]**2*del_amplitudes_s[2]**2)
abundance_s2 = amplitudes_s[1]/(amplitudes_s[1]+amplitudes_s[4])
del_abundance_s2 = 1/(amplitudes_s[1]+amplitudes_s[4])**2*np.

↪→sqrt(amplitudes_s[4]**2*del_amplitudes_s[1]**2+amplitudes_s[1]**2*del_amplitudes_s[4]**2)

7 Attachment B

B.27



abundance_s3 = amplitudes_s[8]/(amplitudes_s[5]+amplitudes_s[8])
del_abundance_s3 = 1/(amplitudes_s[5]+amplitudes_s[8])**2*np.

↪→sqrt(amplitudes_s[8]**2*del_amplitudes_s[5]**2+amplitudes_s[5]**2*del_amplitudes_s[8]**2)
abundance_s4 = amplitudes_s[9]/(amplitudes_s[7]+amplitudes_s[9])
del_abundance_s4 = 1/(amplitudes_s[7]+amplitudes_s[9])**2*np.

↪→sqrt(amplitudes_s[9]**2*del_amplitudes_s[7]**2+amplitudes_s[7]**2*del_amplitudes_s[9]**2)

#hyperfine
hyper_s1_87 = (means_s[1]-means_s[0])/2
del_hyper_s1_87 = np.sqrt((del_means_s[1]/2)**2+(del_means_s[0]/2)**2)
hyper_s2_87 = (means_s[9]-means_s[8])/2
del_hyper_s2_87 = np.sqrt((del_means_s[9]/2)**2+(del_means_s[8]/2)**2)
hyper_s1_85 = (means_s[4]-means_s[2])/3
del_hyper_s1_85 = np.sqrt((del_means_s[4]/3)**2+(del_means_s[2]/3)**2)
hyper_s2_85 = (means_s[7]-means_s[5])/3
del_hyper_s2_85 = np.sqrt((del_means_s[7]/3)**2+(del_means_s[5]/3)**2)

print(f"The abundances are {abundance_s1:.2f} +- {del_abundance_s1:.2f} and {abundance_s2:.
↪→2f} +- {del_abundance_s2:.2f}")

print(f"The abundances are {abundance_s3:.2f} +- {del_abundance_s3:.2f} and {abundance_s4:.
↪→2f} +- {del_abundance_s4:.2f}")

print(f"The hyperfine structure of 87Rb is {hyper_s1_87:.2f} +- {del_hyper_s1_87:.2f} and␣
↪→{hyper_s2_87:.2f} +- {del_hyper_s2_87:.2f}")

print(f"The hyperfine structure of 85Rb is {hyper_s1_85:.2f} +- {del_hyper_s1_85:.2f} and␣
↪→{hyper_s2_85:.2f} +- {del_hyper_s2_85:.2f}")

6 Comparison of the peaks

[ ]: text=["$^{87}$Rb$^{F=1}_{F=2}$", "$^{87}$Rb$^{F=2}_{F=2}$", "$^{85}$Rb$^{F=2}_{F=3}$",␣
↪→"$^{85}$Rb$^{F=3}_{F=3}$", "$^{85}$Rb$^{F=2}_{F=2}$", "$^{85}$Rb$^{F=3}_{F=2}$",␣
↪→"$^{87}$Rb$^{F=1}_{F=1}$", "$^{87}$Rb$^{F=2}_{F=1}$"]

fig, ax = plt.subplots(figsize=(16,12))

#Expectation
for i in range(len(MHz_lit)):

if i == 0:
ax.axvline(MHz_lit[i], linestyle="dashed", color="red", label="Expected $^{87}$Rb␣

↪→peaks")
ax.text(MHz_lit[i], .93, text[i], color='black', ha='center', va='bottom')

elif i==1 or i==6 or i==7:
ax.axvline(MHz_lit[i], linestyle="dashed", color="red")
ax.text(MHz_lit[i], .93, text[i], color='black', ha='center', va='bottom')

elif i == 3:
ax.axvline(MHz_lit[i], linestyle="dashed", color="green", label="Expected␣

↪→$^{85}$Rb peaks")
ax.text(MHz_lit[i], .97, text[i], color='black', ha='center', va='bottom')

elif i == 5:
ax.axvline(MHz_lit[i], linestyle="dashed", color="green")
ax.text(MHz_lit[i], .97, text[i], color='black', ha='center', va='bottom')

else:
ax.axvline(MHz_lit[i], linestyle="dashed", color="green")
ax.text(MHz_lit[i], .93, text[i], color='black', ha='center', va='bottom')
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#absorption
plt.errorbar(rel_means_a, [0.8] * len(rel_means_a), xerr=del_rel_means_a, marker="x",␣

↪→capsize=5, color="blue", linestyle="None", label="Absorption peaks")

#fluorescence
plt.errorbar(rel_means_f, [0.4] * len(rel_means_f), xerr=del_rel_means_f, marker="x",␣

↪→capsize=5, color="orange", linestyle="None", label="Fluorescence peaks")

#saturation
plt.errorbar(rel_means_s, [0.0] * len(rel_means_s), xerr=del_rel_means_s, marker="x",␣

↪→capsize=5, color="black", linestyle="None", label="Saturation peaks")

ax.set_yticklabels([])
ax.set_xlabel(f"Frequency difference to {text[0]} [MHz]")
ax.set_ylim(-0.1,.9)
ax.grid()

handles, labels = ax.get_legend_handles_labels()
custom_order = [2, 3, 4, 0, 1]
ax.legend([handles[i] for i in custom_order], [labels[i] for i in custom_order],

loc=9, ncol=2, bbox_to_anchor=(0.5, -0.1))

if saving == True:
plt.savefig(savepath + r"\comparison.pdf", dpi=150, bbox_inches="tight")

plt.show()

7 Frequency stability

[ ]: s1 = r"\Stability\s01.csv"
s1 = path + s1
df_s1 = pd.read_csv(s1,header=None, sep=",", skiprows=2, names=["X", "FPI", "AWG"],␣

↪→index_col=False)
df_s1.iloc[:, :] = df_s1.iloc[:, :] * 1000 #transform everything to mV

s2 = r"\Stability\s02.csv"
s2 = path + s2
df_s2 = pd.read_csv(s2,header=None, sep=",", skiprows=2, names=["X", "FPI", "AWG"],␣

↪→index_col=False)
df_s2.iloc[:, :] = df_s2.iloc[:, :] * 1000 #transform everything to mV

s3 = r"\Stability\s03.csv"
s3 = path + s3
df_s3 = pd.read_csv(s3,header=None, sep=",", skiprows=2, names=["X", "FPI", "AWG"],␣

↪→index_col=False)
df_s3.iloc[:, :] = df_s3.iloc[:, :] * 1000 #transform everything to mV

s4 = r"\Stability\s04.csv"
s4 = path + s4
df_s4 = pd.read_csv(s4,header=None, sep=",", skiprows=2, names=["X", "FPI", "AWG"],␣

↪→index_col=False)
df_s4.iloc[:, :] = df_s4.iloc[:, :] * 1000 #transform everything to mV
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[ ]: #plt.plot(df_s1.index, df_s1["AWG"]/200, label="AWG")
plt.plot(df_s1.index, df_s1["FPI"], label="FPI1")
#plt.plot(df_s2.index, df_s2["AWG"]/200, label="AWG")
plt.plot(df_s2.index, df_s2["FPI"], label="FPI2")
#plt.plot(df_s3.index, df_s3["AWG"]/200, label="AWG")
plt.plot(df_s3.index, df_s3["FPI"], label="FPI3")
#plt.plot(df_s4.index, df_s4["AWG"]/200, label="AWG")
plt.plot(df_s4.index, df_s4["FPI"], label="FPI4")

plt.title("Stability")
plt.ylabel("Amplitude [mV]")
plt.xlabel("Channel")
plt.legend()
plt.grid()

[ ]: peaks_s1, _ = find_peaks(df_s1["FPI"], height=9, distance=50)
difference_s1 = np.diff(peaks_s1)
peaks_s2, _ = find_peaks(df_s2["FPI"], height=9, distance=50)
difference_s2 = np.diff(peaks_s2)
peaks_s3, _ = find_peaks(df_s3["FPI"], height=9, distance=50)
difference_s3 = np.diff(peaks_s3)
peaks_s4, _ = find_peaks(df_s4["FPI"], height=9, distance=50)
difference_s4 = np.diff(peaks_s4)

[ ]: del_peaks_stab=3

[ ]: plt.plot(df_s1.index, df_s1["FPI"], label="FPI")
for i in range(len(peaks_s1)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s1[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_s1[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s1[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s1[i]-del_peaks_stab, peaks_s1[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_s1[i], color="red")
plt.axvline(peaks_s1[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s1[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s1[i]-del_peaks_stab, peaks_s1[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")

plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
plt.xlim(0,1200)
plt.ylabel("Amplitude [mV]")
plt.xlabel("Channel")
plt.grid()
if saving == True:

plt.savefig(savepath + r"\stab_1.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: plt.plot(df_s2.index, df_s2["FPI"], label="FPI")
for i in range(len(peaks_s2)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s2[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
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plt.axvline(peaks_s2[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s2[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s2[i]-del_peaks_stab, peaks_s2[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_s2[i], color="red")
plt.axvline(peaks_s2[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s2[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s2[i]-del_peaks_stab, peaks_s2[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")

plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
plt.xlim(0,1200)
plt.ylabel("Amplitude [mV]")
plt.xlabel("Channel")
plt.grid()
if saving == True:

plt.savefig(savepath + r"\stab_2.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: plt.plot(df_s3.index, df_s3["FPI"], label="FPI")
for i in range(len(peaks_s3)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s3[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_s3[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s3[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s3[i]-del_peaks_stab, peaks_s3[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

plt.axvline(peaks_s3[i], color="red")
plt.axvline(peaks_s3[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s3[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s3[i]-del_peaks_stab, peaks_s3[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")

plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
plt.xlim(0,1200)
plt.ylabel("Amplitude [mV]")
plt.xlabel("Channel")
plt.grid()
if saving == True:

plt.savefig(savepath + r"\stab_3.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: plt.plot(df_s4.index, df_s4["FPI"], label="FPI")
for i in range(len(peaks_s4)):

if i == 0: # Add label only for the first iteration
plt.axvline(peaks_s4[i], color="red", label="Estimated peak positions with␣

↪→uncertainties")
plt.axvline(peaks_s4[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s4[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s4[i]-del_peaks_stab, peaks_s4[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")
else: # No label for subsequent plots

7 Attachment B

B.31



plt.axvline(peaks_s4[i], color="red")
plt.axvline(peaks_s4[i]-del_peaks_stab, linestyle="dashed", color="red")
plt.axvline(peaks_s4[i]+del_peaks_stab, linestyle="dashed", color="red")
plt.axvspan(peaks_s4[i]-del_peaks_stab, peaks_s4[i]+del_peaks_stab, alpha=0.4,␣

↪→color="mistyrose")

plt.legend(loc=9, ncol=2, bbox_to_anchor=(0.5, -.1))
plt.xlim(0,1200)
plt.ylabel("Amplitude [mV]")
plt.xlabel("Channel")
plt.grid()
if saving == True:

plt.savefig(savepath + r"\stab_4.pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: difference_s1, difference_s2, difference_s3, difference_s4

[ ]: np.sqrt(2)*3

8 Beat Note

[ ]: set_freq = [0.1, 0.2, 0.3, 3, 16, 186, 240, 109, 69.420, 0.01]

[ ]: del_peak_beat = 0.01

[ ]: files = [r"\AOM_BeatNote\beat01.csv", r"\AOM_BeatNote\beat02.csv", r"\AOM_BeatNote\beat03.
↪→csv", r"\AOM_BeatNote\beat04.csv", r"\AOM_BeatNote\beat05.csv", r"\AOM_BeatNote\beat06.
↪→csv", r"\AOM_BeatNote\beat07.csv", r"\AOM_BeatNote\beat08.csv", r"\AOM_BeatNote\beat09.
↪→csv", r"\AOM_BeatNote\beat10.csv"]

beat_freq = []

for i in range(len(files)):
beats1 = path + files[i]
df_beat01 = pd.read_csv(beats1, header=None, sep=";", skiprows=1, names=["frequency",␣

↪→"PD"], index_col=False)
df_beat01["PD"] = df_beat01["PD"] * 1000 #transform to mV
peak_beat01, _ = find_peaks(df_beat01["PD"], height=0.0035, distance=50)
beat_freq.append(df_beat01["frequency"][peak_beat01[0]])

plt.plot(df_beat01["frequency"],df_beat01["PD"], label=f"Beat note measurement")
plt.axvline(df_beat01["frequency"][peak_beat01[0]], color="red", label="Estimated peak␣

↪→position with uncertainties")
plt.axvline(df_beat01["frequency"][peak_beat01[0]]-del_peak_beat, linestyle="dashed",␣

↪→color="red")
plt.axvline(df_beat01["frequency"][peak_beat01[0]]+del_peak_beat, linestyle="dashed",␣

↪→color="red")
plt.axvspan(df_beat01["frequency"][peak_beat01[0]]-del_peak_beat,␣

↪→df_beat01["frequency"][peak_beat01[0]]+del_peak_beat, alpha=0.4, color="mistyrose")
plt.xlim(df_beat01.frequency[0],df_beat01.frequency.iloc[-1])
plt.ylabel("Amplitude [mV]")
plt.xlabel("Frequency difference between the AOMs [KHz]")
plt.grid()
plt.legend()
if saving == True:
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plt.savefig(savepath + r"\beat_" + f"{i}" + r".pdf", dpi=150, bbox_inches="tight")
plt.show()

[ ]: beat_freq

[ ]: line_fit, line_fitcov = curve_fit(gerade, set_freq, beat_freq, sigma=[0.01]*len(set_freq),␣
↪→absolute_sigma=True)

x_values_line = np.linspace(-10, 260, 1000)
fit_line = gerade(x_values_line, *line_fit)
print(line_fit, np.diag(np.sqrt(line_fitcov)))

plt.plot(x_values_line, fit_line, label="Linear fit")
plt.errorbar(set_freq, beat_freq, yerr=[0.01]*len(set_freq), marker="x", markersize=12,␣

↪→capsize=8, linestyle="None", label="Beat note measurement")
plt.xlabel("Frequency difference between the AOMs [KHz]")
plt.ylabel("Beat note frequency [KHz]")
plt.grid()
plt.xlim(-10,260)
plt.legend()

if saving == True:
plt.savefig(savepath + r"\beat_line.pdf", dpi=150, bbox_inches="tight")

plt.show()
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8 Attachment C

8.1 Lab notes

Fig. 53: Lab notes, page 1
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Fig. 54: Lab notes, page 2
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Fig. 55: Lab notes, page 3
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Fig. 56: Lab notes, page 4
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Fig. 57: Lab notes, page 5
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