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1. Introduction

In the early 20" century emission and re-absorption of X-rays in gases had been observed.
The origin of the radiation are transitions of the orbital electrons. But the resonant
absorption of gamma-radiation of nuclear transitions could not be measured. It was
later found that the reason for this is the recoil of the nucleus due to the emission of the
high energetic photon due to which the photon looses energy and can not excite an atom
with the same transition. This was only solved when Rudolf Mo8bauer studied resonance
absorption in solids for his PhD in 1958. Since the transition lines get sharper at low
temperatures Mofbauer expected to measure even less resonant absorption for cooled
samples. To his surprise the probability of resonant absorption was increased compared
to the samples above room temperature. This was then explained by the reduced recoil
at low temperatures where crystals get stiffer and lattice vibrations are reduced. This
effect is named after Mol bauer who received the Nobel prize in physics for this discovery
in 1961.

In this experiment the Mofibauer effect is used to measure spectra of nuclear transition.
This kind of spectroscopy is called Mo3bauer spectroscopy which is performed here with
the 14.4keV transition of excited "Fe. The resonant transition line of stainless steel is
measured and the hyperfine structure of natural iron is determined. These spectra allow
the determination of the isomeric shifts of the absorber and the Debye-Waller factor of
the source. Furthermore a lower limit for the lifetime of the 14.4 keV state is found.



The Mof3bauer Effect 5

2. Theoretical Considerations

2.1. Gamma Radiation

The half life of ®’Co is (272.11 + 0.26)d [4]. The decay is induced via electron capture.
In this process an electron from an inner atomic shell (K or L) is captured by the nucleus
and a proton decays into a neutron and an electron neutrino:

p+e — n+ v,

In the shell the electron leaves a hole which is filled by an electron from an outer shell
which leads to the emission of X-ray photons or the Auger-Meitner effect. In the Auger-
Meitner effect the energy which is lost by the electron filling the hole is transferred to
another electron. With the additional energy this electron can get emitted. The decay
product of *’Co is *"Fe. The whole level scheme of the decay is shown in Figure 1.
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Fig. 1: Decay of 57Co into excited states of 5"Fe. The transition which is of special interest in
this experiment is from the first excited state at 14.39keV to the ground state with an half life
time of 98 ns [1].

Figure 1 displays that *’Co decays into excited states of *’Fe. The most important decay
channel, with a probability of 99.8 %, leads to the second excited level which has an
energy of 136.32keV and a half life time of 8.9ns. This decays further, either directly
or via the first excited state to the ground state. The first excited state has an energy
of approximately 14.4keV and a half life time of 98 ns and therefore a mean life time of
7 = 141 ns. The decay from the first excited state to the ground state is used in this
experiment for the Mofbauer spectroscopy.
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2.2. Interaction of Electromagnetic Radiation with Matter

There are three main processes, which are responsible for the interaction between electro-
magnetic radiation and matter [5]: the photoelectric effect, the Compton effect and pair
production. The energy ranges in which they occur and dominate are shown in Figure 2.
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Fig. 2: Energy ranges of interaction processes of photons with matter taken from [6]. At low
energies the photoelectric effect is dominant in the absorption process of photons. At larger
energies the Compton effect gets more prominent until the pair production takes over.

2.2.1. Photoelectric Effect

In the photoelectric effect, which was first explained by Albert Einstein in 1905 [7], a
photon transfers its total energy £, = hw to a shell electron. The energy of the excited
electron is

E.=E, — Eg,

with the binding energy Fg. If the energy of the photon is larger than the binding energy,
the electron is expelled from its orbit. The resulting hole is filled by an electron from an
outer shell under emission of a characteristic radiation or an Auger-Meitner electron.

2.2.2. Compton Effect

The Compton effect describes the inelastic scattering of a photon with a free or weak
bound electron [8]. The photon transfers a part of its energy to the electron which
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changes the movement directions of both photon and electron and thus also their energy.
In this experiment the Compton effect occurs for photons with 122keV, 136.32keV and
14.4keV, since these are mainly produced in the used source (see Figure 1). The photons
with higher energies are shifted down by Compton scattering into the range of the 14.4 keV
photons, which distorts the measured rates at that energy. Due to the energy dependent
attenuation of photons in materials like aluminium [1], a double exponential decay in
the counting rate is expected, when gradually shielding a detector with aluminium. This
behaviour will be used to determine the Compton background in this experiment (see
Section 4.4).

2.2.3. Pair Production

Photons with at least two times the resting energy of an electron can lead to pair produc-
tion, the creation of electron-positron pairs, in the field of a nucleus. This process only
occurs for photons with energies larger than 1022 MeV, which is two times the resting
mass of an electron or a positron (511keV). Since positrons are meta-stable particles
they annihilate again with an electron under the emission of at least two photons.

2.2.4. Attenuation of Gamma Radiation by Acrylic Glass

In this experiment the interaction of gamma radiation with acrylic glass is of special
interest. How well the glass transmits the radiation can be quantified by either the
transmission factor 7' or the mass-attenuation coefficient p/p. They are connected as
stated in [9] by

T:exp{—ﬁpd}, (1)

with the density of acrylic glass p and its thickness d. By rearranging this the mass-
attenuation coefficient is gained

1

= —ln(T)ﬁ.

(2)

ESERS

2.3. Linewidth of Gamma Radiation

All emission and absorption lines of nuclear transitions have a natural line width, the
full width at half maximum of

h

1—‘nat =
T

with the lifetime 7 and the reduced Planck constant A. This follows from Heisenberg’s
uncertainty relation which states that energy and time of a quantum object can only be
determined up to some uncertainty

AFEAt > h.

For the analyzed transition of 'Fe with an energy of 14.4keV, this leads to a relative
linewidth of Ty /E, &~ 3-107' [10]. This small size makes it difficult to measure
resonance absorption (see Section 2.4).
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2.4. Nuclear Resonance Absorption

A photon which is emitted by a nuclear transition with energy FE, can be reabsorbed
by another nucleus, which is excited in this process. This is called nuclear resonance
absorption. Photons which are emitted by free atoms do not hold the whole energy FEj,
since the nucleus receives a recoil energy. Thus FEj is reduced by
E? v
AE=_— _E -2 (3)

2mc? c

with the photon energy £, the mass m of the atom and v; the thermal velocity. The
first term is the recoil energy E,. The second term with vy = py/m results from the
thermal movement with the momentum in the direction of the emission p; and describes
the energy shift due to the Doppler effect.

For the 14.4keéV transition in *'Fe the recoil energy is E, ~ 2-107%¢eV. This is sev-
eral orders of magnitude larger than the natural linewidth of the transition with ', =
4.7-107%eV [10]. If the distribution of v; is broad enough the recoil energy is compen-
sated, with some probability. By cooling the atoms the distribution of v, is shifted to
smaller velocities and thus the probability to achieve resonance absorption is reduced.

2.5. Mof3bauer Effect

The recoilless emission and absorption of gamma radiation by nuclei is called Mo8bauer
effect. This can only occur in atoms which are bound in solids, since their mass m is big
enough to reduce the recoil energy drastically. Since the number of atoms in a lattice
is in the range of 10?3, the energy, which is gained by each atom, can be neglected in
comparison to the natural linewidth of nuclear transitions. For 1mol of ®'Fe the recoil
energy for the absorption/emission of a 14.4 keV-photon is approximately 3 - 10727 eV and
thus negligible compared to the natural linewidth I'j,; ~ 4.7 neV.

This recoilless emission of photons is used in the experiment for the MofSbauer spec-
troscopy. By using Equation 3 and the excitation energy of the nucleus Ey with AE =
Ey — E., and with no recoil energy,

Fo=E, (1 - “) (4)

c

is obtained, the classical limit v < ¢ of the Doppler effect. With this equation Ej is
determined by moving the absorber with a velocity v towards the source or away from it.
By using different velocities the intensity of the transmitted light changes. This gives the
profile of the gamma-lines. For the 14.4 keV—line the M&fbauer effect allows a resolution
of 1 in 10'2 which is approximately the size of one sheet of paper on the distance between
the earth and the sun [11].

2.5.1. Excitation of Phonons

The small recoil can be absorbed by the crystal as lattice vibrations, since the structure
of the lattice becomes less rigid at increasing temperatures. Only at 0 K the atoms would
form a stiff lattice. For small deviations from the resting position of the lattice points the
interaction potential can be approximated as harmonic. Under a quantum mechanical
view such a system with N atoms can only occupy discrete total energies

E, = 3Nhw <<n> + ;) ,
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by so called phonons (for more detail see i.e., [12] or [13]). With no further assumptions
the phonon spectrum can only be approximated for very high and very low temperatures.
In order to determine the spectrum more easily some models exist. The most prominent
are the models by Einstein and Debye which will be outlined in the following paragraphs.

In the Einstein model the atoms are assumed to oscillate all with the same frequency
wg. Due to this single photons have an energy of £ = hwg which is also the only allowed
recoil energy.

In the Debye model the frequency is proportional to the crystals momentum
ws = vk,

with the speed of sound vs and the wave number k. This leads to a continuous spectrum
up to the Debye frequency wp. Via thermal energy a temperature can be associated to
this frequency

th

Op = —,
D e
with the Boltzmann constant kg. This temperature is in the order of 102K.

2.5.2. Debye-Waller Factor

The fraction of recoilless nuclear transitions is called the Debye-Waller factor f. This
quantity indicates the relative amount of photons, which are emitted from the nucleus
with no recoil.

In the Debye model, this fraction of recoilless nuclear transitions can be expressed by

fee 3E, m AT? /@D/T xdx
— ex —
P 2kpOp 03 Jo e —1/ [’

as described in [10]. If T' < ©Op, the integral can be approximated to

N E, 3  7wT?
f”eXp{ k50p <2+ ez )}

This function is illustrated in Figure 3 for two transitions in dependence of the tem-
perature T, with set Debye temperatures ©p. The 134keV transition of ®"Re and the
14.4keV transition of *"Fe, which is utilized in this experiment are displayed.

The relevance of the 14.4keV transition in °"Fe for Méfbauer spectroscopy can be seen,
as *"Fe shows a recoilless transition probability of 91 % [10] at room temperature. Using
this transition as a source in a Mofibauer spectrometer ensures that no complex cooling
is required, making the spectrometer smaller, lighter and cheaper. Because of this a *"Co
source was used for the MIMOS IT MoBbauer spectrometers for the Mars Exploration
Rovers Spirit and Opportunity, for close-up investigations of the martian surface. The
whole unit weights only around 500 g [14].
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Fig. 3: Debye-Waller factor for the 134keV transition of '8"Re and the 14.4keV transition of
5"Fe taken from [1].

2.6. Isomeric Shift

The exact positions of the energy levels of a nucleus depend on the surrounding charge
distribution. In a solid the charge distribution around a nucleus is mainly the result of
the electrons in the shell of the nucleus.

If the charge distributions of the source and the absorber are identical, the spectrum
is distributed symmetrically around v = Oms~! in a MoBbauer spectrum. If different
materials are used with different charge distributions, the whole spectrum is shifted to a
velocity v # 0.

Additionally, the first excited state of °"Fe has a different spin configuration than the
ground state which also leads to an isomeric shift at the transitions.

2.7. Hyperfine Splitting

A magnetic field in vicinity to the nucleus, which can be induced by the movement of
electrons in an atom, lifts degeneracies of nuclear states. The resulting energy level
structure is called hyperfine structure. The state with nuclear spin [ is split into several
lines which are shifted by the energy

g

E =
I

B,

where p is the nuclear magnetic moment of the state, m; the magnetic quantum number
and B the current magnetic field. Exemplary, Figure 4 shows the hyperfine structure of
"Fe. In the figure the ground state is labeled with I and the excited state with I*.
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Fig. 4: Hyperfine structure of 5"Fe from [15]. Shown is the ground state I = 1/2, which is split
to my, = +£1/2, and the first excited state I* = 3/2, which splits into mp = +3/2, £1/2, if a
magnetic field is present near the nucleus.

The ground state I, = 1/2 is split into the two energy levels, corresponding to the
magnetic quantum numbers m;, = £1/2. The first excited state I, = 3/2 splits into
my, = £3/2, £1/2. From the selection rules Am; = 0, £1, six allowed transitions and
thus six absorption lines follow. In this experiment such splitting will be observed in the
measurement with a natural iron absorber. The M&fbauer spectrum of a stainless steel
absorber only shows one line since here the spin correlation time 7 is small enough to
satisfy 7A/h < 1, with the hyperfine coupling constant A which gives the spectral line
spacing of a nucleus [16].

The transition energies are shifted compared to those of a free nucleus by

AE = By, + | Mele KM g
I, 1.

with the isomeric shift Ery,, pig/. the nuclear magnetic moments and I, the nuclear
spins with their magnetic quantum numbers my, 7, for the ground and excited state.
The hyperfine splitting is

Mgty HeTl ],
E— 5 . B. 5
() ®

Table 1 lists the allowed hyperfine transitions of *’Fe. It also shows the corresponding
quantum numbers and E/B, determined by Equation 5.
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Trans. my, my, E/B
U2 32 pe—p
/212 -
1/20 1/2 =5 pe — fug
12 /2 Lot g
1/2 1/2 =5 pte + pg
1/2 3/2  —pe+ pig
Tab. 1: Allowed hyperfine transitions of 5Fe. my, is the magnetic quantum number of the

ground state and mj, of the excited state. The final column lists Equation 5 rearranged and
evaluated for I, = 1/2, I, = 3/2 and the indicated mj.

S Ot = W N

2.8. Gaussian, Lorentz and Voigt Functions

By fitting a Gaussian, a Lorentz and the convolution of both, also called a Voigt function
onto a Mo3bauer spectrum, different properties can be obtained. Choosing one over
the other has different reasons. From the theory of atomic decay, a Lorentz (also called
Cauchy) function is expected, due to it being the solution to a damped harmonic oscillator
differential equation. Different effects induce additional homogeneous and inhomogeneous
broadening of the linewidth like statistical fluctuations of the velocity of the sledge or
temperature dependent lattice vibrations.

A Voigt function is a convolution of a Gaussian and a Lorentz function

froi(@) = (G L)) = [ G()L( —7) dr,

but since this integral cannot be solved analytically, numerous different numerical ap-
proaches are possible. For example a superposition with a shaping parameter is called
a pseudo-Voigt profile and was commonly used in the beginning of the age of comput-
ers [17]. Nowadays higher performing computers are available to the masses and new
methods have been developed. One of the most common ways to obtain a Voigt func-
tion is by evaluating the real part of the Faddeeva function F. In the analysis of this
experiment, the following functions or sixfold versions of them are used as fit functions

A T — 1\ 2
fGaussian(I) - _\/%O' €Xp {_05 <0_lu) } + Ba

A gl
orentz = T N9 . o Ba
Frorna®) == G e

A T — vy
fV01gt($)_ \/%U Re{f< \/ég >}+B
All three function have a position parameter u, which indicates the position of a peak,
an pseudo-amplitude factor A and an offset parameter B. Note that A is not the actual
amplitude of the function, but a factor either divided by 7w or v/27wo. Additionally the
functions have width parameters o, v or both in the case of the Voigt function. Since the
Voigt function has two width parameters, it is difficult to correctly distribute the actual
width of a peak. Physically the parameter ¢ originating from the Gaussian function de-
scribes all processes, which cause a homogeneous linewidth broadening. The parameter
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~ mostly describes the actual physical decay width, but also includes all inhomogeneous
broadening effects. Without intrinsic information about the broadening effects, a fitting
algorithm cannot accurately attribute the total width to the two width parameters.
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3. Setup and Conduction of the Experiment

3.1. Setup

The setup used in this experiment is shown in Figure 5.
Photomultiplier, Mountin
Preamplifier _ for Al g Absorber/

o Sample
\ Scintillator / 57Co.Source in
l ,a shielded box

| Amplifier j— Delay |—Linear Gate— MCA |— PC |

Uni ouT Enable
ouT
Counter
~ | right
SCA <] Counter
Pos OUT Counter
left

Fig. 5: Schematic setup of the experiment. The sample which is to be analyzed is mounted on
a sledge that moves in one dimension.

The 5"Co source is placed inside a shielded box with a narrow opening, which directs
the radiation towards the mounting in which a sample can be placed. The mounting can
be moved with a motor in a velocity range from 0.01mms—! to 10mm s, towards or
away from the source. It is controlled with a computer. The photons are detected by a
thallium doped Nal scintillator with an optically coupled photomultiplier tube, which is
operated with high bias voltages. In front of the detector there is a mount, which is used
to hold aluminum plates for the measurement of the Compton background. The signal
from the photomultiplier tube is amplified by a preamplifier. The signal gets further
amplified and shaped by the mainamplifier. The unipolar output of this amplifier is
split. One signal pathway is delayed by a delay unit for 3.25ps and then fed into the
input of a linear gate. The other signal is sent into a single channel analyzer (SCA) for
discrimination. The output of the SCA is a logical yes which is emitted if the incoming
signal is in a specified energy range. The signal of the SCA is used to count the number
of signals directly via a counter, which is connected to the computer. The SCA signal is
also used to enable the linear gate to let the delayed signal pass on to a multi channel
analyzer (MCA). The MCA sorts the signals into channels, according to their intensity,
which can be linked to the energy of the incident photon causing the signal. This energy
spectrum is also measured in the computer.

Photon Detection

In this section the two core components of the setup, which are used to detect photons,
the scintillator and the photomultiplier, are described in more detail.

A scintillator is a material, which exhibits scintillating properties, when irradiated with
ionizing radiation. Incident photons excite the atoms of the scintillator which decay with
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the emission of lower energy photons. Those photons are then detected with a photomul-
tiplier tube PMT (or a photodiode, or a silicon based photomultiplier SiPM) optically
coupled to the scintillator. Since often the scintillator and the PMT have a different
geometry (i.e., cross section area, circle or square) a light guard is needed to guard the
photons onto the detection surface of the PMT. Once a photon hits the photocathode
of the PMT electrons are emitted due to the photoeffect. The electrons are accelerated
by a bias voltage towards the first dynode. When they hit the first dynode secondary
electrons are emitted which again are accelerated towards the next dynode by an higher
bias voltage. This leads to an avalanche of electrons until the current is strong enough
to be measured. This signal can then be related to the number of incident photons and
their energy.

Scintillators are available in a variety of different shapes, materials and states of aggre-
gation. They can be divided into organic or inorganic materials and gasses, liquids or
solids. All show different characteristic behaviours with regard to their energy dependent
resolution, linearity, time dependency, light yield, etc. The most common scintillators
are Nal-crystals, which are also used in this experiment.

Obviously scintillators must be transparent to their own resonant photon-energies, which
poses a technical difficulty. This problem can be solved by doping a different material
into the crystals. In the case of Nal-crystals mostly thallium (TI) is used to activate
the crystals. It introduces energy levels, which lie closely below the conduction band of
the Nal-crystal and above the valence band. Excited atoms can decay onto those levels
non-radiatively and then decay via emission of photons with an energy lower than the
resonance energy of the Nal atoms. This doping can also be used to shift the energy
of the scintillation photons into a frequency range, which coincides with the maximum
sensitivity of the photomultiplier tubes. For most PMTs this is in the range of visible
light, with a tendency to blue and ultraviolet.

There are many factors which have an influence on the statistics and resolutions. The
energy resolution is directly proportional to the number of photons produced in the
scintillator. The so called light yield L is defined as the number of photons emitted,
when an incident particle looses a specific energy F in a certain length = of the crystal

dE  dL

dr < dr
One would assume a Poisson distribution for this behaviour, which is mostly true. With
this assumption it is easy to see, that materials that have a high light yield must have a
high energy resolution. To reconstruct the energy of the incident particle correctly, the
particle must loose all of its energy in the detection crystal. If that is the case, “the naive
assumption of Poisson statistics is incorrect”, but it can be corrected for by introducing
the Fano factor F'. When the incident particle looses all of its energy in the crystal, the
scintillation events are not independent of one another, since a definite number of energy
is deposited and not a fluctuation amount, in the case of a particle only passing through
the detector. The Fano factor describes this behaviour. It is material dependent and
can be experimentally determined. For Nal it is approximately 1. In general the energy

TQuote from William R. Leo in [18].
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dependent resolution R of a scintillator is calculated with

where AFE, identified as the full width at half maximum of a peak is divided by its energy.
With the relation between the FWHM of a Gaussian and its standard deviation ¢ and
J = E/w, the number of ionizations, with F the deposited energy in the detector and w
the mean energy required to ionize the material, the resolution results in

R—2357—235U

with the Fano factor F. In general a high light yield is wanted, since it increases the
energy resolution of the detector. As described, the scintillator is optically coupled to a
light guard, which has a collection and transmission efficiency, which feeds the photons
into the PMT, which has a quantum efficiency. All this attributes to a loss in photons
and therefore resolution.

3.2. Conduction
Assembly of the Setup

The setup was assembled as shown in Figure 5 and as described by the instructions [1].
To check for a proper signal pathway, the signals were displayed with an oscilloscope
after each electronic component and compared with the expected curve forms from [1].
The amplification factor, shaping time and delays were adjusted.

Calibration of the MCA

To calibrate the used MCA an **'Am source with a rotatable target wheel was used.
With the wheel, different materials (Rb, Mo, Ag, Ba and Tb) with known literature
values for their respective K, decay energies were placed directly in front of the source.
The scintillator was then used to obtain the different energy spectra.

A quick preliminary evaluation was performed to find a linear channel-energy relation to
identify the 14.4keV peak of the 5"Co source. With this the SCA-discriminator window
is set for the rest of the experiment, such that only photons in the energy range of the
peak width are detected.

Compton Background

To obtain the background counting rate caused by Compton scattering in the absorber
material and the surrounding polymethyl methacrylate (acrylic/plexi glass) casing, alu-
minium shielding with gradually increasing widths were inserted in front of the detector
and the counting rates were measured. This was performed for the two absorber mate-
rials used in this experiment to check, whether both yield the same amount of Compton
scattering or not. The sledge was at rest. By fitting a double exponential function
onto the data and extrapolating to a shielding width of 0 mm, the Compton background
counting rate is obtained and used to correct the measured counting rates in the rest of
the experiment.
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Attenuation of Gamma Radiation by Acrylic Glass

To obtain the attenuation of the photons passing through the acrylic glass casing, the
counting rates with and without acrylic glass in the radiations path were measured. Also
the theoretical expected attenuation was calculated. The measured attenuation coeffi-
cient is then used to correct the measured counting rates in the rest of the experiment.

Sledge Velocity

In order to check, whether the velocity of the sledge is in agreement with the velocity
set on the computer, different velocities were determined. This was done by measuring
the time and distance the sledge moved at preset velocities. For this a stopwatch and a
standard ruler were used.

Mof3bauer Spectroscopy

Two different absorber materials were investigated. A stainless steel and natural iron
absorber. They were separately placed on the sledge. In the used LabView software,
start, stop and step velocity, as well as measuring time were adjusted. With this the
counting rates at different velocities were measured and MoBbauer spectra obtained.
From the absorption spectra different properties like the isomeric shift, the Debye-Waller
factor and the lifetime 7 of the excited states are calculated.
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4. Analysis

4.1. Uncertainty Considerations

In the following the uncertainties on measured counts N are calculated with sy = VN ,
since counts follow a Poisson distribution. For comparability reasons, counts are always
converted into counting rates or simply rates, N = N /t. This means, that counts are
normalized with their respective measurement time ¢ to 1s. Their uncertainties are cal-
culated as sy = V/N/t. When measuring the counts of the same process in different
measurement series, the additive behaviour of Poisson distributed values is used, i.e., the
counts and measurement times are simply summed up.

When multiple values for the same quantity are measured or calculated, the weighted
mean is calculated with the inverse square of the uncertainties as the weights for each
value.

Values obtained directly from fitting functions with the weighted least square reduction
method onto measured data posses uncertainties, which are derived from the square root
of their respective diagonal element in the covariance matrix.

As a quantification of the quality of a fit, the reduced chi-square statistic x2 is used, in
which a value in close proximity to 1 indicates a good fit of data to the model-function.
If necessary a residual plot, which shows the deviations from the data to the fit function
value, is given to further show the quality of the fit.

Using equations which contain values with uncertainties, standard Gaussian error propa-
gation is applied. For most propagations the exact formula is not stated due to triviality
and are left for the reader as an exercise. The propagations follow Equation 16 for not
correlated and Equation 17 for correlated parameters, displayed in the appendix. The
propagations of more complex functions are explicitly stated.

Sometimes values are obtained by projecting/marking an z-value in a plot and reading
off the y-value. Here the uncertainties of the x-value are also projected onto the y-axis
in the same manner. An example of this is Figure 14 or Figure 17. To avoid asymmetric
uncertainties always the bigger resulting uncertainty is used as the symmetric standard
deviation statistic o. To obtain values this way, the graph is loaded into Inkscape to
draw rectangular lines and the pixel coordinate system is used to determine the resulting
values. This method yields read-off uncertainties always smaller than the linewidths of
the used graphs. Therefore no read-off uncertainties are taken into account and only
projected or uncertainties caused by linewidths are used.

4.2. Setup Check

First every component in the signals pathway is considered and its in and outputs dis-
played on an oscilloscope. Here only the most important signals will be discussed.

Figure 7 shows the output signal of the preamplifier. Its exponential decay is expected,
since it originates from the discharge of a capacitor. The signal is then amplified by an
amplifier. Its unipolar output is split. One signal is delayed by 3.25 ps with a delay unit.
The signals before and after the delay unit are shown in Figure 7. As expected the output
signal of the amplifier is of Gaussian shape, since the amplifier not only amplifies, but also
shapes the signals with an adjustable shaping time. The other unipolar output signal of
the amplifier is processed by the SCA. As can be seen in Figure 8, the SCA output signal
is a logical yes of rectangular shape and predefined height and duration. It is emitted if
the intensity of the incoming signal is of a defined height. The signal of the SCA opens
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the linear gate which then lets the delayed amplifier signal pass through. This is shown
in Figure 9. The delayed signal is cut at both sides, which is caused by the linear gate
opening and closing. However, this is not a problem, as the peak lies inside this window
and the loss in integrated intensity will be corrected for anyway by the calibration of the
MCA. Since the linear gate opens in such a way that the delayed unipolar signal passes,
the delay is chosen well and the setup can be used for measurements.

Preamplifier Delay
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Fig. 6: Output signal of the preamplifier. The Fig. 7: The signal of the amplifier (blue) is de-
exponential decay is caused by the output of layed by the delay unit (orange) by 3.25 ps.
the photomultiplier after detection of one or

more photons.
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Fig. 8: The output signal of the amplifier (blue) Fig. 9: The delayed signal of the amplifier (or-
triggers a logical yes as an output signal of the ange) passes the linear gate which is opened by
SCA (green). the logical yes signal of the SCA (green).

4.3. Calibration of the MCA

As described in Section 3.2, different materials with known transition energies are placed
in front of an **'Am source and their spectra are recorded to calibrate the used MCA.
The measured spectra are displayed in the appendix in Figure 20—24.

To acquire the positions of the K, decay peaks, for which the energy values are listed in
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the instructions [1], they are fitted with Gaussian functions of the form

f(z) = \/;M exp {—0.5 (“’;“)2} LB,

with A the amplitude, B the offset, p the position and ¢ the width fit parameter. The
parameters for each spectrum are displayed in the appendix in Table 14.

The parameters p are used as the positions and the width of the peaks o as their un-
certainties in the unit of channels. Comparing these with the known energy values a
linear relation between the two is found, displayed and fitted with a linear function in
Figure 10.

Energy-Channel calibration
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Fig. 10: Calibration of channel and energy. The black points are the K, peaks obtained from
Gaussian fits in Figure 20—24. The red point indicates the 14.4keV peak obtained from a
Gaussian fit onto the peak in the ®’Co source spectrum displayed in Figure 11. The energy
value is set to 14.4 keV, while the channel value is the position parameter from the fit with the
width parameter as its uncertainty.

The calibration function is found to be
f(E)=(1884+04)keV™'- E+ (1.2£0.9). (6)

With this the 14.4keV peak in the source spectrum can be identified as shown in Fig-
ure 11.
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Fig. 11: Spectrum of the used ®’Co source. Fig. 12: Effect of the set SCA window on
The red Gaussian does not indicate the set the 57Co source spectrum. Only photons in
window of the SCA, but the data used for the the energy region of the 14.4keV peak are let
fit. The fit parameters are stated in Table 14  through the linear gate.

in the appendix.

With Equation 6 rearranged the fitted peak in Figure 11 has an energy of (13.9 & 1.3) keV,
which lies within < 1o to the expected value of 14.4keV [1]. It holds a relative uncer-
tainty of 9.4 %, which is caused by the detectors resolution.

The SCA-discriminator window is set accordingly to the identified peak for the rest of the
experiment so that only photons in the range of the 14.4keV peak width are measured.
The effect of the set window is shown in Figure 12.

The red data point in Figure 10 indicates the channel position of the 14.4keV peak ob-
tained from the Gaussian fit in Figure 11. The point lies within 1 ¢ to the value expected
from the calibration indicated by the straight line and is therefore in good agreement.

Additionally to the fit parameters, Table 14 also shows the energy dependent resolution
of the detector calculated with o/ [19]. All values are in the order of 10 %, which is
typical for such a scintillator in the energy region of keV [19]. The resolution depends
on the set shaping time, noise in the used electronics and also the temperature of the
scintillation crystal. The resolution shows that the method of Mofbauer spectroscopy is
an incredible useful tool, as it can resolve 1 in 10'? [11] for the studied 14.4 keV transition
with the same scintillation crystal.

4.4. Compton Background

The measured counting rates for the Mofbauer spectra have to be corrected for back-
ground events. The most dominant contribution results from Compton scattering of the
122keV and 136 keV photons from the Cobalt source, which lose energy in the absorber
and especially in the acrylic glass casing around the absorber. Their energies are shifted
down into the SCA energy-window and distort the measured rates. Therefore measure-
ments have to be performed to quantify the additional counting rates caused by Compton
scattering and correct all measured rates.

For this aluminium plates with increasing thickness d are used as shielding in front of the
detector. From the instructions [1] it is known that aluminium has a higher transmission
for the 122keV and 136 keV photons than the 14.4 keV photons. The aluminium absorbs
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nearly all of the 14.4keV photons with sufficient shielding thickness and therefore all
measured photons are assumed to be Compton-shifted.

From the theory of Compton scattering it is expected, that most of the Compton scat-
tering is caused by the absorber materials. If the absorber and the acrylic glass would be
of the same thickness, the denser absorber material with an higher atomic number would
be the main cause of Compton scattering. But since the absorber material only has a
thickness of around 1.3 % the size of the acrylic glass, the acrylic glass is assumed to yield
the most dominant contribution to the Compton background rate. To study if there is
a difference between the two materials, two identical measurements were performed, one
for the stainless steel (S) and one for the natural iron (N) absorber. A subsequent mea-
surement using only acrylic glass was not performed due to time constraints, but would
have been interesting, as it could confirm that the acrylic glass is the main cause of the
Compton background rate. However, this is not crucial for our measurements, since the
Compton background is determined with the absorber materials and the acrylic glass
together, so even if the materials would provide a significant contribution, it would be
included in the measured values.

The counting rates with increasing shielding width d for the stainless steel absorber is
shown in Figure 13 and the natural iron absorber is displayed in the appendix in Fig-
ure 27.

Stainless steel absorber
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Fig. 13: Counting rate in dependence of the aluminium shielding thickness d for the stainless
steel absorber. The red curve shows the double exponential fit, while the green curve indicates
the extrapolation of the exponential decay, caused by the high energetic photons to no shielding,
which is identified as the Compton background rate.

From the theory a double exponential decay is expected and therefore a function of the
form

N(z) = A-exp (az) + B - exp (bx)
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is fitted onto the data. The optimal fit parameters are listed in Table 15 in the appendix.
The first exponential decay describes the attenuation of the low energetic photons and
the second describes the high energetic photons. The second exponential decay is extrap-
olated to a thickness of 0 mm shielding. This corresponds to the fit parameter B. In this
way the background rates with no shielding, caused by the high energetic photons, which
are shifted down by Compton scattering into the set energy region, are determined to be

Né?))mpton = (208 - 02) S_l,
. gjznpton - (202 + 02) S_l.

Since both values deviate only by 2.1 0 with relative uncertainties smaller 1% and no
significant deviation caused by the different materials is expected from theoretical con-
siderations the mean of both values is calculated

Neompton = (20.5 £ 0.3)s7!

and used in the following evaluations to correct measured counting rates.

Extrapolating the exponential decay of the 14.4keV counting rate yields that for the
stainless steel absorber the counting rate drops to around 0.1 s~ with ~ 1.7 mm shielding.
After ~ 3.3 mm it drops to around 0.001s~!. This validates the chosen shielding thickness
range, as it suffices to describe the attenuation of the high energetic photons.

4.5. Attenuation of Gamma Radiation by Acrylic Glass

The absorber materials are encased by acrylic glass of ~ 2mm thickness to fixate the
absorber materials, which are only of pm thickness. This additional material causes
extra attenuation of photons and has to be quantified. Two ways of determining the
attenuation factor are performed and their results compared.

One way is to determine the counting rates with and without acrylic glass in the radiations
path

Nacrylic glass — (616 + 03) Sil,
No=(73.9404)s7",
and dividing both to determine the measured transmission

Tinens = (83.4 £ 0.6) %.

For this an acrylic glass plate similar to the one holding the absorber is used.
Obviously Nacrylic glass has to be Compton corrected for, since the Compton background is
mainly produced by the acrylic glass. The corrected attenuation factor therefore results
in

Nacrylic glass — Ncompt
TCOI. — acry 1C gasj\./o ompton — (55.6 j: 0‘7) %‘
The corrected transmission can then be used to calculate the mass-attenuation coefficient
i/ p as described in Section 2.2.4 with Equation 2 and it results in
cm?

M/pmeas = (249 + 006) ?,
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with the diameter d and p the density of the acrylic glass

d = (1.98 + 0.02) mm, p=119-5_
cm

While p is taken from [1], d is obtained by measuring the width of the acrylic glass mul-
tiple times with a micrometer screw and then averaging it.

Another way to determine the transmission ratio is to use a literature value for p/p
and calculate the expected transmission factor. The value of u/p can be read off from
Figure 14, where the 14.4keV is marked at the x-axis in the illustration and mapped
onto the y-axis. The uncertainty results from the linewidth of the curve and the energy
uncertainty caused by drawing into the plot and then projecting that energy range onto
the y-axis.

POLYMETHYL METHACRYLATE

10°

102

sz/g
1
1
1
1
:
=
o
>
o

10"

w/o or jen/p.

107" \

10_2 1 1 11111 1 1 1111 1 1 11 11 11 1 1
1073 1072 1077 10° 10! 107
Photon Enerqy, MeV

Fig. 14: Mass-attenuation coefficient for acrylic glass for different energies, modified from [20]
to obtain pu/p for 14.4keV.

The expected mass-attenuation is
cm?
)

[t/ P expected (14.4keV) = (1.2 £0.2)
g

with a relative uncertainty of 16.7%. With this and Equation 1 the expected attenuation
can be calculated to

Texpected = (75 + 4) %7
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with a relative uncertainty of 5.3 %.

The values for the mass-attenuation deviate by 6.2 0 and the attenuation factors deviate
by 4.8 0. Clearly the values are not in agreement. The deviations could be caused by
impurities in the used acrylic glass, changing the density and effective atomic number.
Therefore the corrected, experimental attenuation factor is used to further correct the
counting rates, as described in Section 4.7. It describes the setup more accurately, as it
does not depend on some literature values, but the used materials in the experiment.

4.6. Velocity of the Sledge

The velocity of the sledge is measured and compared to the set velocity in the software.
The results are shown in Figure 15. A linear relation is found and a linear function fitted
onto the data.
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Fig. 15: Measured sledge velocity in dependence of the set velocity in the motor control software.
The blue line indicates the linear fit function. The uncertainty on the measured velocities are
too small to be visible, as they are in the order of 0.04 mms~' or smaller.

The fit function results in
Umeas(Vpc) = (0.994 £ 0.002) - vpc — (0.002 £ 0.003) mm S_l,

with a x2 = 0.41. Since the slope deviates from 1 only by 0.6% and the offset lies
within a 10 range of 0, no significant deviation from the set velocity is found within the
measurement methods resolution. This is dominantly influenced by human reaction time
of the experimenters, since a simple stopwatch app was used to determine the time it
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takes the sledge to move a certain distance, which was individually determined for each
measurement. At velocities smaller 3mm s~! the uncertainty on the distance is as low as
the normal read-off uncertainty on a standard triangle ruler 0.1 mm. As the human reac-
tion time, s; = 0.3s is chosen. The relative uncertainties of the measured velocities rise
with increasing velocity from 0.4 % to 3 %. Only up to that resolution a statement about
the velocity can be made. In the following evaluations these uncertainties are ignored, as
they only indicate a crude upper limit, which is only dependent on the used measurement
technique and does not hold intrinsic information about the real uncertainties.

As will be explained later in Section 4.8.4, statistical fluctuations of the seldges veloc-
ity limits the resolution of the Mofbauer spectroscopy and has a big influence on the
measured linewidths. This is also explained in more detail in [21].

4.7. Rate Correction

The measured Compton counting rate NCOmpton from Section 4.4 and the corrected at-
tenuation factor T, from Section 4.5 are used to correct all measured counting rates.
First the measured rates are cleansed from Compton background and then the rate is
corrected for by the corrected attenuation factor with

Nmeas - NCompton

N, cor — T
cor

With this correction the two most dominant background rates are corrected for. The
uncertainty on the corrected rate depends on the uncertainty of the original rate and the
uncertainties of the Compton rate and the attenuation factor. Both corrections could
be improved by means of longer measurements, but already have relative uncertainties
smaller 1.5 %. The relative uncertainties of the rates before correction are in the range of
1 %. After correction the rates yield relative uncertainties of around 3.5 %. This questions
the appropriateness of the corrections made, since at first glance it only increases the
uncertainties. In the context of the following evaluations however, the counting rate
at, for example the peak position is required to calculate the Debye-Waller factor fq
of the used source. Therefore a correction of the measured rates is unavoidable and
not performing one would certainly yield deviations from the real values and no usable
results.
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4.8. Stainless Steel Absorber

The stainless steel absorber sample is placed on the sledge and the measured MofSbauer
spectrum is shown in Figure 16. The spectrum is measured in a velocity range from
—2mms~! to 2mms~! for different measurement times ¢. The negative velocity values
result from the sledge moving towards the source, while positive values mean the opposite.
Therefore negative velocity values indicate an increase in the observed energy by the
absorber. The data was collected over a period of 3 days during which the weather and
thus the temperature in the laboratory was very stable.

Stainless steel absorber M6élbauer spectrum
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Fig. 16: MoBbauer spectrum of the stainless steel absorber sample. The data points are shown
in royal blue with errorbars only on the rate N, since the uncertainty of the velocity could not
be quantified. The red curve shows the Gaussian, the black curve the Lorentz and the lime
green dashed curve the Voigt fit function. The optimal fit parameters and the reduced x? are
listed in Table 2.

A Gaussian, Lorentz and Voigt function are fitted onto the data. The fit parameters are
displayed in Table 2. The reduced x? close to 1 indicate a good agreement between the
collected data and the assumed models fitted upon it.

The Lorentz and Voigt fit have a x2 < 1 indicating the presence of noise or overestimation
of uncertainties. But since they are so close to 1 no serious concerns arise on the quality
of the data or the correctness of the models. It has to be noted, that the Lorentz and
Voigt fit yield identical x2 up to two decimal places, which is not surprising, since the
Voigt fit very closely follows the Lorentz curve. The reasons behind this are discussed in
more detail in Section 4.8.4.

The Gaussian fit yields a x?> > 1 indicating that the assumed model of a Gaussian
distribution is not correctly describing the collected data. This is to no surprise, as it is
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expected from the theory to find Lorentz or Voigt shapes. But since the deviation from
1 is not too extreme the Gaussian should still yield results that do not deviate by much
from the expected values.

Function g [mms™] o [mms™] 4 [mms™] A [mms™? B [s7!] X2
Gaussian 0.199 £+ 0.005 0.270 £ 0.006 - 5.44+£0.14 21.754+0.08 1.09
Lorentz  0.188 4+ 0.004 - 0.298 £0.009 8.8=£0.3 22.52+£0.10 0.93

Voigt 0.189 £0.004 0.05£0.06 029£0.03 86=£05 2248£0.14 0.93

Tab. 2: Fit parameters for the Gaussian, Lorentz and Voigt fit for the stainless steel absorber.

4.8.1. Isomeric Shift Fi,

From the position parameter p of each fit function the position of the minimum is deter-
mined. Its offset from zero is called the isomeric shift (see Section 2.6).
With the Doppler relation

E=F

(%
7C

, (7)

the velocity is transformed into the isomeric shifts

EIso, Gaussian — (95 + 02) neV,
Elso7 Lorentz — (90 + 02) neV,
EISO, Voigt = (91 :l: 02) IleV

They all coincide within 1 or 20 and are therefore compatible. No literature value for
this sample is known, therefore no comparison can be made, but the values all lie in the
expected energy order neV. All three values hold relative uncertainties smaller 2.3 %.
The uncertainty depends directly on the quality of the fits and could only be improved
by means of more data or longer measurement times to reduce the uncertainty on the
data points.

4.8.2. Effective Absorber Thickness T

To calculate the fraction of recoilless resonance emission fq in the source the dimen-
sionless ancillary quantity 7T is required. It depends on the Debye-Waller factor of the
absorber fx(20°C) = 0.8 [1] and is described by

Ty = fanafBooda, (8)

with the absorber thickness dy = 25pm [1], the fraction of *’Fe in the isotope mixture
B = 0.022 [1], na the number of iron atoms per cm? in the absorber and the resonant
absorption cross section .

The resonant absorption cross section oy is calculated using

AN 2L+1 1
C2r 2+ 1 1+a

0o
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from [22], where I, = 3/2, I, = 1/2 are the spin quantum numbers for the excited and
ground state, v = 8.58 £ 0.18 [23] is the internal-conversion coefficient and A the resonant
wavelength corresponding to the E, = 14.4keV photons with

A= E = 0.0861 nm.
E,

With this, o results in
0o = (246 £5) - 107" m.

ny is calculated using

Na
nA:pﬁfa

with the molar mass of iron M = (55.845 4 0.002) g mol~! [24], the density p = 7.874 gcm ™3
[25], the iron content in the absorber f = (70 £5)% [1] and the Avogadro constant
Ny =6.02214076 - 10> mol~! [26]. It results in

na = (5.9+£04)-10%m™3,
which leads to an effective absorber thickness of
Ty = 6.44+0.5.

No literature value is known for comparison, but the value holds a relative uncertainty
of 7.8 %. This is mainly caused by the high uncertainty on the iron content f and could
therefore not be improved.

4.8.3. Debye-Waller Factor of the Source fq

Finally, the Debye-Waller factor of the source can be calculated using the formulas

B N(o0) — N(y)
Jo= N(00) [1 — exp(=T4/2) Jo(iTs/2)] (10)

and

o — (__ N(M)SN(OO) )2
fa N2(00) [1 — exp(—Tx/2) Jo(iTs/2)]

L SN () :
i ( N(00) [1 - exp(~Ta/2) Jo@TA/z)])

+ <—eXp<—TA/2) [Jo(iTa/2) +iJ1(z’TA/2)]>2 12
2 [exp(=Ta/2) — Jo(iTa/2)]

from [27], with T the effective absorber thickness calculated in Section 4.8.2 and J,
and J; the Bessel functions of the first kind in the 0** and 1** order. N(oo) is the rate
at infinite sledge velocity and is described by the offset parameter in the fit functions.
The uncertainty arises from the square root of the corresponding diagonal element of the
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covariance matrix. N(u) results from evaluating the fit functions at their minima. The
uncertainties are derived from the projections of the minima position uncertainties onto
the y-axis using their respective fit function. Studying Equation 10 in more detail the
dependence of fq on T shows, that with an increase of the effective absorber thickness
the formula approaches

fo~ : . (11)

This is also the intuitive understanding of the Debye-Waller factor of the source, as for
one it does not depend on the used absorber thickness and it directly calculates the
relative number of recoilless emitted and absorbed photons. Therefore a higher Ty is
desirable, but as stated in [27] and [28], a T above 10 is not properly described by a
Lorentz curve and would therefore induce additional deviations, when using a Lorentz or
Voigt function to obtain parameters like the isomeric shift, or the lifetime of the state.

The Debye-Waller factors result in

fQ, Gaussian — 0.482 = 00037
fQ7 Lorentz — 0.543 + 0003,
fQ. Voigt = 0.539 £ 0.005.

Since no literature values are known for this quantity, only a comparison between the
three fit functions is possible. The factors calculated from the Lorentz and Voigt fit
coincide within a 1o range, but the factor from the Gaussian fit deviates strongly from
the two with ~ 10 0. This is to no surprise, since it can clearly be seen in Figure 16 that
N() and N(oo) differ significantly for the Gaussian fit, while the Voigt fit essentially
collapses into a Lorentz function and very closely follows the Lorentz fit.

A fraction of around 50 % seems reasonable, if not somewhat low for a source specifically
purchased for an experiment on recoilless emission.

4.8.4. Linewidth I' and Lifetime 7 of the 14.4keV State in *"Fe

To obtain the measured linewidths of the absorption peaks and use them to calculate the
lifetime of the excited 14.4keV state as explained in Section 2.3, the widths of the fitted
functions have to be determined. For this the full width at half maximum (FWHM) is
used. The FWHM of a Gaussian is related to its standard deviation o with

FWHMGaussian - FGaussian =2 \/ 2 ln(z) 0 Gaussian -
The FWHM of a Lorentz function is
FWHMLorentz = 1—‘Lorentz = 2f}/Lorentz-

The FWHM of a Voigt function has no analytical equation, but an approximation with
deviations only as high as 0.023 % is

FWHMyigr =~ 0.5346 Yvoigt + \/ 0.2166 fy%,oigt + 0\2/oigt7

according to [29], but since the sole purpose of the Voigt fit, as a convolution of a Gaussian
and a Lorentz function, is to filter out homogeneous broadening effects (like resolution,
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noise, etc.), which have no relevance to the actual lifetime of the excited state, only the
Lorentz part is used for the linewidth

FVoigt = 27Voigt-
The measured linewidths I'} e result in

IWrneas7 Gaussian — (0635 :l: 0014) min S_l,
[neas, Lorentz = (0.60 £ 0.02) mm s,
Cineas, Voigt = (0.57 £ 0.06) mms ™.

Analogous to Section 4.8.1, using Equation 7 the values are converted into neV and result
in

1—‘meas, Gaussian — (305 + 07) neV,
Fmeas, Lorentz — (286 + 09) ne\/,
I\meas, Voigt — (27 + 3) nev.

Due to the time-energy-uncertainty relation, as described in Section 2.3, the linewidths
correspond to the lifetime of the excited 14.4keV state and result in

TGaussian — (216 + 05) ns,
TLorentz — (230 + 07) ns,
Toigt = (24 % 3) ns.

Compared to the literature value
T = 141 ns

from [1], all three values show enormous deviations. All are below the literature value,
implying that the measured linewidths are broader than the natural widths. There are
multiple reasons for that and some are studied in great detail in [27] and [28]. One reason
for the broadening is the overlap of emission and absorption spectra in the absorber and
the source respectively. This causes the measured linewidths to be at least twice as big
as the natural linewidth.

Going into more detail, a dependency of the finite thickness of the absorber and the
source is found. The effective absorber thickness T}, calculated in Section 4.8.2, has the
biggest impact in the following consideration, as can be seen in Figure 17. Additionally
the effective source thickness has to be calculated as well. This is done with

TQ = anQBO'()dQ

from the instructions [1], with 8 = 1, nq ~ na, 0o from Equation 9, dq =~ 100 A, stated
as O(100 A) in the instructions and the Debye-Waller factors from Section 4.8.3 for the
different fit functions and results in

To, Gaussian = 0.071 £ 0.003,
To, Lorentz = 0.080 & 0.003,
To, voigt = 0.079 = 0.005.
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Using Figure 17, the relative line broadening is determined. It indicates the ratio between
apparent /measured I', and natural linewidth I'y,;. Figure 17 shows the relative broad-
ening in dependence of the effective absorber thickness T}, for different T, for a uniform
source distribution modified from [27]. It has to be noted that for Ty = Tq = 0 the rel-
ative line broadening is also 2. This is caused by the overlap of emission and absorption
spectra as explained above. T and T lie between 0 and 10, since the absorption and
emission spectra in that range show to a very good degree of approximation a Lorentz
curve [28]. Since a Gaussian source distribution would only yield a slightly different
value for the relative broadening and there was no indication to suspect the source to
be not uniformly distributed, no detailed considerations of the source distribution were
performed (see [27] page 136 for Figure 17 with a Gaussian source distribution).

Since the different values of Tq differ only in a range of less than one pixel in the shown
image the value T = 0.08 is used, which translates to ~ 4 pixel. Furthermore the T = 0
line shown has a width of ~ 5 pixelf. Therefore the upper edge of the line is used for the
chosen Tq value.

70

7 e SOURCE DISTRIBUTION
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RELATIVE BROADENING [,/T
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EFFECTIVE ABSORBER THICKNESS 7 *fan,ax0u/a

Fig. 17: Relative line broadening I'y /T, in dependence of the effective absorber thickness Ta
for effective source thicknesses Ty between 0 and 10, modified from [27]. The purple line and
the blue dashes indicate the calculated effective absorber thickness value T = 6.4 + 0.5 from
Section 4.8.2.

"The pixel values are determined using the Inkscape pixel coordinate system.
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From Figure 17 the relative line broadening results in

La =3.69+0.12
Fnat_ ‘ ‘ .

The effect of this correction factor is shown for the Lorentz fit in Figure 18, where it is
also compared to the theoretical expected curve. The relative broadening factor is used
to correct the measured linewidth or rather the lifetime with

Ls

Teor = Tmeas
Fnat
to

Tcor, Gaussian — (80 + 3) ns,
Tcor, Lorentz — (85 + 4) ns,
Teor, Voigt — (89 + 10) ns.

The values still deviate strongly from the literature value 7;; = 141ns. The corrected
lifetime from the Gaussian fit deviates by 200, with a relative uncertainty of 3.75 %.
The lifetime resulting from the Lorentz fit deviates by 14 o, with a relative uncertainty
of 4.71%. The result from the Voigt fit deviates the least standard deviations to the
expected value with 5.2 0, but also has the highest relative uncertainty of 11.2 %.
Ideally, the Voigt fit should yield the best results, since it can filter out homogeneous
broadening effects and therefore makes it possible to acquire a more accurate linewidth in
the physical context. However, the convolution of both a Gaussian and Lorentz function,
with no analytical solution, makes this fit function hard to optimize and not very sta-
ble. As can be seen in Figure 16 the Voigt follows the Lorentz function very closely and
looking at the fit parameters displayed in Table 2, the fitting algorithm put nearly 85 %
of the full width into the Lorentz parameter v, but with a high uncertainty of around
10%. The Gaussian width received a value that lies within 1o to zero, with a relative
uncertainty of 120 %. Clearly the Voigt fit did not work properly.

One way to overcome this problem is to determine the resolution limit of the setup and
using it to fix the Gaussian width parameter or input it as a starting guess for the regres-
sion algorithm. This is reasonable, since the resolution is expected to be the dominant
contribution to the homogeneous broadening effects.

The resolution could be quantified by measuring an extra absorber of known linewidth
and setting the Lorentz part of a Voigt fit to that literature value to obtain o. However
this is not practicable in the context of this experiment, due to time constraints and the
lack of absorber material being Méfbauer active under ambient conditions (room tem-
perature, etc.). Alternatively, an absorber could be used which has a negligible linewidth
compared to the resolution to obtain it.

Figure 18 shows the expected natural line in red, with the amplitude, offset and position
value from the Lorentz fit. The width is determined by the literature value I'y; =
4.7-107%¢eV from [10]. The green curve shows the Lorentz fit, corrected with the relative
line broadening factor. Clearly the corrected curve is still broader than the natural line,
which causes the deviation from the literature value. This extra thickness most probable
results from the statistical fluctuations of the sledges velocity, which limits the resolution
of the Mo6Bbauer spectroscopy. A more detailed description of this can be found in [21].
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Stainless steel absorber MéRbauer spectrum
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Fig. 18: Exemplary demonstration of the effect of the relative broadening correction factor
on the Lorentz fit. The black curve shows the original Lorentz fit, while the green curve
shows the corrected Lorentz fit, where the Lorentz width parameter is divided by the relative
broadening. As a comparison, the red curve indicates the theoretical Lorentz curve, where the
width parameter is set to the literature value and the remaining parameters are taken from the
Lorentz fit.

Furthermore the thickness of the source has an impact on the obtained lifetime values.
Since its thickness is not precisely known and only estimated to be of O(100 A) we do
not know whether it really is only 100 A as used in the calculations or higher, i.e., in
the range of 1000 A. But since this would shift the relative line broadening only up to
roughly 3.85 and, for example the lifetime of the Voigt fit up to around 92.4ns, which
is still in the 1o interval of the original value, we don’t suspect that the deviations are
caused by the thickness of the source. Only if dq is massively underestimated, so that
Tq would be close to 10, the lifetime would shift into the expected range of 141 ns. This
seems very unlikely and is therefore disregarded.

Because of these reasons, the stated lifetimes have to be understood as only lower bounds
for the real value of the lifetime.



The Mof3bauer Effect 35

4.9. Natural Iron Absorber

The natural iron absorber sample is placed on the sledge and the measured MoSSbauer
spectrum is shown in Figure 19. The spectrum is measured in a velocity range of
—8mms~! to Smms~! for different measurement times t. The data was collected over
a period of several days during which the weather conditions outside and therefore the
temperature inside the not temperature controlled laboratory changed in a range of 30 °C
to 20°C.

The counting rates are Compton and attenuation corrected for as described in Section 4.7.
Sixfold Gaussian, Lorentz and Voigt functions are fitted onto the data. The fit parameters
are displayed in Table 3, 4 and 5.

Natural iron absorber MéBbauer spectrum
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Fig. 19: MoBbauer spectrum of the natural iron absorber sample. The peaks are labeled as 1
through 6 from left to right. The data points are shown in royal blue with errorbars only on
the rate N, since the uncertainty of the velocity could not be quantified. The red curve shows
the sixfold Gaussian, the black curve the sixfold Lorentz and the lime green dashed curve the
sixfold Voigt fit function. The optimal fit parameters and the reduced x? are listed in Table 3,
4 and 5.

The resulting reduced x? of around 0.5 for all three functions indicates relatively good
fits, but also implies that a relevant amount of noise is present or that the uncertainties
are overestimated. In the appendix Figure 28, 29 and 30 show the residual plots for the
three functions. The noisy behaviour is clearly visible. However, one can also see that
only 3 or 4 data points deviate more than 2o from the fitting curve, indicated by the
pink color. Less than 15 % of the data points deviate more than 1o from the expected
value obtained by the fitting curves, indicated by the gold colored data points. No data
point lies outside the 3¢ interval. The obtained data yields relative uncertainties of
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around 5 %. This relatively high uncertainty originates from the uncertainty on the rate,
before correction. Therefore the overall precision could have been improved by longer
total measurement times for each data point.

Looking at Figure 19 the noisy behaviour of the data points is also clearly visible. As
stated above, the temperature conditions in the laboratory and therefore of the source,
the absorber and the detection apparatus changed over the period of measurements by
10°C, which has an effect on the efficiency and response of the used electronics, i.e.,
the scintillator or the amplifiers. In principle the temperature also has an effect on the
fraction of recoilless resonance emission and therefore the measured counting rates. How-
ever, looking at Figure 3 in the theoretical considerations of the Debye-Waller factor, the
difference is minuscule in the room temperature region and therefore disregarded as the
cause for the noise. From the results of [30], it is known that doped Nal scintillators, like
the one used in this experiment show a temperature dependent peak position behaviour.
A change of 10°C showed a shift of peak positions of up to 6% in [30]. In our case
this will shift the 14.4keV peak in or out of our set SCA energy window and therefore
change the counting rates significantly. Looking closely at Figure 19, at i.e., peak 6 two
dips at different heights can be made out, if one disregards the errorbars for the moment
and only takes the data points into account. Also at around —2mms~! a second bow is
clearly visible. With a shift of the peaks position in the energy window, only the counting
rate, but not the absorption peaks curve will be influenced. Therefore this will mostly
affect the evaluations based on the counting rates and only slightly the ones based on
the widths or positions of the peaks.

Additionally it has to be noted that the Voigt fit assigned negative width values for peak
6. This has no physically meaning and is simply a mathematical possibility in the fitting
process.

Gaussian p [mms™!] o [mms™!] A [mms?
Peak 1  -5.12+£0.02 0.354+0.02 2.7+£0.2
Peak 2 -2984+0.02 0.28 £0.02 2.10+£0.14
Peak 3 -0.65£0.03 0.284+0.03 1.43+£0.14
Peak 4 0.90£0.04 036 +0.04 14£0.2
Peak 5 3.23£0.02 0.31£0.02 21+£0.2
Peak 6 5.37+£0.02 0.39+0.02 2.8+£0.2

Tab. 3: Fit parameters for the sixfold Gaussian fit with the offset B = (19.98 +0.05)s~! and
x2 = 0.51. The curve is shown in Figure 19.
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Lorentz g [mms™'] ~ [mms™!] A [mms?]
Peak 1 -5.14+£0.02 043£0.03 49+04
Peak 2 -2.96 £0.02 0.32+£0.03 3.6+0.3
Peak 3 -0.66 £0.03 0.33£0.05 2.6+0.3
Peak 4 0.90+0.04 0.40+£0.06 2.5+0.3
Peak 5 3.20£0.02 0.35£0.03 3.5+0.3
Peak 6 5.38+0.02 048+0.04 51£04

Tab. 4: Fit parameters for the sixfold Lorentz fit with the offset B = (20.56 4 0.08)s~! and
x2 = 0.50. The curve is shown in Figure 19.

Voigt g [mms™] o [mms™] v [mms™!] A [mms?
Peak 1 -5.13£0.02 0.21£+0.10 0.26+0.12 3.8+£0.6
Peak 2 -296+£0.02 0.1£0.2 0.294+0.08 33+£04
Peak 3 -0.66 +=0.03 0.19+0.12 0.2+£0.2 1.9+£0.5
Peak 4 0.90 4+ 0.04 0+2 0.44+0.2 244+0.6
Peak 5 3.224+0.02 0.25+0.08 0.144+0.13 2.8+04
Peak 6 5.38£0.02 -0.32+0.10 -024+0.2 -3.9+£0.6

Tab. 5: Fit parameters for the sixfold Voigt fit with the offset B = (20.320 & 0.013)s~! and
x2 = 0.50. The curve is shown in Figure 19.

4.9.1. Isomeric Shift Fig,

To obtain the isomeric shift for the natural iron absorber, the offset from zero has to be
determined. To do so the positions of half the distance between every pair of symmetric
peaks are calculated. The 3 resulting values for each fit function are then averaged
with their respective uncertainty as weights. Analogous to the calculations performed in
Section 4.8.1 the values are converted into eV. The results are

EIso, Gaussian — (59 + 05) IlGV,
EIso, Lorentz — (58 + 04) neV,
Ejlso7 Voigt — (60 + 04) nev.

The individual values are listed in the appendix in Table 16. The Gaussian result holds
the highest relative uncertainty with 8.5%. The Lorentz and Voigt fit are more precise
with 6.9% and 6.7 % respectively, but not by much. The uncertainties follow directly
from the quality of the fits and the data. As stated before the collected data is very noisy
and is the reason for the relative high uncertainties. No literature value is known, but
the order of magnitude neV is expected.

4.9.2. Magnetic Field Strength B at the Nucleus and the Magnetic Moment
1t Oof the 14.4keV State

To calculate the magnetic field strength B at the nucleus and the magnetic moment i,
of the 14.4keV state, the transition energies due to the underlying hyperfine structure
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for the six allowed and observed transitions have to be calculated. For this the positions
4 in the MoBbauer spectrum for the six peaks are used with

E = E’yﬁ - EIsm
C

to obtain the transition energies. Since the absolute value of the transition energies for
peak 1 & 6, 2 & 5 and 3 & 4 are supposed to be identical, the means are calculated with

Ei| + |E;
5, = BLtIE]

where {7, j} € {{1,6},{2,5},{3,4}} and the results are stated in Table 6.

(12)

Transition energy  Gaussian Lorentz Voigt
Ey ¢ [neV] 251.9+£0.8 2527£0.7 2524+£08
Ey5 [neV] 149140.7 147.940.7 148.6+0.7
Es 4 [neV] 37.3£1.2 374+£1.1 37.3+£1.2

Tab. 6: Transition energies for the observed peaks averaged for symmetric peak pairs and
evaluated with a Gaussian, Lorentz and Voigt function.

From Table 1, Equation 5 and Equation 12 it follows that

Eyg = (pg — pe) - B, (13)
1

Es5 = (Mg - 3Me> - B, (14)
1

B34 = (Mg + 3Me) - B. (15)

Combining Equation 14 and 15 yields the magnetic field strength at the nucleus

_ Esy+ By
2ig

B

With the magnetic moment of the ground state of °"Fe, fe = (0.09044 £ 0.00007) px
from [3], the nuclear magneton ux = 3.15245 - 107 eV T~! from [31] and the measured
data the magnetic field strength at the nucleus results in

BGaussian = (327 + 03) T,
BLorentZ - (325 :t 02) T,
Buoige = (32.6 +£0.2) T.

Comparing this to the literature value
By, =33.0T

from [2] at 300 K, the values lie within 1 o for the Gaussian, 2.5 ¢ for the Lorentz and 2 o
for the Voigt fit to the literature value and have a relative uncertainty < 1%. Therefore
the values are in agreement and the slight deviations probably arise from the experiment
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not being tempered at 300 K.
Equation 13 can be used to calculate the magnetic moment of the 14.4 keV state as

Eig
He = Hg — B

The results are

ljle, Gaussian — (_0154 :l: 0002) MN,
,LLe, Lorentz — (_0156 :l: 0002> /,LN,
He, Voigt = <—0155 + 0002) MUN -

Compared to the literature value
pe, 11t = (—0.1549 £ 0.0002) px

from [3], all values lie within their 1o interval to the literature value, have a relative
uncertainty < 1.3 % and therefore yield a high confidence in their correctness.

No significant differences between the Gaussian, Lorentz and Voigt fit arise, which is to
no surprise, since the calculated quantities B and u,. only depend on the position of the
absorption peaks and not their width for example, which heavily depends on the form of
the curve.

4.9.3. Effective Absorber Thickness 7, and Debye-Waller Factor of the
Source fq

The effective absorber thickness Ty for the natural iron absorber is calculated analogous
as T for the stainless steel absorber described in Section 4.8.2. Only the fraction f of
the iron content in the absorber changes to f = (98 £ 2) % as stated in [1]. This changes
the number of iron atoms in the absorber to

nay = (8.3£0.2) - 10*®*m™>.

With Equation 8 and the stated values in Section 4.8.2, the effective absorber thickness
for the natural iron sample results in

Th =9.0£0.3.

However, this describes only the total effective absorber thickness for the natural iron ab-
sorber. Each absorption peak has its own effective absorber thickness, which is weighted
with the respective relative intensity

T{ = W;Ta

for an unsplit emission and split absorption spectrum as explained in [28]. The intensities
I; are calculated with

Ij = N(00) — N(u;)

for each absorption peak. Summing up the intensities I; yields the normalization factor

6
1
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which is used to determine the individual relative intensity of each absorption peak
I

N.
Using Equation 10 from Section 4.8.3 and the individual T/{, the effective Debye-Waller
factors fé for each absorption peak are calculated and alongside the weights W; and the

effective absorber thicknesses T% listed in Table 7 for the sixfold Gaussian, Table 8 for
the sixfold Lorentz and Table 9 for the sixfold Voigt fit.

Since no literature values are known, only the consistency between the values can be
checked. All values for the Debye-Waller factors fé across the different functions coincide
within 20. Studying the tables in more detail, always peak 4 deviates from the other
values of the respective fit and holds the highest relative uncertainty. Looking at the
fit parameters in Table 3, 4 and 5, peak 4 also holds in principle the highest relative
uncertainty in all parameters, though it does not stand out by much. Only the Gaussian
width o in the Voigt fit really stands out, with (0 4 2) mms™'. But since the deviations
are so minuscule, no compatibility problems arise.

Again, the Voigt fit should yield the best results, but as stated previously in Section 4.8.4
it is nearly impossible for the fitting algorithm to determine accurately, what amount of
the width belongs to the Gaussian or Lorentz part, with no prior educated and informed
starting value guess.

Neither for the weights W, nor the individual effective absorber thicknesses T’ 7 literature
values are known. 7% holds relative uncertainties of 5% to 10 %, while W; holds 2% to

4%.

m:

i
1.80 + 0.09

Wi
0.200 = 0.004

fa
0.21 + 0.02

J
1
2
3
4
5
6

Tab. 7: Individual weights W, effective absorber thicknesses 7T’ 1{ and Debye-Waller factors fé
of the source for each absorption peak j resulting from the sixfold Gaussian fit.

0.198 + 0.004
0.134 £ 0.004
0.102 £ 0.004
0.182 £+ 0.004
0.185 + 0.004

W;

1.78 £ 0.09
1.21 £0.08
0.92 £ 0.07
1.64 +£0.09
1.67 £ 0.09

iy

0.21 £ 0.02
0.21 £ 0.05
0.20 £ 0.10
0.21 £0.03
0.21 = 0.03

fa

J
1
2
3
4
5
6

Tab. 8: Individual weights W}, effective absorber thicknesses TI{ and Debye-Waller factors fé
of the source for each absorption peak j resulting from the sixfold Lorentz fit.

0.191 £ 0.006
0.193 = 0.006
0.140 £ 0.005
0.117 £ 0.005
0.179 £ 0.006
0.180 4= 0.006

1.72+£0.12
1.74+0.12
1.26 £0.10
1.05+£0.10
1.61 £0.11
1.62 £0.11

0.26 = 0.03
0.26 £ 0.03
0.26 £ 0.07
0.25£0.10
0.26 £ 0.04
0.26 = 0.04
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j W i £

1 0.1944+0.009 1.75£0.17 0.24 +0.04
2 0.200£0.009 1.80£0.17 0.24 +£0.04
3 0.138£0.008 1.24 £0.15 0.24 £ 0.10
4
)
6

0.114 +0.008 1.034+0.14 0.23£0.15
0.176 £0.009 1.59£0.16 0.24 £ 0.05
0.178 £0.009 1.61 £0.16 0.24 £0.05

Tab. 9: Individual weights W}, effective absorber thicknesses Tli and Debye-Waller factors fé
of the source for each absorption peak j resulting from the sixfold Voigt fit.

4.9.4. Linewidth I and Lifetime 7 of the 14.4keV State in *"Fe

The linewidth I" and the lifetime 7 is calculated as explained in Section 4.8.4 for each fit
function. Since no data is available for the relative line broadening of the split absorption
spectrum, only the lower limit

Fa/rnat =2

is used to correct the measured lifetime 7. This originates from the overlapping of emis-
sion and absorption spectra as explained before. With this only a crude lower limit for
the lifetime can be calculated. The results are listed in Table 10 for the Gaussian, Ta-
ble 11 for the Lorentz and Table 12 for the Voigt fit.

To no surprise huge deviations from the literature value 7;; = 141 ns result, since we can
only give a crude lower bound for the lifetime 7 due to the unknown relative broadening of
the linewidths and additional broadening resulting from the resolution limit as explained
in Section 4.8.4.

Interesting are the results from the Voigt fit as the relative uncertainties are high and in
some cases close to 100 %. Peak 6 also yields negative values, which arise from the fit
function assigning negative width values in Table 5. The sign can be ignored since it is
obviously an error in the fitting algorithm with no physical meaning.

Gaussian T'jeas [0€V]  Tineas 0S]  Tiow. bo. [DS]
Peak 1 40 £ 2 16.6 0.9 33+2
Peak 2 32+2 21 £2 42+ 3
Peak 3 32+3 21 £2 42+ 4
Peak 4 40+ 5 16 + 2 33+4
Peak 5 35+3 188+ 14 38+ 3
Peak 6 44+ 3 14.8 +£0.9 30£2

Tab. 10: Linewidth, lifetime and the corrected lower bound lifetime of the 14.4 keV state result-
ing from a sixfold Gaussian fit.
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Lorentz T'eas [0€V]  Timeas [1S]  Tiow. bo. [1S]
Peak 1 4143 16.0+ 1.3 32+3
Peak 2 31+3 21+ 2 42 + 4
Peak 3 32+4 21£3 41+6
Peak 4 38£6 17+ 3 35E5
Peak 5 33+£3 20£2 40+4
Peak 6 46 +4 14.3+1.1 29+ 2

Tab. 11: Linewidth, lifetime and the corrected lower bound lifetime of the 14.4 keV state result-
ing from a sixfold Lorentz fit.

Voigt  Thieas [1€V] Tineas 0S| Tiow. bo. (18]
Peak 1 25+11 26 + 12 52+ 24
Peak 2 28 £7 236 47+ 12
Peak 3 17+ 15 40 £ 37 80+ 74
Peak 4 38 +£19 17+8 35+ 17
Peak 5 13 +£12 50 +48 101 +£95
Peak 6 -20£15 -33+£25 -67+£51

Tab. 12: Linewidth, lifetime and the corrected lower bound lifetime of the 14.4 keV state result-
ing from a sixfold Voigt fit.
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5. Summary and Discussion

MoBbauer spectra were obtained for a stainless steel and natural iron absorber with the
14.4keV transition of the excited *Fe state. To do so multiple preliminary calibrations
and measurements had to be performed.

The used electronics were checked with an oscilloscope and delays and the shaping time
were set. The used MCA had to be calibrated with the use of an **'Am source with a
rotatable wheel in front of it to excite different materials with known K, decays. These
were used to obtain a linear relation between channels and energy

f(E)=(1884+04)keV™'- E+4 (1.2+0.9).

With this the spectrum of the used °"Co source, which decays via electron capture into
an excited state of °"Fe, is measured and the 14.4keV transition peak identified. A SCA
discriminator window was set, so that only photons of that transition were used for
detection. Due to Compton scattering, photons of higher energies are also measured in
this setup and therefore the Compton background had to be determined

Neompton = (20.5 £ 0.3) s

and used for correction. Additionally the attenuation of photons in the acrylic glass
encasing the absorber material has been quantified

Toor = (55.6 £ 0.7) %

and is also used for further correction of the measured counting rates.

The velocity of the sledge was checked to see, whether the set velocity at the PC is also
the real velocity of the sledge. The results did not show any relevant deviations, though
the measurement was not very precise. No uncertainty for the velocity was used in the
evaluation, since no reasonable uncertainty could be determined or estimated, but the
velocity uncertainty is expected to have an effect on the MofSbauer spectra, causing devia-
tions in the analysis, especially for the linewidths of the peaks and the resulting lifetimes.

The measured Mof3bauer spectra were fitted with Gaussian, Lorentz and Voigt functions
for the stainless steel absorber and sixfold versions of these functions for the natural iron
absorber in order to obtain quantities like the isomeric shift Ei,, the Debye-Waller factor
of the source fq, the linewidth I' and the lifetime 7 of the 14.4keV state and addition-
ally for the natural iron absorber the magnetic field strength B at the nucleus and the
magnetic moment p, of the 14.4keV state.

Only the results obtained by the Lorentz fits will be shown, since they hold the highest
confidence of correctness. The Gaussian fit results are discarded since the absorption
peaks show an asymmetric behaviour, better described by a Lorentz curve, which is also
expected from theoretical considerations of atomic decay. The Voigt fit, as a convolution
of both Gaussian and Lorentz curve, is in principle the optimal function, since it includes
the theoretical expectation and the experimental distortions, caused mostly by the used
electronics. However additional data is required to obtain an accurate fit, like the reso-
lution limit caused by the statistical fluctuations in the sledges velocity. The resolution
mainly contributes to the observed homogeneous broadening of the absorption peaks,
but this could not be measured due to the lack of available MoBbauer active materials
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in the experiment.
The measured isomeric shifts are

E®) = (9.0 +0.2) neV,

Iso

EN = (5.8 +0.4) neV,

Iso

for the stainless steel (S) and natural iron (N) absorber. No literature values are known,
but the order of neV is expected. The effective absorber thicknesses, which are required
for the calculation of the Debye-Waller factors are

T =6.4+0.5,
TN =9.040.3,

with relative uncertainties of 7.8% and 3.3 % respectively. No manufacturer value is
known for the two absorber materials, so no comparison can be made. For the natural
iron absorber, Ty has to be weighted individually with the relative intensity of each
absorption peak and the results are listed in Table 13, with their individual Debye-
Waller factors of the source. The Debye-Waller factor calculated from the stainless steel
absorber spectrum is

8 = 0.543 4 0.003,

with a relative uncertainty of 0.5%. The values from the natural iron absorber deviate
strongly from the value for the stainless steel absorber with around 9. Peak 4 only de-
viates by 2.8 o, but holds a relative uncertainty of 40 %, which relativizes the comparably
small deviation. The noisiness of the data, which is discussed in Section 4.9, and the
overlap of measurements from different temperatures in the laboratory for the natural
iron absorber could be the reason for this deviation. Also no literature value is known
for the source, so no comparison with the real value can be made. The value from the
stainless steel absorber seems reasonable, if not somewhat low for a source purchased
specifically for an experiment on recoilless emission of gamma radiation.

It has to be noted that S. Margulies and J. R. Ehrman state in [27], that the used
equation for the Debye-Waller factor of the source, Equation 10, is exact only for non-
resonantly absorbing sources and if that is not the case only an approximation for an
effective source thickness 7o < 1. Also it is only valid, if the FWHM of the source and
absorber are equal to the natural widths I',,; of the transitions. If they deviate, but I'p
and I'q are identical the absorption cross section oy in Equation 9 has to be multiplied by
the factor Fl?at /T'q. Since I'q can only be bigger than the natural width, the additional
factor would decrease oy and therefore increase fq. Also the slow variation of Jo(i74/2)
with T, makes the results obtained with this method not very precise [28]. Since it is
not known, whether the source is non-resonantly absorbing or to which degree and no
information about the actual linewidths are noted, deviations from the real value caused
by the used theoretical considerations cannot be ruled out. The values from the natural
iron absorber are disregarded for being to small and f(gs) is assumed to be of the correct
order, but with an overestimated accuracy.

The lifetime of the 14.4keV state can be directly calculated from the width of the ab-
sorption peaks. It has to be corrected for unavoidable broadening effects caused by the
measurements. The relative line broadening is at least 2, since there is always the over-
lap of emission and absorption spectra. For the stainless steel absorber literature values
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are available that also include the effects of the finite thickness of the absorber and the
source. With a relative line broadening of T',/T.c = 3.69 + 0.12, the corrected lifetime
results in

78) = (85 + 4) ns.

cor

This deviates strongly from the literature value
Ty = 141 ns

from [1], with 14 o and a relative uncertainty of 4.71 %. From the measured lifetime one
can deduct, that the width of the absorption peak is still broader than the natural one.
Most of the additional broadening can be attributed to the resolution, which results from
statistical fluctuations of the sledges velocity [21]. Here the Voigt function would be the
optimal use, if the resolution would be known, since it would filter out this homogeneous
broadening and yield more accurate results. But since the resolution is now known and
could not be estimated, the stated lifetime is only a lower bound for the real value.

No literature values are known for the broadening effects for the natural iron absorber
and therefore only the minimal relative broadening of 2 is used to give a crude lower
bound on the lifetime 7.

YN e sl

1.72+£0.12 026 £0.03  32%3
1.74+£0.12 026 £0.03 42+4
1.26 £0.10 0.26 £0.07 41+6
1.05£0.10 0.25+£0.10 35&£5
1.61 £0.11 0.26£0.04 40x+4
1.62+0.11 026 £0.04 29+2

S Ut R W N .

Tab. 13: Individual effective absorber thicknesses Ti’ (N), Debye-Waller factors fés ™) and lower
N)

v bo Of the 14.4keV state for the natural iron absorber resulting from the

bound lifetimes 71;
sixfold Lorentz fit.

For the natural iron absorber it was also possible to calculate the magnetic field strength
B at the nucleus from the transition energies of the six absorption peaks. The Lorentz
fit resulted in

B™ = (32.5+£0.2)T.
Compared to the literature value from 2]
Bi = 33.0T,

the measured value lies within 2.5 o to the literature, with a relative uncertainty of 0.62 %.
The magnetic moment of the excited state results in

N = (=0.156 % 0.002) pix,
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with a relative uncertainty of 1.3 %. Compared to the literature value
pe it = (—0.1549 £ 0.0002) pn

from [3], an agreement of both values within 1 ¢ is found. The results from the Gaussian
and Voigt fit also agree with the literature value for B and ., since these values only
depend on the position of the absorption peaks, which are not deeply influenced by the
form of the curve of the used fit functions.

These measurements illustrate the high energy resolution that can be reached with
MoBbauer spectroscopy, making it a highly useful measurement tool for material char-
acterisations. As some possible improvements a temperature isolation of the scintillator
would be proposed. Also a more stable version of the measurement software would sim-
plify the conduction of the experiment.
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Appendix
A. Additional Plots
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Fig. 20: Spectrum of Ag activated with an
2 Am source. The red curve indicates the
Gaussian fit used to obtain the position value
of the K, peak. The fit parameters are listed
in Table 14.
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Fig. 22: Spectrum of Mo activated with an
2 Am source. The red curve indicates the
Gaussian fit used to obtain the position value
of the K, peak. The fit parameters are listed
in Table 14.
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Fig. 21: Spectrum of Ba activated with an
2 Am source. The red curve indicates the
Gaussian fit used to obtain the position value
of the K, peak. The fit parameters are listed
in Table 14.
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Fig. 23: Spectrum of Rb activated with an
2HAm source. The red curve indicates the
Gaussian fit used to obtain the position value
of the K, peak. The fit parameters are listed
in Table 14.
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Tb spectrum
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Fig. 24: Spectrum of Tb activated with an
2HAm source. The red curve indicates the
Gaussian fit used to obtain the position value
of the K, peak. The fit parameters are listed
in Table 14.
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Fig. 26: Counting rate in dependence of the
aluminium shielding thickness d for the stain-
less steel absorber. The red curve shows the
double exponential fit, while the green curve
indicates the extrapolation of the exponential
decay, caused by the high energetic photons to
no shielding, which is identified as the Comp-
ton background rate.
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Fig. 25: Spectrum of the used *"Ce source. The
red curve indicates the Gaussian fit used to ob-
tain the position value of the 14.4keV peak.
The fit parameters are listed in Table 14.
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Fig. 27: Counting rate in dependence of the
aluminium shielding thickness d for the nat-
ural iron absorber. The red curve shows the
double exponential fit, while the green curve
indicates the extrapolation of the exponential
decay, caused by the high energetic photons to
no shielding, which is identified as the Comp-
ton background rate.
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Gaussian
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Fig. 28: Residual plot of the sixfold Gaussian
fit for the natural iron absorber. The red line
indicates the expected values from the fit func-
tion. Blue colored data points lie within < 1o,
orange points within < 2¢ and purple points
within < 3¢ of the fit functions value. Only
the uncertainties from the data points are used
for this consideration.
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Fig. 29: Residual plot of the sixfold Lorentz
fit for the natural iron absorber. The black
line indicates the expected values from the fit
function. Blue colored data points lie within
< 1o, orange points within < 20 and purple
points within < 3¢ of the fit functions value.
Only the uncertainties from the data points are
used for this consideration.
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Fig. 30: Residual plot of the sixfold Voigt fit for the natural iron absorber. The dashed lime
green line indicates the expected values from the fit function. Blue colored data points lie
within < 10, orange points within < 2¢ and purple points within < 3¢ of the fit functions
value. Only the uncertainties from the data points are used for this consideration.
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B. Additional Tables

Ag Ba Mo Rb Th Ce
I 422340.2  592.69+0.10  333.940.2 248.5 + 0.2 837.2+0.2  261.52+0.10
o 37.940.5 49.0 + 0.2 37.74+0.5 30.1+0.4 69.340.3 25.140.7
A 7524 1.3 104.34+ 0.6 64.14+1.1 23.140.4 160.240.9 9.840.5
B 0.182+0.006 0.12540.002 0.033+0.006 0.0142 =+ 0.0002 0.058 +0.002  0.089 & 0.005

Res. (9.0£07)% (83+04)% (11.3+08)%  (12+1)% (83+0.5)%  (9.6+0.7)%

Tab. 14: Fit parameters of the K, peaks obtained with Gaussian fits onto the measured cal-
ibration spectra shown in Figure 20—24 and the °"Co spectrum in Figure 11. The last line
indicates the detectors energy (channel) dependent resolution, calculated with o/u [19].

A [S_l] a [mm_l] B [s_l] b [mm_l]
(S) 20.8 £0.2 -0.0381 =0.0010 106+1.2 -2.84+0.4
(N) 20.2 £+ 0.2 -0.0366 =0.0012 12.94+0.8 -2.54+0.2

Tab. 15: Fit parameters of the double exponential fit for quantization of the Compton back-
ground for the stainless steel (S) and natural iron (N) absorber shown in Figure 26 and 27
respectively.

Gaussian Lorentz Voigt
Peaks 1&6 2&5 3&4 1&6 2&5 3&4 1&6 2&5 3&4
FEigo [mms™1]{0.12+£0.02 0.122+£0.014 0.13+£0.03|0.122 £0.014 0.117 £0.014 0.1240.02|0.120 & 0.012 0.129 £ 0.014 0.12 £0.02
Els [neV] 5.9+0.7 59+0.7 6.0+1.2 59+0.7 5.6+0.6 59+1.1 58 +0.7 6.2+0.7 57+1.1

Tab. 16: Isomeric shifts from the sixfold Gaussian, Lorentz and Voigt fits for the natural iron
absorber, averaged for the symmetric peak pairs 1 & 6, 2 & 5, 3 & 4.

C. Error Propagation

If the N variables z; of a function f are not correlated,

2 2
o () e () 16

is used with the error s; of x;. In case that the variables are correlated,

sp=\/(VHT-M-Vf (17)

has to be applied. Here M is the covariance matrix.
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Python Code

G.1. Setup Check

import numpy as np

import sympy as sp

import pylab as pl

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit

import peakutils as peak
import glob
import os

def read_in(name,coll ,col2):

for

x=np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np. float ,

— delimiter=","  skip_header=1,skip_footer=0))
y=np.array (np.genfromtxt (np.str (name) ,usecols=col2 ,dtype=np. float ,
— delimiter="," skip_ header=1,skip_footer=0))

return [x,y]

file in glob.glob("*.CSV"):
print (file)
x,y=read_in(file ,0,1)
plt.plot (x,y)
plt.title (file [:(len(file)—4)])
plt.savefig(file [:(len(file)—4)]+".svg")
plt .show ()

G.2. Calibration of the MCA

Calibration Spectra

import numpy as np

import sympy as sp

import pylab as pl

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit

plt .rcParams.update ({ axes. titlesize ’: ’xx—large’})
plt .rcParams.update ({ axes.labelsize ’: ’xx—large’})
plt .rcParams.update ({ *xtick.labelsize’: ’xx—large’})
plt .rcParams.update ({ 'ytick.labelsize ’: ’xx—large’})
plt .rcParams.update ({ 'legend . fontsize ’: ’x—large’})
def read_in(name,col2):
y=np.array (np.genfromtxt (np.str(name) ,usecols=col2 ,dtype=np. float ,
— delimiter="",skip__header=2,skip_footer=0))
return y
def err_sqrt(Liste):
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Liste err=]]

for a in Liste:
Liste_err.append(np.sqrt(a))

return Liste err

def Gaussian(x, sigma, mu, A, B):
return A/np.sqrt(2+np.pikxsigmaxx2) * np.exp(—0.5%((x—mu)/sigma)**2) + B

Name = [’Ag spec’, 'Ba_spec’, "Mo_spec’, 'Rb_spec’, 'Tb_spec’]
Title_names = [’Ag’, 'Ba’, 'Mo’, 'Rb’, 'Tb’]
fit _ranges = [[350,520], [470,700], [245,400], [175,300], [670,915]]

p0_liste = [(39,423,83,0.13), (53,592,117,0.07), (37,335,58,0.07),
< (30,249,21,0.03), (68,837,156,0.07)]

L=[]
for i in range(0,len (Name)):

y = read_in(Name[i]+ .TKA’ ,0)

y_err = y/max(y)+np.sqrt (1/(y+1) + 1/max(y))
x = np.linspace (0,len(y) ,len(y))

y = y/max(y)

plt.errorbar(x,y,yerr=y_err,zorder=1, linewidth=0.3, color="royalblue’,

— label="Data points’, fmt="-")

xfitdata = x[fit_ranges[i][0]:fit_ranges[i][1]]

yfitdata = y[fit_ranges[i][0]: fit_ranges[i][1]]

yfiterr = y_err[fit_ranges[i][0]: fit_ranges[i][1]]

fitPara , fitCova = curve_fit(Gaussian, xfitdata , yfitdata , sigma=
— yfiterr ,pO0=p0_liste[i])

sigmas = fitPara [0]

mus = fitPara[1]

sigma__error = np.sqrt (fitCova [0]][0])

mu__errors = np.sqrt (fitCova [1][1])

A = fitPara[2]
B = fitPara [3]
A err = np.sqrt (fitCova [2][2])
B_err = np.sqrt(fitCova [3][3])

plt.plot (xfitdata , Gaussian(xfitdata , fitPara[0], fitPara[l], fitPara
— [2], fitPara[3]), linewidth=1, color="r’, label=’Gaussian fit’,
— zorder=2)

plt.title (Title_names[i]+’ spectrum’)
plt.xlabel (’Channel’)

plt.ylabel(’rel. Intensity’)

plt.xlim(—20,2100)

plt.ylim(—0.01,1.05)

plt.legend ()

plt.grid (which="major’,color="k’ ,linewidth=0.3)

plt.rc(’axes’, axisbelow=True)
plt.savefig (f’{Name[i]}.eps’)
plt.show ()

print (Name[i]+f’: Mu={round (mus,2)}+—{round (mu_errors,2) }, Sigma={round
— (sigmas,2)}+—{round (sigma_error,2)}, A={round(A,2)}+—{round (A_err
— ,2)}, B={round (B,4)}+—{round (B_err,4)} \n sigma/mu={round (sigmas/
— musx100,5)}%")



66

67
68
69
70
71
72
73
74
75
76
7

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99

101
102
103

104
105
106
107
108

110
111
112
113

114
115

The Mof3bauer Effect 56

L.append (Name[i]+f’: Mu=;{round (mus,2) };+—;{round (mu__errors,2) }; |

Channel], Sigma=;{round (sigmas,2) };+—;{round(sigma_error,2) }; |
Channel], A=;{round(A,2) };+—;{round(A_err,2) }; [Channel], B=;{
round (B,4) };+—;{round (B_err,4) };, sigma/mu={round (sigmas/mus
x100,5)}% \n’)

U

#Background

y = read_in(’background—long .TKA’ 0)

y_err = y/max(y)+np.sqrt (1/(y+1) + 1/max(y))
x = np.linspace (0,len(y),len(y))

print (max(y))

y = y/max(y)

plt.errorbar(x,y, yerr=y_err, color="royalblue’,label="Data points’,
— linewidth=0.4)

plt.title (’Background spectrum’)

plt.xlabel (’Channel’)

plt.ylabel(’rel. Intensity’)

plt.legend ()

plt . xlim (—20,2100)

plt.ylim(—-0.01,1.1)

plt.grid (which="major’ ,color="k’ ,linewidth=0.3)

plt.rc(’axes’, axisbelow=True)
plt.savefig(’background.eps’)
plt.show ()

# source spectrum night measurement

y = read_in(’spectrum—night—meas.TKA’ ,0)

y_err = y/max(y)+np.sqrt (1/(y+1) + 1/max(y))

x = np.linspace (0,len(y),len(y))

y=y /max(y)

plt.errorbar(x,y, yerr=y_err, zorder=1, color="royalblue’, label="Data
— points’, linewidth=1)

a=220

b=300

xfitdata = x[a:b]

yfitdata = y[a:b]

p0=(50,300,50,0.2)

yfiterr = y_err[a:b]

fitPara, fitCova = curve_fit(Gaussian, xfitdata , yfitdata , sigma=yfiterr ,p0
— =p0)

sigmas = fitPara [0]

mus = fitPara[1]

sigma__error = np.sqrt (fitCova [0

mu_errors = np.sqrt (fitCova [1]]

A = fitPara [2]

B = fitPara [3]

A_err = np.sqrt (fitCova [2][2])

B_err = np.sqrt(fitCova [3][3])

J10])
1])

plt . plot (xfitdata , Gaussian(xfitdata , fitPara[0], fitPara[l], fitPara[2],
— fitPara[3]), linewidth=1, color="r’, label=’Gaussian fit’, zorder=2)

plt.title (r’$7{57}$Co spectrum’)
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plt.xlabel (’Channel’)
plt.ylabel(’rel. Intensity’)

plt.legend ()

plt.xlim(—20,2100)

plt.ylim(—0.01,1.05)

plt.grid (which="major’,color="k’ ,linewidth=0.3)

plt.rc(’axes’, axisbelow=True)
plt.savefig(’source—spec.eps’)
plt .show ()

print (f’Source: Mu={round (mus,2)}+—{round (mu_errors,2) }, Sigma={round (
— sigmas ,2) }+—{round (sigma_error,2)}, A={round(A,2)}+—{round(A_err,2)},
— B={round(B,4) }+—{round(B_err,4)} \n sigma/mu={round(sigmas/mus
— %100,5)}%")

L.append (f’Source: Mu=;{round (mus,2) };+—;{round (mu_errors,2) }; [Channel],
— Sigma=;{round (sigmas,2) };+—;{round (sigma_error,2) }; [Channel], A=;{
— round (A,2) };+—;{round (A_err,2) }; [Channel], B=;{round(B,4) };+—;{round
— (B_err,4) };, sigma/mu={round (sigmas/musx100,5)}% \n’)

#Daten in File Speichern
file=open(r’fit —daten.txt’, 'wt')
file . writelines (L)

file . close ()

read_in(’alu—null . TKA’ ,0)

= np.linspace (0,len(y) ,len(y))

_err = y/max(y)*np.sqrt(1/(y+1) + 1/max(y))

= np.linspace (0,len(y) ,len(y))

y=y /max(y)

plt.errorbar(x,y, yerr=y_err, color="royalblue’,label="Data points’,
< linewidth=1)

plt.title (r’SCA window )

plt.xlabel (’Channel’)

plt.ylabel(’rel. Intensity’)

plt.legend ()

plt.xlim(—20,2100)

plt.ylim(—-0.01,1.05)

plt.grid (which="major’,color="k’ ,linewidth=0.3)

y
X
y
X

plt.rc(’axes’, axisbelow=True)
plt.savefig(’window.eps’)
plt .show ()

Calibration Fit

import numpy as np
import sympy as sp
import pylab as pl
import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit
plt.rcParams.update ({ ’axes. titlesize 'xx—large
plt.rcParams.update ({ ’axes.labelsize 'xx—large
plt .rcParams.update ({ 'xtick.labelsize ’: ’x—large
(
(

7.

I’ .

plt .rcParams.update ({ "ytick.labelsize ’: ’x—large
plt .rcParams.update ({ 'legend . fontsize "large '}

’ .

—_ o

def read_in(name, coll ;col2 ,skipheader ,skipfooter):
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a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np.float
— ,delimiter=";"  skip_header=skipheader ,skip_footer=skipfooter)
=)

b = np.array (np. genfromtxt (np.str (name) ,usecols=col2 ,dtype=np.float
— ,delimiter=";" skip_header=skipheader ,skip_footer=skipfooter)
=)

return [a,b]

y,y_error = read in(’fit —daten.txt’ ,1,5,0,1)
real_energy = [22.10,32.06,17.44,13.37,44.23] #keV

def lin_ fit(x, a, b):
return axx + b

fitPara , fitCova = curve_fit(lin_fit, real energy, y, sigma=y_error)
a_err = np.sqrt (fitCova [0][0])

b_err = np.sqrt (fitCova [1][1])

a = fitPara[0]

b = fitPara [1]

x = np.linspace (0,50,5000)

plt.plot(x,lin_fit(x,a,b), label="Linear fit’,zorder=1,color="royalblue’)

plt.errorbar (real energy, y, yerr=y_error, fmt="x’, label="Data points’,
— zorder=2,color="k")

y2,y_error2 = read_in(’fit —daten.txt’,1,5,5,0)
plt.errorbar (14.4,y2,yerr=y_error2, fmt="x’, color="red’, label="14.48%\,
— $keV peak’ ,zorder=2)

plt.xlabel (r"$E$ [keV] ')

plt.ylabel (’Channel’)

plt.title (’Energy—Channel calibration’)
plt.legend ()

plt.xlim (0,50)

plt.ylim (0,1000)

plt.grid (which="major’ ,color="k’ linewidth=0.3)
plt.rc(’axes’, axisbelow=True)

file_ name="energy—channel—calibration —fit’
plt.savefig(file_name+’.eps’)

plt .show ()

print (f 'f(x) = a={round (fitPara[0],2)}+—{round(a_err,2) }[1/keV] * x + b={
— round (fitPara[1],1)}+—{round(b_err,1)}’)

r= ]
DOF = len(real energy)—2
for i in range(0,len(real energy)):
r.append (((y[i]—lin_fit (real_energy[i],xfitPara))/y_error[i]) **2)

print (sum(r ) /DOF)

Energy of the fitted 14.4keV peak
channel = 261.52

s _channel = 25.12

print ((channel—fitPara [1])/fitPara [0])

print ((s_channel—fitPara [1])/fitPara [0])
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G.3. Compton Background

import numpy as np

import sympy as sp

import pylab as pl

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit

plt .rcParams.update({ ’axes.titlesize’: ’xx—large’})
plt .rcParams.update ({ 'axes.labelsize ’: ’xx—large’})
plt .rcParams.update ({ *xtick.labelsize’: ’x—large’})
plt .rcParams.update ({ "ytick.labelsize’: ’x—large’})
plt.rcParams.update({ ’legend. fontsize’: ’large’})

def read_in(name,coll skipheader ,skipfooter):
a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np.float
— ,delimiter=";" skip_header=skipheader ,skip_ footer=skipfooter)
=)
return a

def doppel _e(x,A,a,B,b):
return Axnp.exp(a*x) + Bxnp.exp (bx*x)

# Langen der Plattchen

Alu_daten = [[1.005,1,1.005,1.005,1,1,1.005,1,1,1.07,1,1.005,1.005],
< [1.46,1.47,1.46,1.46,1.46,1.465,1.455,1.455,1.46,1.46],
< [1.95,1.95,1.955,1.955,1.955,1.95,1.945,1.975,1.955] ,
< [2.51,2.51,2.51,2.51,2.51,2.505,2.51,2.51,2.51,2.51,2.51] ,
< [3.01,3.01,3.01,3.015,3.015,3.015,3.01,3.01,3.01,3.02,3.01,3.01,3.005],
— [3.985,3.99,3.99,3.985,3.98,3.98,4,3.985,3.98],
< [0.28,0.215,0.21,0.21,0.21,0.21,0.26,0.225]
< [0.245,0.215,0.22,0.21,0.205,0.205,0.21,0.22],
< [0.21,0.22,0.21,0.225,0.215,0.225,0.21,0.22]
< [0.215,0.22,0.245,0.22,0.23,0.205,0.22,0.205]] #mm
Alu_langen_mittel = [] #nm
Alu_langen fehler = [] #nm

for i in range(0,len(Alu_daten)):
Alu_langen_ mittel.append (sum(Alu_daten[i])/len(Alu_daten[i]))
Alu_langen_ fehler.append (np.std (Alu_daten[i],ddof=1)/np.sqrt (np. float (
— len(Alu_daten[i]))))

= Alu_langen_ mittel |
Alu_langen_mittel |
Alu_langen_mittel |
Alu_langen_mittel |
Alu_langen_ mittel |
[
1
1

- 0o A0 T
Il

= Alu_langen_mittel
pl = Alu_langen_mitte ]
p2 = Alu_langen_mitte ]
p3 = Alu_langen_ mittel [8]
p4d = Alu_ langen mittel [9]

Length = [a,b,c,d,e,btc,f,cHd,cte,dte, c+f, f+d, f+e, f+b+c, {+bt+d, f+e+b, f4cte, f
— +etd, f+etcta,pl,pl+p2, pl+p2+p3, pl+p2+p3+p4, a+pl, a+pl+p2, a+pl+p2+4p3 , at+
— pl+p2+p3+pd| #nm
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a = Alu_langen_ fehler [0
b = Alu_langen_ fehler |1
¢ = Alu_langen_fehler [2
d = Alu_langen_fehler[3
e = Alu_langen_fehler [4
f = Alu_langen_ fehler [5
pl = Alu_langen_ fehler [6]
p2 = Alu_langen_ fehler [7]
p3 = Alu_langen_fehler [8]
p4 Alu_langen_ fehler [9]
Length_err = [a,b,c,d,e,np.sqrt (b*x2 + cx*%2) ,f np.sqrt (c*x2+d=*x2) np.sqrt (¢
— #x2+exx2) np.sqrt (dxx2+ex*x*x2) ,np.sqrt (cxx2+fxx2) np.sqrt ({*x2+d**2) np
— .sqrt (fx*2+e**%2) np.sqrt ( fxx24+b*xx24+c*x2) ;np.sqrt (f+x2+bx+x2+d**2) ,np.
— sqrt ({#x24ex+x2+bxx2) ,np.sqrt ({*x2+cxx24+e*x*x2) np.sqrt ({+24+e*xx2+dxx2) ,
— np.sqrt (Fx«2+exx2+cxx2+axx2) ,pl,np.sqrt (pl«x2+p2+x2) np.sqrt (plx+2+p2
(_>
H

#%2+4+p3*+2) ,0p. sqrt (plxx2+p2*xx2+p3**x2+pd**2) np.sqrt (a*x*2+pl**x2) np.
sqrt (axx24+plxx24+p2x*%2) ,np.sqrt (axx2+pl+x2+p2+x2+4+p3**2) np.sqrt (axx24+
— pls*x2+4p2xx2+4p3xx2+pd*x2) ] Hnm

#1 linien absorber

Counts = []
Counts__Fehler = []

for i in range(l,len(Length)+1):
y2 = read_in(f’alu—st—{i }.TKA’ ,0,2,0)
x = np.linspace (0,len(y2),len(y2))
if i==1:
a=max(y2)
y = y2/a
Counts.append (sum(y2) /300)
Counts_ Fehler.append (np.sqrt (sum(y2))/300)

plt.errorbar (Length, Counts,xerr=Length_err, yerr=Counts_Fehler, color=’
— royalblue’, fmt="x’,label="Data points’,zorder=3)

plt.xlabel(r’shielding thickness $d$ [mm]’)

plt.ylabel (r’$\dot{N}$ [1/s]’)

p0 = (22,-0.035,2.54, —1.28)
x = np. linspace (0,12,5000)

fitPara , fitCova = curve_fit(doppel e, Length, Counts, sigma=Counts_Fehler,
= p0=p0)
A = fitPara[0]

a = fitPara[1]
B = fitPara [2]
b = fitPara [3]
plt.plot (x,doppel e(x,A,a,B,b),zorder=2,color="r’ ,label="Double exp fit’)
plt.title(’Stainless steel absorber’)

plt.x1lim (0,10.5)

plt.ylim (12.5,35)

plt.plot(x, doppel e(x,A,a,0,0),color="g’ label="Extrapolation

b

,zorder=1)

A _err = np.sqrt (fitCova [0][0])
a_err = np.sqrt (fitCova [1][1])
B_err = np.sqrt (fitCova [2][2])
b_err = np.sqrt (fitCova [3][3])

plt.legend ()
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plt.grid (which="major’,color="k’ ,linewidth=0.3)

plt.rc(’axes’, axisbelow=True)
plt.savefig(’l—linien—alu.eps’)
plt .show ()

print (f’bei stelle 0: {round(A,3)}+—{round(np.sqrt(A_errxx2) ,2)}[1/s]")

comptonl = A
comptonl err = A_err

print (xfitPara ,’\n’)
print (round (A_err,1) ,round(a_err,4) ,round(B_err,2) ,round(b_err,1))

6 linien absorber

Counts = []
Counts__Fehler = []

for i in range(1l,len(Length)+1):
y2 = read_in(f’alu—ei—{i}.TKA’ ,0,2,0)
x = np.linspace (0,len(y2) ,len(y2))

if i==1:
a=max(y2)
y = vy2/a

Counts.append (sum(y2) /300)
Counts_ Fehler.append (np.sqrt (sum(y2))/300)

plt.errorbar (Length, Counts,xerr=Length_err, yerr=Counts_Fehler, color=’
— royalblue’ ,fmt="x’,label="Data points’,zorder=3)

plt.xlabel(r’shielding thickness $d$ [mm]’)

plt.ylabel (r’$\dot{N}$ [1/s]’)

a = 20.6

b = —0.04

c = 2.9

d = -1.3

p0 = (a,b,c,d)

x = np.linspace (0,12,5000)

plt.legend ()

fitPara , fitCova = curve_fit (doppel e, Length, Counts, sigma=Counts_ Fehler,
— p0=p0)

= fitPara [0]

= fitPara[1]

= fitPara [2]

= fitPara [3]

_err = np.sqrt (fitCova [0][0])

err = np.sqrt (fitCova [1][1])

_err = np.sqrt (fitCova [2][2])

_err = np.sqrt (fitCova [3][3])

cCwWe o Wy >
|

plt.plot (x,doppel _e(x,A,a,B,b),zorder=2,color="r’ ,label=r ’Double exp fit’)
plt.title (’Natural iron absorber’)

plt.xlim (0,10.5)

plt.ylim (12.5,35)

plt.plot(x, doppel _e(x,A,a,0,0), label="Extrapolation’,color="g’,zorder=1)
plt.legend ()

plt.grid (which="major’ ,color="k’ ,linewidth=0.3)

plt.rc(’axes’, axisbelow=True)
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plt.savefig(’6—linien—alu.eps’)
plt .show ()

print (f’bei stelle 0: {round(A,3)}+—{round(np.sqrt(A_errx%2),2)}[1/s]\n\n")

compton6 = A
compton6__err = A_err

compton_mittel = (comptonl + compton6) / 2
compton_mittel err = compton_mittel*np.sqrt ((comptonl err/comptonl)**2 + (
— compton6__err/compton6 ) x*2)

print (f’Compton Background rate mean of both 1 and 6 line absorber: {round(
— compton_mittel ,3)}+—{round (compton_mittel err,2)} [1/s]’)

L =[]

L.append (’Compton Background [1/s]
L.append (f’{round (compton_ mittel
file=open(r ’'compton—back.csv’, 'wt’
file. writelines (L)

file . close ()

, Uncertainty [1/s]\n’)
) },{round (compton_ mittel err,2)} ")
)

print (xfitPara ,’\n’)
print (round (A_err,2) ,round(a_err,4) ,round(B_err,2) ,round(b_err,1))

G.4. Attenuation of Gamma Radiation by Acrylic Glass

import numpy as np

import sympy as sp

import pylab as pl

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit

plt .rcParams.update ({ 'axes. titlesize ’: ’xx—large’})
plt .rcParams.update ({ 'axes.labelsize ’: ’xx—large’})
plt .rcParams.update ({ *xtick.labelsize’: ’x—large’})
plt .rcParams.update ({ "ytick.labelsize’: ’x—large’})
plt.rcParams.update({ ’legend. fontsize’: ’large’})

def read_in(name):
a = np.array (np.genfromtxt (np.str (name) ,usecols=0,dtype=np. float ,
— delimiter=","  skip_header=2,skip_footer=0))
return a

T=600 #s

print (" ")
N1_spec=read_in("plexi.TKA")

N1_all=sum(N1_spec)

sl_all=np.sqrt (N1_all)

NI=N1_all/T

sl=s1_all/T

print (f"N_Plexi: {round(N1,2)}+—{round(sl1,2)} [1/s]")

N2_spec=read_in("no_ plexi . TKA")

N2_ all=sum(N2_spec)
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s2_all=np.sqrt (N2_all)

N2=N2_ all /T

s2=s2_all/T

print ({"N_Free: {round(N2,2)}+—{round(s2,2)} [1/s]")

print (' \n")

print(—np.log(0.556) /(1.19%x0.198))
print (np.sqrt ((0.7/(100%0.556%1.19%0.198) )*x2 + (np.log(0.556)
<5 %0.002/(1.19%0.198%%2) ) #%2))

G.5. Velocity of the Sledge

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit

plt .rcParams.update ({ 'axes. titlesize ’: ’xx—large’})
plt .rcParams.update ({ "axes.labelsize ’: ’xx—large’})
plt .rcParams.update ({ *xtick.labelsize’: ’x—large’})
plt.rcParams.update ({ ’ytick.labelsize’: ’x—large’})
plt.rcParams.update({ ’legend. fontsize’: ’large’})

def lin_ fit(x,a,b):
return ax*xx+b

def red_chisquare(x,y,y_err,fit_function ,fitPara):
DOS=len (x)—len(fitPara)
r =[]
for i in range(0,len(x)):
r.append (((y[i]—fit_function(x[i],xfitPara))/y_err[i]) xx2)
chisq=sum(r) /DOS
return chisq

vPC=np.array (np. genfromtxt (" velocity.txt", , usecols=0,dtype=np. float ,

— delimiter="," skip_header=1)) #nm/s
xstart=np.array (np.genfromtxt (" velocity.txt" usecols=1,dtype=np. float ,
— delimiter="," skip_header=1)) #m
xstop=np.array (np.genfromtxt (" velocity.txt", usecols=2,dtype=np. float ,
— delimiter="," skip__header=1)) #m
t=np.array (np.genfromtxt (" velocity.txt" 6 usecols=3,dtype=np.float ,delimiter=
— " " skip_header=1)) #s

sx=np.array (np. genfromtxt ("velocity.txt" usecols=4,dtype=np. float ,delimiter
— ="," skip_header=1)) #m

s t=0.3 #s

v_pc = [1,2,3,4,5,6,7,8]

v =1[0.992,1.985,2.982,3.97,4.94,5.96,6.97,7.97]
s_v=1[0.003,0.006,0.011,0.02,0.02,0.03,0.03,0.04]

plt.errorbar (v_pc,v,yerr=s_v,fmt="x’,label="Data points’,color="r")
plt.title ("Velocity calibration")

plt.grid (which="major’ ,color="k’  linewidth=0.3,)

plt.rc(’axes’, axisbelow=True)

plt.xlim (0,9)

plt.ylim (0,9)
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plt.xlabel (r"${v}_ \mathrm{PC}$ [mm$\,6 $s$"{-1}$]")
plt.ylabel (r"${v}_\mathrm{meas}$ [mm$\,6$s$~{-1}$]")

fitPara ,fitCova=curve_ fit(lin_fit ,v_pc,v,sigma=s_v)
a_fit=fitPara [0]

b_ fit=fitPara [1]

a_err=np.sqrt (fitCova [0][0])

b_err=np.sqrt (fitCova [1][1])

chisq=red_ chisquare(v_pc,v,s_v,lin_fit ,fitPara)
print (f"red chisquare: {chisq} \n a: {round(a_fit ,4)} + {round(a_err,4)} \
— n b: {round(b_fit,3)} + {round(b_err,3)} \n")

xfit=np.linspace (0,9)

plt.plot (xfit ,lin_ fit (xfit ,a_fit ,b_fit),zorder=1,label="Linear fit", 6 color=’
< royalblue’,linewidth=1)

plt.legend ()

plt.savefig("velocity .eps")

plt .show ()

(3.6. Stainless Steel Absorber

Data Processing

import numpy as np
import matplotlib.pyplot as plt

def read_in(name, coll ,col2 ,col3):
a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np. float

— ,delimiter="," skip_header=0,skip_footer=0))

b = np.array (np.genfromtxt (np.str(name) ,usecols=col2 ,dtype=np. float
— ,delimiter="," ,skip__header=0,skip_footer=0))

¢ = np.array (np.genfromtxt (np.str (name) ,usecols=col3 ,dtype=np. float
— ,delimiter="," skip_header=0,skip_footer=0))

return [a,b,c]

def read_in2(name,coll ,col2):
a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np. float
— ,delimiter="," skip_header=1,skip_footer=0))
b = np.array (np. genfromtxt (np.str(name) ,usecols=col2 dtype=np. float
— ,delimiter="," skip_header=1,skip_footer=0))
return [a,b]

velocity2 ,time2 ,counts2 = read_in(’1llinien—alle —daten.csv’,0,1,2)
velocity = []

time = []

counts = []

i=0
while i < len(velocity2)—1:
if velocity2[i]==velocity2[i+1]:
if velocity2[i+l]==velocity2[i+2]:
if velocity2[i+2]==velocity2[i+3]:
if velocity2[i+3]==velocity2[i+4]:
velocity .append(velocity2[i])
time.append (time2 [i]+time2 [i+1]+time2 [i42]+time2 [1+3]+
— time2[i+4])
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counts.append (counts2 [i]4+counts2[i+1]4+counts2 [i+2]+
— counts2 [i+3]+counts2 [i+4])
i=i+5
else:
velocity .append(velocity2[i])
time . append (time2 [i]+time2 [i41]+time2 [ i+2]+time2 [i+3])
counts.append (counts2 [i]4+counts2[i+1]+counts2 [i+2]+
— counts2[i+3])
i=i4+4
else:
velocity .append(velocity2[i])
time .append (time2 [i]+time2 [i+1]+time2[i+2])
counts.append(counts2 [i]+counts2 [i+1]+counts2 [i+2])
i=i+3
else:
velocity .append(velocity2[i])
time.append (time2 [i]+time2 [i41])
counts.append (counts2[i]+counts2[i+1])
i=i42
else:
velocity .append(velocity2[i])
time .append (time2[i])
counts.append (counts2[i])
i=i+1

rate = []

s_rate = []

for i in range(0,len(velocity)):
rate.append (counts|[i]/(time[i]/1000))
s_rate.append(np.sqrt (counts[i]) /(time[i]/1000))

compton_ back ,compton_back err = read_in2(’compton—back.csv’ ,0,1)
err__korrigiert = []

for i in range(0,len(s_rate)):
err__korrigiert .append(np.sqrt(s_rate[i]*+*2 + compton_back errxx2))

T = 0.556 #korrigierte transmission
s T = 0.007

rate_korrigiert = []
s_rate_korrigiert = []
for i in range(0,len(rate)):
rate korrigiert.append((rate[i]—compton back)/T)
s_rate_korrigiert.append(np.sqrt( (s_rate[i]/T)*+2 + (compton_back_ err/
— T)*%2 + ((rate[i]—compton_ back)xs T/Txx2)xx2) )

plt.errorbar(velocity , rate_korrigiert, yerr=s_rate_korrigiert, fmt="x",
— linewidth=0.3)

plt.title(’corrected 1 line absorber spectrum’)

plt.xlabel (’Velocity [mm/s]’)

plt.ylabel ("Rate [1/s]’)

plt.savefig(’1linien.png’)

plt .show ()

#daten speichern in ein file
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L= ]
L.append(’Velocity [mm/s], corr Rate [1/s], s_corr_Rate [1/s]\n’)
for i in range(0,len(velocity)):
L.append(f’{velocity[i]},{round(rate_korrigiert[i],3)},{round(
— s_rate_korrigiert[i],3)}\n’)

file=open(r’daten.csv’, 'w+’)
file.writelines (L)
file . close ()

Evaluation

import numpy as np

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit
from scipy.special import wofz

from scipy.special import jv

I ’ .

plt.rcParams.update({ axes. titlesize 'xx—large’})

plt .rcParams.update ({ 'axes.labelsize 'xx—large ' })

plt .rcParams.update ({ *xtick.labelsize’: ’x—large’})
{ )
({

) ).

plt .rcParams.update ({ 'ytick.labelsize’: ’x—large’}
plt.rcParams.update legend . fontsize’: ’large’})

b

def read_in(name,coll ,col2,col3):

a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np. float
— ,delimiter=","  skip_ header=1,skip_footer=0))

b = np.array(np. genfromtxt (np.str (name) ,usecols=col2 ;dtype=np. float
— ,delimiter="," skip__header=1,skip_footer=0))

¢ = np.array (np.genfromtxt (np.str (name) ,usecols=col3 ,dtype=np.float
— ,delimiter=","  skip_header=1,skip_footer=0))

return [a,b,c]

def Gaussian(x, mu, sigma, A, B):
return —A/(np.sqrt (2+np.pi)*sigma) * np.exp(—0.5%((x—mu)/sigma)**2) + B

def Lorentz (x,mu,gamma,A,B):
return —A/(np.pi) * gamma/((x—mu)**2 + gammaxx2) + B

def Voigt(x,mu,sigma ,gamma,A,B):
return —A/(sigma*np.sqrt(2«np.pi)) * np.real (wofz ((x—mu+lj«gamma)
/(sigmax*np.sqrt(2)))) + B

velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
plt.errorbar (velocity , rate, yerr=s_rate, fmt="x’, linewidth=0.5, zorder=1,
< color="royalblue’,label="Data points’)

Gaussian Fit
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
a=220

b=0

velo__gauss = velocity [b:a]
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rate_ gauss = rate[b:a]
s_rate__gauss = s_rate[b:a]

p0=(0.2,0.3,10,20)
fitPara , fitCova = curve_fit(Gaussian, velo_gauss, rate_gauss,sigma=
— s_rate_gauss, p0=p0)

mu__gauss = fitPara [0]
sigma_ gauss = fitPara [1]
A__gauss = fitPara [2]
B_ gauss = fitPara [3]
mu__err__gauss = np.sqrt (fitCova [0]][0])
sigma__err_gauss = np.sqrt (fitCova [1][1])
A_err_gauss = np.sqrt (fitCova [2][2])
B_err_gauss = np.sqrt (fitCova [3][3])

x=np.linspace (velocity [b], velocity [a],1000)
plt.plot (x,Gaussian (x,mu_gauss,sigma_gauss ,A_gauss,B_gauss), zorder=2,
— linewidth="1.5", color="r’ ,label=’"Gaussian fit ")

DOS=len (velo__gauss)—4
-
for i in range(0,len(velo_gauss)):
r.append (((rate_gauss[i]—Gaussian(velo_gauss[i]|,mu_gauss,sigma_gauss,
— A_gauss,B_gauss))/s_rate_gauss[i]) *x2)
redchisq__gauss = sum(r)/DOS

Loretz Fit
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
b=0
a=220
velo_lorentz = velocity [b:a]
rate_lorentz = rate[b:a]
s_rate_lorentz = s_rate[b:a]

p0=(0.2,0.3,10,20)
fitPara , fitCova = curve_fit(Lorentz, velo_ lorentz, rate lorentz, sigma=
— s_rate_lorentz ,p0=p0)

mu_ lorentz = fitPara [0]
gamma_ lorentz = fitPara[1]
A _lorentz = fitPara [2]
B_lorentz = fitPara [3]
mu__err__lorentz = np.sqrt (fitCova [0][0])
gamma_ err_lorentz = np.sqrt (fitCova [1][1])
A err lorentz = np.sqrt (fitCova [2][2])
B_err_lorentz = np.sqrt (fitCova [3][3])

x=np.linspace (velocity [b], velocity [a],1000)

plt.plot (x,Lorentz (x, mu_lorentz ,gamma_lorentz , A lorentz ,B_lorentz) ,
— linestyle="—",linewidth="1.5", color="k’, zorder=3, label="Lorentz
— fit )
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DOS=len (velo lorentz)—4
v = (]
for i in range(0,len(velo_lorentz)):
r.append (((rate_lorentz|[i]—Lorentz(velo_lorentz[i],mu_lorentz,
— gamma_ lorentz , A_lorentz ,B_lorentz))/s_rate_lorentz[i]) **2)
redchisq_lorentz = sum(r)/DOS

Voigt fit
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
b=0
a=220
velo_voigt = velocity [b:a]
rate_voigt = rate[b:a]
s_rate_voigt = s_rate[b:a]

p0=(0.188,0.0535,0.298,12,22)
fitPara , fitCova = curve_fit(Voigt, velo_voigt, rate_ voigt, sigma=
— s_rate_voigt ,p0=p0)

mu_ voigt = fitPara [0]
sigma_ voigt = fitPara [1]
gamma_ voigt = fitPara [2]
A_voigt = fitPara [3]
B_ voigt = fitPara [4]
mu__err_voigt = np.sqrt (fitCova [0]][0])
sigma__err_voigt = np.sqrt (fitCova [1][1])
gamma_ err_voigt = np.sqrt (fitCova [2][2])
A_err_voigt = np.sqrt (fitCova [3][3])
B err voigt = np.sqrt (fitCova [4][4])

x=np.linspace (velocity [b], velocity [a],1000)

plt.plot(x,Voigt(x,mu_voigt, sigma_voigt,gamma_voigt, A voigt,B_voigt),
— dashes=(3,4), linewidth="1.5", color="lime’, zorder=4, label=’Voigt
— fit )

DOS=len (velo__voigt)—5
r =]
for i in range(0,len(velo_ voigt)):
r.append (((rate_voigt[i]—Voigt(velo_voigt[i],mu_voigt,sigma_voigt ,
gamma_ voigt , A_voigt,B_voigt))/s_rate_voigt[i]) x*2)
redchisq_ voigt= sum(r)/DOS

plt.title(’Stainless steel absorber M bauer spectrum’)
plt . xlabel (r’$v$ [mm$\,$s$"{-1}8]")

plt . ylabel (r’$\dot{N}$ [s$7{-1}8]")

plt.xlim(—-2.2,2.2)

plt.ylim (10,24)

plt.legend ()

plt .minorticks omn ()

plt.grid (b=True, which="minor’, linestyle="—")

plt.grid (which="major’ ,color="k’)

plt.rc(’axes’, axisbelow=True)
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plt.savefig(’1linien.eps’)
plt .show ()

print (f’ Gauss: mu = {round (mu_gauss,4)}+—{round (mu_err_gauss,4)} mm/s,
— sigma = {round (sigma_ gauss,4)}+—{round(sigma_err gauss,4)} nm/s, A =
— {round (A_gauss,4)}+—{round (A_err_gauss,4)} mm/s"2, B = {round (B_gauss
— ,4)}+—{round (B_err_gauss,4)} 1/s, red. chi"2={round(redchisq_gauss,3)
= hn')
print ({’Lorentz: mu = {round (mu_lorentz ,4)}+—{round (mu_err_lorentz ,4)} mm/s
— , gamma = {round(gamma_lorentz,4)}+—{round (gamma_err_lorentz ,4)} mm/s
— , A = {round (A_lorentz ,4)}+—{round (A_err_lorentz,4)} mm/s"2, B = {
— round (B_lorentz ,4)}+—{round (B_err_lorentz ,4)} 1/s, red. chi™2={round(
— redchisq lorentz ,6)}, A={A lorentz} \n’)
print (f’Voigt: mu = {round (mu_voigt,5) }+—{round (mu_err_voigt,5)} mm/s,
sigma = {round (sigma_voigt,4)}+—{round (sigma_err_voigt,4)} mm/s ,gamma
= {round (gamma_ voigt ,4) }+—{round (gamma_ err_voigt ,4)} mm/s, A = {
round (A_ voigt ,4) }+—{round (A_err_voigt ,4) } mm/s"2, B = {round(B_voigt
,4) ++—{round (B_err_voigt ,4)} 1/s, red. chi™2={round(redchisq_voigt ,6)
Hn®)

USRI

Isomeric Shift

E_gamma = 14.4%1000 #eV

c = 2.99792458x10xx11 #mm/s
reee = E gamma/c
print (’ ")

print ( ’Isomeric Shift’)

print (f'E_iso_gauss={round (mu_gaussxreee *10%*9 1) }+—{round (mu__err__gaussx
— reeex10%%9,1)}neV’)

print (f’E_iso_lorentz={round (mu_lorentz*reee*10%%9,1)}+—{round (
— mu_err_lorentzxreee*10x%9,1) }neV’)

print (f "E_iso_ voigt={round (mu_ voigtxreee*10%%9,1)}+—{round (mu_err_ voigt=
— reeex10%x9,1)}neVi\n’)

effective absorber thickness

print (’ ’

print (’effective Absorver thickness T _A’)
f A = 0.8 #debye—waller aus anleitung
d A = 25x10%x(—6) #meter

beta = 0.022 # anteil von 57 Fe in Probe
f = 0.7 #%, iron content in absorber
s_f = 0.05 #%

## sigma_ 0 berechnen
lambdaa = 0.0861%10xx(—9)#meter

I_e = 3/2 #spin excited state
I g = 1/2 #sping ground state
alpha = 8.58

s_alpha = 0.18

sigma_ 0 = (lambdaa**2/(2«np.pi)) * (2x1_e+1)/(2%xI_g+1) * 1/(1+alpha)# m
— 72
s_sigma_0 = sigma_0Oxs_alpha/(1+alpha)

print (f’sigma={round (sigma_0%10x%(24) ,0)}+—{round (s_sigma_0x10*x(24) ,0)}
< 107-24 m27)
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rho = 7874 #kg/m™3

55.845%10%x(—3) # kg/mol

s M = 0.002x10xx(—3) #kg/mol

N_A = 6.02214076 * 10xx(23) #I1/mol avogadro

n A = rtho*(N_A/M)xf

s n A =n Axnp.sqrt ((s_f/f)*x2 + (s M/M)*%2)

print ({'n_ A={round (n_Ax10x%(—28) ,1)}4+—{round (s_n_Ax10%xx(—28),1)} *x10728 m
— 7=37)

T A = 1f Asxn_ Axbetaxsigma_0xd_A

s T A=T As«np.sqrt ((s. n A/n A)*+2 4+ (s_sigma_0/sigma_0)**2)

print ({'T_A={round (T_A,1) }4+—{round (s_T_A,1)}\n’)

Debye— Waller Factor

print (’ ")

N_infty_ gauss = B_ gauss

N_infty_ lorentz = B_ lorentz

N_infty_ voigt = B_ voigt

s_ N_infty_ gauss = B_err_gauss

s_ N_infty lorentz = B_err_lorentz

s_ N_infty_ voigt = B_err_voigt

N_mu_ gauss = Gaussian (mu__gauss, mu_ gauss, sigma_ gauss , A_ gauss,B_ gauss)

N_mu_lorentz = Lorentz(mu_lorentz ,mu_lorentz ,gamma_lorentz,A_lorentz,
— B__lorentz)

N_mu_ voigt = Voigt (mu_voigt,mu_ voigt, sigma_ voigt,gamma_voigt,A_voigt,

— B_ voigt)

s N_mu_ gauss = Gaussian (mu_gauss—mu_ err_ gauss ,mu_ gauss, sigma__gauss ,
— A_gauss,B_gauss) — N_mu_ gauss

s_ N_mu_lorentz = Lorentz(mu_lorentz—mu_ err_lorentz ,mu_lorentz ,gamma_lorentz
— ,A_lorentz,B_lorentz) — N_mu_lorentz

s. N_mu_ voigt = Voigt (muivoigt—muierrivoigt ,mu_ voigt, sigma_ voigt,

— gamma_ voigt, A_voigt,B_voigt) — N_mu_ voigt

f Q_gauss = (N_infty_ gauss—N_mu_gauss) /(N_infty gauss*(l—np.exp(—-T_A/2)x
< jv(0,1j% T_A/2)))

f_Q_lorentz = (N_infty_lorentz—N_mu_lorentz) /(N_infty_lorentz*(l—np.exp(—
— T A/2)*jv(0,1jx T A/2)))

f Q_voigt = (N_infty_voigt—N_mu_voigt) /(N_infty voigt+*(l1—np.exp(—T _A/2)x
S jv(0.1)% T A/2)))

s_f Q_gauss = np.sqrt( (N_mu_gaussxs_N_infty_ gauss/(N_infty_gauss**2x(1—np.
— exp(—=T A/2)%jv(0,1jx T A/2))))**2 + (—s_N_mu_gauss/(N_infty_ gaussx(1—
— np.exp(—T A/2)xjv (0,1j+«T A/2))))*x2 + (—np.exp(-T_A/2)*(jv(0,1jx T A
— /2)+1j*jv (1,1j+«T_A/2))xs T A/(2x(np.exp(—T_A/2)—jv(0,1j«T _A/2))*%2))
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— *x2 )

s_f Q_lorentz = np.sqrt( (N_mu_lorentz+s_N_infty_lorentz /(N_infty_lorentz
— xx2x(l—np.exp(-T_A/2)xjv(0,1jx T A/2))))*+2 + (—s_N_mu_lorentz/(
— N_infty_lorentz*(l—np.exp(—=T_A/2)xjv(0,1j+«T A/2))))*+2 + (—np.exp(—
— T A/2)x(jv(0,1j% T_A/2)+1j*jv(1,1j*¥T_A/2))*s T A/(2*(np.exp(-T_A/2)—
— jv(0,17«T_A/2))*%2))*x2 )

s_f Q_voigt = np.sqrt( (N_mu_voigtxs_N_infty_voigt/(N_infty_voigt**2x(1—np.
— exp(—-T_A/2)%jv(0,1j%x T _A/2))))**2 + (—s_N_mu_voigt/(N_infty_voigtx(1—
— np.exp(—T A/2)xjv(0,1j+«T A/2))))*+x2 + (—np.exp(-T_A/2)*(jv(0,1jx T A
— /2)+1j*jv(1,1j+«T_A/2))xs T A/(2x(np.exp(—T_A/2)—jv(0,1j«T _A/2))*%2))
< k%2 )

print (f ’Debye—Waller_Q Gaus: {round(np.real(f_Q_gauss) ,3)}+—{round(np.real(
— s_f Q_gauss),3)}")

print (f’Debye—Waller_ Q Lorentz: {round(np.real(f Q_lorentz) ,3)}+—{round (nup.
— real(s_f Q_ lorentz),3)}")

print (f 'Debye—Waller  Q Voigt: {round(np.real(f Q_ voigt),3)}+—{round (np.real
— (s_f_Q_voigt),3)}\n")

A e ffective source thickness
print (’ ’
print (’effective source thickness T Q7)

n Q =n A

sn@Q =snA

beta =1

d Q = 100%10%%(—10) #meter, 100Angstrom also

T Q gauss = f Q_ gauss*n Qxbetaxsigma_0xd Q

s. T Q_gauss = T_Q_ gaussknp.sqrt ((s_ n Q/n Q)**2 + (s_sigma_0/sigma_0)xx2
— + (s_f _Q_gauss/f_ Q_gauss)*x*2)

T_Q_lorentz = f_Q_lorentzsn_ Qxbetaxsigma_ 0xd_Q

s T Q_ lorentz = T_Q_lorentzxnp.sqrt ((s. n_ Q/n Q)**2 + (s_sigma_ 0/sigma_0)
— xx2 +(s_f Q_ lorentz/f Q_lorentz)x*%2)

T _Q_voigt =1 Q_voigtsn Qxbetaxsigma_0xd Q

s_ T Q_voigt = T_Q_voigt*np.sqrt ((s_n_Q/n_Q)**2 + (s_sigma_0/sigma_0)*x2

— + (s_f_Q_voigt/f_Q_voigt) x*2)

print ({’T_Q Gauss: {round(np.real(T_Q_gauss),3)}+—{round(np.real(
— s_f Q_gauss),3)}")

print (f’'T Q Lorentz: {round(np.real(T Q_ lorentz) ,3)}+—{round(np.real(
— s_f_Q_lorentz) ,3)}")

print (f’T_Q Voigt: {round(np.real (T_Q_voigt) ,3)}+—{round (np.real(
— s_f Q_voigt),3)}\n")

A HAAHAAA Line width
print (’
print (’line width Gamma in mm/s’)

)

Gamma__gauss = 2xnp.sqrt (2+«np.log (2))*sigma_ gauss #nm/s

s Gamma_ gauss = 2xnp.sqrt (2*«np.log (2))*sigma_err_gauss

print (f ’Gamma Gauss: {round(Gamma_gauss,3)}+—{round (s_Gamma_gauss,3)} mm/s’
=)
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Gamma,_ lorentz = 2xgamma_ lorentz #nmm/s

s_ Gamma_ lorentz = 2xgamma_ err_ lorentz

print (f’Gamma Lorentz: {round(Gamma_lorentz,2)}+—{round(s_Gamma_lorentz,2)}
— mm/s’)

Gamma,_ voigt = 2xgamma_ voigt
s Gamma_ voigt = 2xgamma_ err_ voigt

print (f’Gamma Voigt: {round(Gamma_voigt,3)}+—{round(s_Gamma_voigt,3)} mm/s\
— n’)

# umrechnen in FEnergie durch Doppler
print (’ ")
print (’line width Gamma in neV’)

gamma,_ g = Gamma_ gaussxreee #eV
S gamma_g = s Gamma_ gausskreee
gamma_ | = Gamma_ lorentzkxreee #eV

s_gamma,_ | s _Gamma_lorentzxreee
gamma,_ v Gamma_ voigtxreee #eV
s gamma_v = s_Gamma_ voigtxreee

print (f ’Gamma Gauss: {round(gamma_g*10%%9,1)}+—{round (s_gamma_g*10*%9,1)}

— neV’)

print (f 'Gamma Lorentz: {round(gamma 1x10%%9,1)}+—{round(s_gamma_ 1x10*%9,1)}
— neV’)

print (f ’Gamma Voigt: {round (gamma_v*10%%9,0)}+—{round (s_gamma_vx10%%9,0)}
— neV’)

# in lifetime umrechnen
print (’ ")
print (’lifetime tau’)

hquer = 6.582119569 x10x*x(—16) #eVs

tau_g = hquer/gamma g #s

tau_ 1 = hquer/gamma_l

tau_v = hquer/gamma v

s_tau_g = tau_g x s_gamma_g/gamma_g #s
s tau_ 1 = tau_l % s_gamma l/gamma |

s tau v = tau Vv *x S ggammaiv/ gamma,_ v

print ({ tau Gauss: {round(tau_g=*10%%9,1)}+—{round(s_tau_g+10%xx9,1)} ns’)
print (f tau Lorentz: {round(tau_l*10%%9,1)}+—{round(s_tau_ 1x10%%9,1)} ns’)
print (f’ tau Voigt: {round(tau_v*10%x9,0)}+—{round(s_tau_vx10%%9,0)} ns’)

# lifetime correction
print (’ ")
print (’lifetime tau corrected’)

rel width = 3.69
s _rel width = 0.12

tau_cor_g = rel__width x tau_g #s
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tau_cor_ 1 = rel width * tau 1

tau__cor_ v = rel width * tau_v

s _tau_cor_g = tau_cor_gx*np.sqrt ((s_rel width/rel width)*x2 + (s_tau_g/
— tau_g)*%2)

s_tau_ cor_ 1 = tau_cor_lxnp.sqrt ((s_rel_width/rel__width)*%2 + (s_tau_l/
— tau_l)*%2)

s_tau_cor_ v = tau_cor_vx*np.sqrt ((s_rel_width/rel_width)**2 + (s_tau_v/
— tau_v)xx*2)

print (f’tau corr Gauss: {round(tau_cor_g=*10%%9,0)}+—{round (s_tau_cor_g
— x10%%x9,0)} ns’)

print (f’tau corr Lorentz: {round(tau_cor_1%10%%9,0)}+—{round(s_tau_cor_1
— %10%%9,0)} ns’)

print (f’tau corr Voigt: {round(tau_cor_ v*10%%9,0)}+—{round(s_tau cor_v
— x10%%9,0)} ns’)

extra stuff
print ( ’gamma parameter from literature linewidth Gamma:’, round
— ((4.7%10%x(—9))/(reeex2),5), 'mm/s’)
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
plt.errorbar (velocity , rate, yerr=s_rate, fmt="x’, linewidth=0.3, zorder=1,
— label="Data points’)
x=np.linspace (velocity [b], velocity [a],9000)

plt.plot (x,Lorentz (x, mu_lorentz ,gamma_lorentz , A lorentz ,B_lorentz) ,

— linestyle="—",linewidth="1.5", color="k’, zorder=2, label="Lorentz
— fit )

plt.plot(x,Lorentz (x, mu_lorentz,gamma_lorentz/3.69,A lorentz/3.69,B_lorentz
— ),linestyle="-" linewidth="1.5", color="lime’, zorder=3, label=’

— Corrected Lorentz fit’)

plt.plot (x,Lorentz (x,mu_lorentz,0.04892446363194445,A lorentz/gamma_ lorentz
— %0.04892446363194445,B_lorentz) ,label="Theoretical Lorentz’,color="r’
— ,linewidth="1.5",zorder=4)

plt.title(’Stainless steel absorber M bauer spectrum’)
plt.xlabel (r’$v$ [mm$\,6 $s$~{-1}$]")
plt.ylabel (r ’$\dot{N}$ [s$7{-1}$]")

plt.xlim(—-2.2,2.2)

plt.ylim (10,24)

plt.legend ()

plt . minorticks_on ()

plt.grid (b=True, which="minor’, linestyle="—")
plt.grid (which="major’ ,color="k’)
plt.rc(’axes’, axisbelow=True)

plt.savefig(’resolution.eps’)
plt .show ()

G.7. Natural Iron Absorber

Data Processing
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import numpy as np
import matplotlib.pyplot as plt

def read_in(name,coll ,col2,col3):
a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np. float

— ,delimiter=","  skip_header=0,skip_footer=0))

b = np.array (np. genfromtxt (np.str (name) ,usecols=col2 ;dtype=np. float
— ,delimiter="," skip_header=0,skip_footer=0))

¢ = np.array (np.genfromtxt (np.str (name) ,usecols=col3 ,dtype=np. float
— ,delimiter="," ,skip__header=0,skip_footer=0))

return [a,b,c]

def read_in2(name,coll ,col2):
a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np.float

— ,delimiter=",",skip__header=1,skip_footer=0))
b = np.array (np. genfromtxt (np.str (name) ,usecols=col2 ,dtype=np.float
— ,delimiter="," skip_header=1,skip_footer=0))

return [a,b]

compton_ back ,compton_back_err = read_in2(’compton—back.csv’,0,1)
velocity2 ,time2 ,counts2 = read_ in(’6linien_2.csv’,0,1,2)

velocity = []
time = []
counts = []

i=0
while i < len(velocity2)—1:
if velocity2[i]==velocity2[i+1]:
if velocity2[i+l]==velocity2[i+2]:
if velocity2[i+2]==velocity2[i+3]:
if velocity2[i+3]==velocity2[i+4]:
if velocity2[i+4]==velocity2[i+5]:
velocity .append(velocity2[i])
time .append (time2 [i]+time2 [i+1]+time2 [ i+2]+time2[i
— +3]+time2 [i+4]+time2[i+5])
counts.append (counts2[i]+counts2 [i+1]+counts2 [i+2]+
— counts2[i+3]+counts2[i+4]+counts2[i+5])
i=i+6
else:
velocity .append(velocity2[i])
time.append (time2 [i]+time2 [i+1]+time2[i+2]+time2 [1i
— +3]+time2 [i+4])
counts.append (counts2[i]+counts2 [i+1]+counts2[i+2]+
— counts2[i+3]+counts2[i+4])
i=i+b
else:
velocity .append(velocity2[i])
time.append (time2 [i]+time2 [ i+1]+time2 [i+2]+time2[i+3])
counts.append (counts2 [i]+counts2 [i+1]+counts2[i+2]+
— counts2[i+3])
i=i4+4
else:
velocity .append(velocity2[i])
time.append (time2 [i]+time2 [i4+1]+time2 [i+2])
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counts.append (counts2 [i]4+counts2[i+1]4+counts2 [i+2])
i=i+3
else:
velocity .append(velocity2[i])
time .append (time2 [i]+time2 [i+1])
counts.append (counts2[i]+counts2[i+1])
i=i42
else:
velocity .append(velocity2[i])
time.append (time2[i])
counts.append (counts2[i])
i=i+41

rate = []

s_rate = []

for i in range(0,len(velocity)):
rate.append (counts[i]/(time[i]/1000))
s_rate.append(np.sqrt (counts[i]) /(time[i]/1000))

err__korrigiert = []
for i in range(0,len(s_rate)):
err__korrigiert .append(np.sqrt(s_rate[i]*+*2 + compton_back_err%%2))

T = 0.556 #korrigierte transmission
s T = 0.007

rate__korrigiert = []
s_rate_ korrigiert = []
for i in range(0,len(rate)):
rate_korrigiert .append((rate[i]—compton_back) /T)
s_rate_ korrigiert.append(np.sqrt( (s_rate[i]/T)*%2 + (compton_ back err/
— T)*x2 + ((rate[i]—compton_ back)*s T/T*%2)x%2) )

plt.errorbar (velocity , rate_korrigiert, yerr=s_rate_korrigiert, fmt="x’,
— linewidth=0.3)

plt.title (’corrected 6 line absorber spectrum’)

plt . xlabel(’Velocity [mm/s]’)

plt.ylabel ("Rate [1/s]’)

plt.grid ()

plt .show ()

#daten speichern in ein file
L= ]
L.append(’Velocity [mm/s], corr Rate [1/s], s_corr_Rate [1/s]\n’)
for i in range(0,len(velocity)):
L.append(f’{velocity[i]},{round(rate_korrigiert[i],3)},{round(
— s_rate_korrigiert[i],3)}\n’)

file=open(r’daten_2.csv’, 'wt+’)
file.writelines (L)
file . close ()

Evaluation

import numpy as np
import matplotlib.pyplot as plt
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from scipy.optimize import curve_ fit
from scipy.special import wofz
from scipy.special import jv

’ ’ .

plt .rcParams.update ({ "axes. titlesize 'xx—large ' })
plt .rcParams.update ({ ’axes.labelsize 'xx—large ’})
plt .rcParams.update ({ *xtick.labelsize’: ’x—large’})

{ )
({

) ).

plt .rcParams.update ({ 'ytick.labelsize’: ’x—large’}
plt.rcParams.update({ ’legend. fontsize’: ’large’})

def read_in(name,coll ,col2, col3):

a = np.array (np.genfromtxt (np.str (name) ,usecols=coll ,dtype=np.float
— ,delimiter="," skip_header=1,skip_footer=0))

b = np.array(np. genfromtxt (np.str (name) ,usecols=col2 ,dtype=np.float
— ,delimiter="," skip_ header=1,skip_footer=0))

¢ = np.array (np.genfromtxt (np.str (name) ,usecols=col3 ,dtype=np. float
— ,delimiter="," ,skip__header=1,skip_footer=0))

return [a,b,c]

def Gaussian(x, mu, sigma, A, B):
return —A/np.sqrt (2+np. pi*xsigmax*2) % np.exp(—0.5%((x—mu)/sigma)*x2) +
— B

def Lorentz (x,mu,gamma,A,B):
return —A/np.pi * gamma/((x—mu)=*+2 + gammaxx2) + B

def Voigt(x,mu,sigma ,gamma,A,B):
return —Asxnp.real (wofz ((x—mutlj*gamma) /(sigmas*np.sqrt(2))))/(sigma*np.
— sqrt (2%np.pi)) + B

Gauss fit
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
#plt . errorbar (velocity , rate, yerr=s_rate, fmt="z’, linewidth=0.8, color=’

)

— royalblue
#plt . show()

, zorder=1, label="Data points’)

start = [40 ,140,230,295,370,460] #start daten eingeben
end = [130 ,215,290,350,440,545] # end daten eingeben
p0_gauss = [[—5,0.5,2,20], .5,4,20], [-1,0.5,2,20], [1,0.5,2,20],

[—3,0
< [3,0.5,3,20], [5.,0.6,4,20]] #fit tips
redchisq_gauss = []
mu_ gauss = []
sigma__gauss = []

A gauss = []
B_gauss = []
mu__err_gauss = |[]
sigma__err_ gauss = |[]
A _err_gauss = ||
B_err_gauss = |[]

for i in range(0,6):
a=start [i]
b=end [ i ]
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velo_gauss = velocity [a:D]
rate_gauss = rate[a:b]
s_rate_gauss = s_rate[a:b]

fitPara, fitCova = curve_fit(Gaussian, velo_gauss, rate_gauss, sigma=
— s_rate_gauss, pO=p0_gauss[i])

mu_ gauss.append (fitPara [0])
sigma_ gauss.append (fitPara[1])
A_gauss.append (fitPara [2])
B_gauss.append (fitPara [3])
mu__err__gauss.append (np. sqrt (fitCova [0][0]) )
sigma__err__gauss.append (np.sqrt (fitCova [1][1]))
A_err_gauss.append(np.sqrt (fitCova [2][2])
B_err_gauss.append (np.sqrt (fitCova [3][3])

x=np.linspace (velocity[a],velocity [b],1000)

#plt.plot (z, Gaussian (x, mu_gauss[i],sigma__gauss[i],A_gauss[i],B_gauss/[i
— ), linewidth="1", color="r’, label=f"Gaussian fit {i}’, zorder
— =2)

)
[
)
)

DOS=len (velo__gauss)—4
r=[]
for j in range(0,len(velo_gauss)):
r.append ((rate_gauss[j]—Gaussian(velo_gauss[j],mu_gauss[i],
— sigma_ gauss|[i],A_gauss[i],B_gauss[i]))/s_rate_gauss[j])
redchisq__gauss.append (sum(r ) /DOS)

#plt.legend ()
#plt . show()

Loretz Fit
velocity , rate, s_rate = read in(’daten.csv’,0,1,2)
start = [40 ,140,230,295,370,460] #start daten eingeben
end = [130 ,215,290,350,440,545] # end daten eingeben
p0_lorentz = [[—5,0.5,2,20], [-3,0.5,4,20], [-1,0.5,2,20], [1,0.5,2,20],

< [3,0.5,3,20], [5,0.6,4,20]] #fit tips

redchisq_lorentz = |[]
mu_lorentz = []
gamma_ lorentz = []

A _lorentz = []
B_lorentz = []

mu_err lorentz = []
gamma__err_lorentz = []
A err lorentz = []
B_err_lorentz = []

for i in range(0,6):
a=start [i]

b=end [ 1]

velo_lorentz = velocity [a:Db]
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rate_lorentz = rate[a:b]
s_rate_lorentz = s_rate[a:D]
fitPara , fitCova = curve_fit(Lorentz, velo_lorentz, rate_ lorentz, sigma

— =s_rate_lorentz, pO=p0_lorentz[i])

mu_lorentz.append (fitPara [0])
gamma__lorentz.append (fitPara [1])
A_lorentz.append(fitPara [2])
B_lorentz.append(fitPara [3])

0
gamma__err_lorentz.append (np.sqrt (fitCova [1]

]

]

x=np.linspace (velocity [a], velocity [b],1000)

#plt.plot(z,Lorentz(x, mu_lorentz[i],gamma_lorentz[i], A_lorentz[i],
— B_lorentz[i]),linestyle="=",linewidth="1", color="k’,label=f"
— Lorentz fit {i}’, zorder=3)

DOS=len (velo_lorentz)—4
r= ]
for j in range(0,len(velo lorentz)):
r.append ((rate lorentz[j]—Lorentz(velo lorentz[j],mu lorentz[i],
— gamma_lorentz[i],A_ lorentz[i],B_lorentz[i]))/s_rate_ lorentz][]
= 1)
redchisq lorentz.append (sum(r)/DOS)

#plt.legend ()
#plt . show()

Voigt Fit
velocity , rate, s_rate = read_in(’daten.csv’,0,1,2)
start = [60 ,140,230,300,350,452] #start daten eingeben
end = [130 ,215,300,350,455,550] # end daten eingeben
p0_voigt = [[—5.8,0.01,0.5,4.2,20], [—3,0.01,0.5,4,20],
< [-0.5,0.01,0.5,2,20], [0.8,0.01,0.5,4,21], [3.5,0.01,0.5,4,20],

< [5,0.01,0.6,4,20]] #fit tips

redchisq_voigt = []
mu_ voigt = []
sigma_ voigt = []
gamma_ voigt = []
A_voigt = []

B_voigt = []
mu_err_voigt = []
sigma__err_voigt = []
gamma_ err_voigt = []
A _err_voigt = []
B_err_voigt = []

for i in range(0,6):
a=start [i]
b=end [ i ]
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velo_voigt = velocity[a:b]
rate_voigt = rate[a:b]
s_rate_voigt = s_rate[a:b]

fitPara, fitCova = curve_fit(Voigt, velo_voigt, rate_voigt, sigma=
— s_rate_voigt, pO0=p0_voigt[i])

mu_ voigt.append (fitPara [0])
sigma_ voigt.append (fitPara[1])
gamma_ voigt.append (fitPara [2])
A_voigt.append(fitPara [3])

B voigt.append(fitPara [4])

mu__err_voigt.append (np.sqrt (fitCova [0][0]))
sigma__err_voigt.append (np.sqrt (fitCova [1][1]))
gamma_err_ voigt.append (np.sqrt (fitCova [2][2]))
A__err_voigt.append(np.sqrt (fitCova [3][3]))
B_err_voigt.append (np.sqrt (fitCova [4][4]))

x=np.linspace (velocity [a],velocity [b],1000)

#plt.plot(z, Voigt(z,mu_wvoigt[i],sigma_voigt[i],gamma_wvoigt[i], A_voigt[i
— [|,B_woigt[i]),dashes=(3,4), linewidth="2", color="lime’, zorder
— =4, label=f"Voigt fit {i}’)

DOS=len (velo_voigt)—4
=[]
for j in range(0,len(velo_ voigt)):
r.append ((rate_voigt[j]—Voigt(velo_voigt[j],mu_voigt[i],sigma_voigt
— [i],gamma_voigt[i],A_voigt[i],B_voigt[i]))/s_rate_voigt[j])
redchisq_voigt.append (sum(r ) /DOS)

#plt.legend ()
#plt . show()

#print (f’{redchisq_gauss}’)
#print (f’{redchisq_lorentz}’)

#print (f {redchisq_voigt}’)

#plt.errorbar (velocity , rate, yerr=s_rate, fmt="z’, linewidth=0.8, color=’
— royalblue ’, zorder=1, label="Data points’)
#r = np.linspace (—8,8,5000)
#for i in range(0,6):
#plt.plot(z, Gaussian(z,mu_gauss[i],sigma_gauss[i],A_gauss[i],B_gauss[i
= /)
#plt.plot(xz, Lorentz(xz,mu_lorentz[i],gamma_lorentz[i],A_lorentz[i],
— B_lorentz[i]))
#plt.plot(z, Voigt(z,mu_voigt[i],sigma_voigt[i],gamma_wvoigt[i], A_voigt/
— 4i/,B_woigt[i]))
#plt . show()

#H# six fold version
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velocity , rate, s_rate = read_in(’daten_2.csv’,0,1,2)
plt.errorbar(velocity , rate, yerr=s_rate, fmt="x’, linewidth=0.3, color=’
— royalblue’, zorder=1, label="Data points’)

#HAH multi gauss fit

def multi_gauss(x,mul,mu2,mu3,mud, mub,mub, sigmal ,sigma?2 ,sigma3 ,sigmad ,

— sigmab ,sigma6 ,Al,A2 /A3 A4,A5 A6,B):

return —Al/np.sqrt (2*np. pi*sigmal**2) * np.exp(—0.5%((x—mul)/sigmal)
*x%2)—A2/np.sqrt (2+«np. pixsigma2xx2) % np.exp ((x—mu2) /sigma?2

— ) (—=0.5% )
— *%x2)—A3/np.sqrt (2+np. pixsigma3d*x2) * np.exp(—0.5*%((x—mu3)/sigma3d)
— *%x2)—A4/np.sqrt (2xnp. pixsigmad**2) x np.exp(—0.5x((x—mud) /sigmad)
— x%x2)—A5/np.sqrt (2*«np. pixsigmab*%2) * np.exp(—0.5%((x—mub)/sigmab)
= x%2) A6/np.sqrt(2*np.pi*sigma6**2) * np.exp(—0.5%((x—mub6)/sigmab)
— x%2) +

x = np.linspace (—8,8,5000)

pO0=(mu_gauss[0] ,mu_gauss[1],mu_gauss[2] ,mu_gauss[3],mu_gauss|[4],mu_gauss
— [5],sigma_gauss [0] ,sigma_ gauss[1],sigma_gauss[2],sigma_gauss[3],
— sigma_ gauss[4],sigma_gauss[5],A_gauss[0] ,A_gauss[1l],A_gauss[2],
— A_gauss[3],A_gauss[4],A_gauss[5],20.5)

fitPara_gauss, fitCova_gauss = curve_ fit (multi_gauss, velocity , rate, sigma
— =s_rate, p0=p0)
plt.plot (x, multi_gauss(x, *fitPara_gauss),’r’, label="Gaussian fit ")

DOS_multi_gauss = len(velocity)—19
r= (]
for i in range(0,len(velocity)):
r.append (((rate[i]—multi_gauss(velocity [i],*fitPara_gauss))/s_rate[i])
— x%2)
redchisq__multi_gauss = sum(r)/DOS_multi_gauss
print (redchisq__multi_gauss)

#HH#H multi lorentz fit

def multi_lorentz(x,mul,mu2,mu3, mu4, mu5, mub,gammal ,gamma2, gamma3, gammad
— gammab,gammab6,Al,A2 /A3 A4,A5 A6,B):
return —Al/np.pi * gammal/((x—mul)*%2 + gammal**2)—A2/np.pi * gamma2/((
— x—mu2)*x2 + gamma2x*2)—A3/np.pi * gamma3d/((x—mu3d)**2 4+ gammadxx2)
— —A4/np.pi * gammad/((x—mud)**2 + gammadx**2)—A5/np.pi * gammab/((x
— —mub)**2 + gammabx+2)—A6/np.pi * gammal/((x—mub)**2 + gammab**2)
— + B

p0=(mu_lorentz [0] ,mu_lorentz[1],mu_lorentz[2],mu_lorentz[3],mu_lorentz[4],
— mu_lorentz[5],gamma lorentz[0],gamma lorentz[1],gamma lorentz[2],
— gamma_ lorentz [3] ,gamma_lorentz [4] ,gamma_lorentz[5],A_lorentz[0],
— A _lorentz[1],A lorentz[2],A lorentz[3],A_ lorentz[4],A lorentz
< [5],20.5)

fitPara_lorentz , fitCova_lorentz = curve_fit(multi_lorentz, velocity , rate,
— sigma=s_rate, p0=p0)

plt.plot(x, multi_lorentz(x, xfitPara_ lorentz),’k’, label="Lorentz fit’)
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DOS_multi lorentz = len(velocity)—19

[]
for i in range(0,len(velocity)):
r.append (((rate[i]—multi_lorentz(velocity [i],*fitPara_lorentz))/s_rate]|
= 1]) *x%2)
redchisq__multi_lorentz = sum(r)/DOS_multi_lorentz
print (redchisq__multi_lorentz)

r =

A multi voigt fit

def multi_voigt(x,mul,mu2,mu3, mud, mub,mub, sigmal ,sigma?2 ,sigmad ,sigma4
— sigmab ,
sigma6 ,gammal ,gamma2, gammagd, gammad , gammab , gammab , A1, A2 A3,
— A4,A5,A6,B):
return —Alxnp.real (wofz ((x—mul+lj*gammal) /(sigmalsnp.sqrt (2))))/(sigmal
#«np.sqrt (2«np. pi))—A2xnp.real (wofz ((x—mu2+1j*gamma2) /(sigma2s*np.
sqrt (2)))) /(sigma2*np.sqrt (2+np. pi))—A3*np.real (wofz ((x—mu3+1j *
gammad) /(sigma3ds*np.sqrt (2))))/(sigma3d*np.sqrt (2+«np. pi))—Ad*np.
real (wofz ((x—mud+1j+«gammad) /(sigmads*np.sqrt (2))))/(sigmad*np.sqrt
(2#np.pi))—Abxnp.real (wofz ((x—mub+1j+xgammab) /(sigmab*np.sqrt (2)))
) /(sigmab*np.sqrt (2«xnp. pi))—A6xnp.real (wofz ((x—mub+1j*gammab) / (
sigma6*np.sqrt (2))))/(sigmab*np.sqrt (2«np.pi)) + B

)

U

pO0=(mu_voigt [0] ,mu_voigt[1] ,mu_voigt[2] ,mu_voigt [3] , mu_voigt [4] ,mu_voigt

— [5],sigma_voigt[0],sigma_voigt[1],sigma_voigt[2],sigma_voigt[3],
— sigma_ voigt [4],sigma_voigt [5] ,gamma_ voigt[0] , gamma_ voigt[1],
< gamma_ voigt[2] ,gamma_ voigt [3] , gamma_voigt[4] ,gamma_voigt[5] , A_ voigt
— [0],A voigt[1],A voigt[2]+1,A voigt[3]+1,A voigt[4]+1,A voigt
< [5],20.9)
fitPara_voigt, fitCova_voigt = curve_ fit (multi_voigt, velocity , rate, sigma

— =s_rate, p0=p0)
plt.plot(x, multi_voigt(x, xfitPara_ voigt),color="lime’,dashes=(3,4),label=
— ’Voigt fit’)

DOS_multi_voigt = len(velocity)—25
r= ]
for i in range(0,len(velocity)):
r.append (((rate[i]—multi_voigt(velocity [i],xfitPara_voigt))/s_rate[i])
— x%2)
redchisq__multi_voigt= sum(r)/DOS_multi_voigt
print (redchisq_multi_voigt)

plt .minorticks omn ()

plt.grid (which="major’,color="k’, linewidth=0.5)

plt.grid (b=True, which="minor’, linestyle="—", linewidth=0.5)
plt.rc(’axes’, axisbelow=True)

plt.xlabel (r’$v$ [mm$\,$s$~{-1}$] ")

plt . ylabel (r’$\dot{N}$ [s$7{-1}8]")

plt.xlim (—8.5,8.5)

plt.ylim (15,22)

plt.title (’Natural iron absorber M bauer spectrum’)
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283 plt.legend ()
284 plt.savefig(’6linien.eps’)
285 plt .show ()

286

287

288

289

290 residuen plots

291

292

203 #Gaussian

204 rTesi = []

205 s_resi = []

206 resi_velo = []

297

208 eins_sigma = []

200 s_eins_sigma = []

300 eins_sigma_velo = []

301 zwei_sigma = []

302 s_zwel_sigma = []

303 zwei_sigma_velo = []

304

305 for i in range(0,len(velocity)):

306 if (abs(rate[i]—multi_gauss(velocity[i],xfitPara_gauss))—s_rate[i]) >0:

307 if (abs(rate[i]—multi_ gauss(velocity[i],«xfitPara_gauss))—2xs_rate]i
— ])>0:

308 zwei_sigma.append(rate [i]—multi_gauss(velocity[i],x

— fitPara_ gauss))

309 zwei_sigma_ velo.append(velocity[i])

310 s_zwei_sigma.append(s_rate[i])

311 else:

312 eins_sigma .append(rate [i]—multi_gauss(velocity [i],x

— fitPara_gauss))

313 eins_sigma_ velo.append(velocity[i])

314 s_eins_sigma.append(s_rate[i])

315 else:

316 resi.append(rate[i]—multi gauss(velocity[i],xfitPara_gauss))

317 resi_velo.append(velocity[i])

318 s_resi.append(s_rate[i])

b

319 plt.errorbar(resi_velo, resi, yerr=s_resi, fmt="x",color="cornflowerblue’,
— linewidth=0.3, zorder=1)

320 plt.errorbar (eins_sigma_velo, eins_sigma, yerr=s_eins_sigma, fmt='x’,color=
— ’darkorange’,linewidth=0.3, zorder=1)

321 plt.errorbar (zwei_sigma_velo, zwei_sigma, yerr=s_zwei_sigma, fmt="x’,color=
— ’fuchsia’,linewidth=0.3, zorder=1)

322 plt.axhline (0,color="r’, zorder=2)

323 plt.title (’Gaussian’)

s2¢ plt.xlabel(r’$v$ [mm$\,$s$™{-1}$]")

325 plt.ylabel (r’Residual [s$7{-1}$]")

326 plt.xlim(—8.5,8.5)

327 plt.savefig(’resi—gauss.eps’)

s2s  plt.show ()

329

330

331 #Lorentz
332 resi = []
333 s_resi = []

334 resi_velo = []
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i])

)

The MoBSbauer Effect
eins_sigma = []
s_eins_sigma = []
eins_sigma_velo = []
zwei_sigma = []
s_zwei_sigma = []
zwei_sigma_velo = []
for i in range(0,len(velocity)):
if (abs(rate[i]—multi_ lorentz(velocity[i],«xfitPara_lorentz))—s_rate]
— >0:
if (abs(rate[i]—multi_lorentz (velocity[i],«xfitPara_lorentz))—2x
— s_rate[i])>0:
zwei_sigma.append(rate [i]—multi_lorentz(velocity [i],*
— fitPara_lorentz))
zwei_sigma_ velo.append(velocity[i])
s_zwei_sigma.append(s_rate[i])
else:
eins_sigma.append(rate[i]—multi_ lorentz(velocity [i],x
— fitPara_lorentz))
eins_sigma_ velo.append(velocity[i])
s_eins_sigma.append(s_rate[i])
else:
resi.append(rate[i]—multi lorentz (velocity[i],*fitPara_ lorentz))
resi_velo.append(velocity[i])
s_resi.append(s_rate[i])
plt.errorbar (resi_velo, resi, yerr=s_resi, fmt="x’,color="cornflowerblue’
— linewidth=0.3, zorder=1)
plt.errorbar (eins_sigma_velo, eins_sigma, yerr=s_eins_ sigma, fmt='x’ 6 color=
— ’darkorange’ ,linewidth=0.3, zorder=1)
plt.errorbar (zwei_sigma_velo, zwei_ sigma, yerr=s_ zwei_ sigma, fmt='x’ 6 color=
— ’fuchsia’,linewidth=0.3, zorder=1)
plt .axhline (0,color="k’, zorder=2)
plt.title (’Lorentz’)
plt.xlabel (r’$v$ [mm$\,$s$ {-1}$]")
plt.ylabel (r’Residual [s$7{-1}$]")
plt.xlim (—8.5,8.5)
plt.savefig(’resi—lorentz.eps’)
plt .show ()
#Voigt
resi = []
s_resi = []
resi_velo = []
eins_sigma = []
s_eins_sigma = []
eins_sigma_ velo = []
zwei sigma = []
s_zwei_sigma = []
zwei_sigma_velo = |[]
for i in range(0,len(velocity)):
if (abs(rate[i]—multi_voigt(velocity[i],«xfitPara_voigt))—s_rate[i]) >0:
if (abs(rate[i]—multi_voigt(velocity[i],«xfitPara_voigt))—2xs_rate[i

— ])>0:
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zwei_sigma.append(rate [i]—multi_voigt (velocity[i],x
— fitPara_voigt))
zwei_sigma_ velo.append(velocity[i])
s_zwei_sigma.append(s_rate[i])
else:
eins_sigma .append(rate [i]—multi_voigt(velocity [i],x
— fitPara_voigt))
eins_sigma_ velo.append(velocity[i])
s_eins_sigma.append(s_rate[i])
else:
resi.append(rate[i]—multi_voigt(velocity[i],xfitPara_voigt))
resi__velo.append(velocity[i])
s_resi.append(s_rate[i])
plt.errorbar(resi_velo, resi, yerr=s_resi, fmt="x’,color="cornflowerblue’,
— linewidth=0.3, zorder=1)
plt.errorbar (eins_sigma_velo, eins_sigma, yerr=s_eins_sigma, fmt='x’,6 color=
— ’darkorange’ linewidth=0.3, zorder=1)
plt.errorbar (zwei_sigma_velo, zwei_sigma, yerr=s_zwei_sigma, fmt="x’, color=
— ’fuchsia’,linewidth=0.3, zorder=1)
plt.axhline (0, color="lime’,dashes=(3,4), zorder=2)
plt.title (’Voigt’)
plt . xlabel (r’$v$ [mm$\,$s$~{-1}$] ")
plt.ylabel(r’ Residual [s$7{-1}$]")
plt.xlim (—8.5,8.5)
plt.savefig(’resi—voigt.eps’)
plt .show ()

print (’ fit Para Gauss )
for i in range(0,6):
print (f’'mu {i+1}: {round(fitPara_gauss[i],4)}+—{round(np.sqrt(
— fitCova_gauss[i][i]) ,4)} nm/s ")
for i in range(0,6):
print (f’'sigma_ {i+1}: {round(fitPara_gauss[i+6],4)}+—{round(np.sqrt (
— fitCova_gauss[i+6][i+6]),4)} mm/s’)
for i in range(0,6):
print (f’A_{i+1}: {round(fitPara_gauss|[i+12],2)}+—{round(np.sqrt(
— fitCova_gauss[i+12][i+12]),2)} 1/s”)
print (f 'B: {round(fitPara gauss[—1],3)}+—{round(np.sqrt(fitCova gauss

= [=1][=1]),3)} 1/s \n’)

print (’ fit Para Lorentz )
for i in range(0,6):
print (f'mu_{i+1}: {round(fitPara_lorentz[i],4)}+—{round(np.sqrt(
— fitCova_ lorentz[i][i]) ,4)} mm/s’)
for i in range(0,6):
print (f’gamma {i+1}: {round(fitPara_lorentz[i+6],4)}+—{round(np.sqrt (
— fitCova_lorentz[i+6][i+6]),4)} mm/s’)
for i in range(0,6):
print (f’A_{i+1}: {round(fitPara_lorentz[i+12],2)}+—{round(np.sqrt(
— fitCova_ lorentz[i+12][i+12]),2)} 1/s’)
print (f’B: {round(fitPara_lorentz[—1],3)}+—{round(np.sqrt (fitCova_lorentz

= [=1[=1]),3)} 1/s \n7)

print (’ fit Para Voigt )
for i in range(0,6):
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print (f'mu {i+1}: {round(fitPara_voigt[i],4)}+—{round(np.sqrt(
— fitCova_voigt[i][i]) ,4)} nm/s’)
for i in range(0,6):
print (f’sigma_{i+1}: {round(fitPara_voigt[i+6],3)}+—{round(np.sqrt (
— fitCova_voigt [i+6][i+6]),3)} mm/s’)
for i in range(0,6):
print (f ’gamma_{i+1}: {round(fitPara_voigt[i+12],3)}+—{round(np.sqrt (
— fitCova_voigt [i+12][i+12]),3)} 1/s”)
for i in range(0,6):
print (f’A {i+1}: {round(fitPara_ voigt[i+18],2)}+—{round(np.sqrt(
— fitCova_voigt [i+18][i+18]),2)} 1/s”)
print (f’B: {round(fitPara_voigt[—1],3)}+—{round(fitCova_voigt[—1][—-1],3)}
— 1/s \n’)

print (’ Iso Shift \n )

HHAAA AR A AA isomeric  shi [t

E gamma = 14.4x1000 #eV
c 2.99792458%10%*11 #nm/s
reee = E_gamma/c

iso_shift = [] #neV
s_iso_shift = []

HHHHHT JOUSS HAAHAHHH

mu_ gauss = []

s_mu_gauss = []

for i in range(0,6):
mu_ gauss.append (fitPara gauss[i])
s_mu_gauss.append(np.sqrt (fitCova gauss[i][i]))

print (’ Gauss ")
for i in range(0,6):
print (f 'Mu {i+1}: {round(mu_gauss[i],2)}+—{round(s_mu_gauss[i],2)} mm/s

(%
print ()
iso_shift_gauss = |[]
s_iso_shift_gauss = []

for i in range(0,3):
iso_shift__gauss.append ((mu_gauss[b—i]+mu_gauss[i]) /2)
s_iso_shift gauss.append(np.sqrt(s_mu_ gauss[5—1i]**2+s mu_gauss[i]**2)
= /2)

for i in range(0,3):
print (f’Iso Shift {i+1}: {round(iso_shift gauss[i],3)}+—{round(
— s_iso_shift_gauss[i],3)} mm/s’)

for i in range(0,3):
print (f 'Iso Shift {i+1}: {round(reecexiso shift gauss[i]*10%*9,1)}+—{
— round (reeexs_iso_shift_gauss[i]*10%%9,1)} neV’)
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b =[]

for i in range(0,3):
a.append (iso_shift_gauss[i]/s_iso_shift_gauss[i]**2)
b.append(1/s_iso_shift_gauss[i]*x2)

print ()

iso_shift.append (sum(a)/sum(b)xreeex10%%9)

s_iso_shift.append(np.sqrt (1/sum(b))*reee*10%%9)

print (f’Iso Shift gewichtet: {round(iso_shift[0],1)}+—{round(s_iso_shift
= [0],1)} nev")

print(’\n’)

#ARAT Lorent s FHAHHAAH

mu_lorentz = |[]
s _mu_lorentz = []
for i in range(0,6):
mu_lorentz.append (fitPara_lorentz[i])
s_mu_ lorentz.append (np.sqrt (fitCova_lorentz[i][i]))

print (’ Lorentz )
for i in range(0,6):
print (f 'Mu {i+1}: {round(mu_ lorentz[i],2)}+—{round(s_mu lorentz[i],2)}
— mm/s )

print(’7)
iso_shift_lorentz = |[]
s_iso_shift_lorentz = []

for i in range(0,3):
iso_shift_ lorentz.append ((mu_lorentz[5—i]+mu_lorentz[i]) /2)
s_iso_shift_lorentz.append(np.sqrt(s_mu_lorentz[5—1i]+*24+s_mu_lorentz[i]

*x%2) /2)

for i in range(0,3):
print (f'Iso Shift {i+1}: {round(iso_shift lorentz[i],3)}+—{round(
— s_iso_shift_lorentz[i],3)} mm/s’)

for i in range(0,3):
print (f’Iso Shift {i+1}: {round(reecexiso_shift lorentz [i]*10%%9,1)}+—{
— round (reeexs_iso_shift_ lorentz[i]*10%%9,1)} neV’)

a =[]
(]

for i in range(0,3):
a.append(iso_shift lorentz[i]/s_iso_shift_ lorentz[i]*%2)
b.append(1/s_iso_shift_lorentz [i]*x2)

print(’7)

iso_shift.append (sum(a)/sum(b)*reee*10%%9)

s_iso_shift.append(np.sqrt(l/sum(b))xreeex10%%9)

print (f’Iso Shift gewichtet: {round(iso_shift[1],1)}+—{round(s_iso_ shift
— [1],1)} neV’)

print(’\n’)

HHAAHT VOl HAHHAHHH
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mu_voigt = []
s_mu_voigt = []
for i in range(0,6):
mu_ voigt.append (fitPara_voigt[i])
s_mu_ voigt.append(np.sqrt (fitCova_voigt[i][i]))

print (’ Voigt ")
for i in range(0,6):
print (f'Mu {i+1}: {round(mu_voigt[i],2)}+—{round(s_mu_voigt[i],2)} mm/s
— )

print(’7)
iso_shift_voigt = []
s_iso_shift_voigt = []
for i in range(0,3):
iso_shift voigt.append ((mu_voigt[b—i]+mu_voigt[i]) /2)
s_iso_shift_voigt.append(np.sqrt(s_mu_voigt[5—1i]**2+s_mu_voigt[i]**2)
— /2)

for i in range(0,3):
print (f’Iso Shift {i+1}: {round(iso_shift_voigt[i],3)}+—{round(
— s_iso_shift_voigt[i],3)} mm/s’)

for i in range(0,3):
print (f’Iso Shift {i+1}: {round(reeexiso_shift_voigt[i]*10%*9,1)}+—{
— round (reeexs iso_shift voigt[i]*x10%%9,1)} neV’)

a =[]

b= []

for i in range(0,3):
a.append (iso_shift_voigt[i]/s_iso_shift_voigt[i]**2)
b.append(1/s_iso_shift_voigt[i]*x2)

print(’7)

iso_shift.append(sum(a)/sum(b)xreee«x10%x9) #neV

s_iso_shift.append(np.sqrt(l/sum(b))xreeex10%%9)

print (f’Iso Shift gewichtet: {round(iso_shift[2],1)}+—{round(s_iso_shift
— [2],1)} neV?’)

print (’\n’)

# Momente, transition FEnergien und B—Felder
print ('———— Momente, transition Energien und B—Felder \n’)

Gauss #HAAHHAHHHH

print ('———Gauss———— )
E_trans_gauss = []| #neV
s_E_trans_gauss = []

for i in range(0,6):
E_trans_gauss.append (mu_gauss|[i]|+*reee*x10xx(9) — iso_shift [0])
s_E_trans_gauss.append (np.sqrt ((s_mu_gauss[i]xreee*x10xx(9))xx2 + (
— s_iso_shift [0]) *x%2))

for i in range(0,6):
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print (f 'E—trans_ {i+1}: {round (E_trans_gauss[i],1)}+—{round
— s_E_trans_gauss[i],1)} neV’)

E_trans_mittel _gauss = [] #neV
s_E_trans_mittel _gauss = []

for i in range(0,3):
E_trans_ mittel gauss.append ((abs(E_trans gauss[5—1i])+abs(E_trans_gauss|
= i]))/2)
s_E_trans_mittel gauss.append(np.sqrt(s_E_trans_gauss[b—1i]+x2+
— s E trans gauss[i]x%2)/2)
print ()
for i in range(0,3):

print ({ ’E-trans_mittel {i+1}: {round(E_trans_mittel gauss[i],1)}H+—{
— round (s_E_trans_mittel__gauss[i],1)} neV’)
print(’\n’)
Lorentz #H###H#H##H747
print (——Lorentz———— )
E_trans_lorentz = [] #neV

s_E_trans_lorentz = []
for i in range(0,6):
E_trans_lorentz.append (mu_lorentz[i]*xreeex10%%(9) — iso_shift[1])
s_ E_trans_lorentz.append(np.sqrt ((s_mu_lorentz[i]*xreeex10%x(9))*x2 +(
— s_iso_shift [1]) xx2))

for i in range(0,6):

print (f 'E-trans_ {i+1}: {round (E_trans_lorentz[i],1)}+—{round(
— s_E_trans_lorentz[i],1)} neV’)
E_trans_mittel_lorentz = [] #neV

s_E_trans_mittel_lorentz = []

for i in range(0,3):

E_trans_mittel lorentz.append ((abs(E_trans_lorentz[5—1i])-+abs(
— E_trans_lorentz[i]))/2)
s_E_trans_mittel_lorentz.append(np.sqrt(s_E_trans_lorentz[5—1i]+x2+4
— s_E_trans_lorentz [i]x*2)/2)
print ()
for i in range(0,3):

print (f 'E-trans_ mittel_{i+1}: {round(E_trans_mittel lorentz[i],1)}+—{
— round(s_E_trans mittel lorentz[i],1)} neV’)
print (’\n’)
Voigt #7777 7#7%
print('——Voigt—— )
E_trans_voigt = [] #neV
s_E_trans_voigt = []

for i in range(0,6):
E_trans_voigt.append (mu_voigt[i]*xreeex10%x%(9) — iso__shift [2])
s_E_trans_voigt.append(np.sqrt ((s_mu_voigt[i]*xreee+«10%%(9))**2 +(
— s_iso_shift [2]) *%2))

for i in range(0,6):
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print (f 'E—trans_ {i+1}: {round (E_trans_voigt[i],1)}+—{round(
— s_E_trans_voigt[i],1)} neV’)

E_trans_mittel_voigt = [] #neV
s_E_trans_mittel_voigt = []

for i in range(0,3):
E_trans_mittel voigt.append ((abs(E_trans_voigt[5—1i])+abs(E_trans_voigt|
= i]))/2)
s_E_trans_mittel voigt.append(np.sqrt(s_E_trans_voigt[5—1i]+x2+
— s E_trans voigt[i]*%2)/2)
print ()
for i in range(0,3):
print (f '’E-trans_mittel {i+1}: {round(E_trans_ mittel voigt[i],1)}+—{
— round(s_E_trans_mittel _voigt[i],1)} neV’)
print(’\n’)

print (’ B-Feld )
m N = 3.15245%10%%( —8)x10%x(9) #nev/T
m g = 0.09044+m N

B_gauss = (E_trans_mittel gauss[l]+E_trans_ mittel gauss[2]) /(2*m_g)
s_B_gauss = np.sqrt ((s_E_trans_mittel gauss[1])*x2 + (
— s_E_ trans mittel gauss|[2]) *%2) /(2+m g)

B_lorentz = (E_trans_mittel lorentz[1]4+ E_trans_mittel lorentz[2]) /(2*m_g)
s_B_lorentz = np.sqrt ((s_E_trans_mittel lorentz[1]) *x%2 4+ (
— s_E_trans_mittel lorentz[2]) *x2) /(2*m_g)

B_voigt = (E_trans_mittel voigt[1]+E_trans_mittel voigt[2]) /(2xm_g)
s_B_voigt = np.sqrt ((s_E_trans_mittel_voigt [1]) %2 + (
— s_E_trans_mittel_voigt[2]) **2) /(2+m_g)

print ({’B_gauss: {round(B_gauss,2)}+—{round(s_B_gauss,2)} T’)
print (f’B_lorentz: {round(B_lorentz,2)}+—{round(s_B_lorentz,2)} T’)
print (f’B_voigt: {round(B_voigt,2)}+—{round(s_B_voigt,2)} T\n’)

print (’ magnetisches Moment mu e ")

m e gauss = (m g — E_ trans mittel gauss[0]/B_gauss)/m N
s_m_e_gauss = np.sqrt( (s_E_trans_mittel gauss[0]/B_gauss)=*x2 + (
— E_trans_mittel__gauss|[0]xs_B_gauss/B_gauss*%2)xx2)/m N

m_e_ lorentz = (m g — E_trans_mittel lorentz[0]/B_lorentz)/m N
s_m_e_lorentz = np.sqrt( (s_E_trans_mittel lorentz[0]/B_lorentz)=*2 + (
— E_trans_mittel_lorentz [0]xs_B_lorentz/B_lorentz*x2)x%2)/m N

m_e_voigt = (m_g — E_trans_mittel voigt[0]/B_voigt)/m N
s.m_e_voigt = np.sqrt( (s_E_trans_mittel voigt[0]/B_voigt)*x2 + (
— E_trans_mittel voigt[0]«s_B_voigt/B_voigt**2)*%2)/m N

print (f ’magn. moment e_gauss: {round(m_e_gauss,5)}+—{round(s_m_e_gauss,5)}
— 1/m N”)

print (f ’magn. moment e_lorentz: {round(m_e_lorentz,5)}+—{round (
— s_m_e_lorentz,5)} 1/m N’)
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print (f ’magn. moment e_voigt: {round(m_e_voigt,5)}+—{round(s_m_e_voigt,5)}

— 1/m N\n"’)

effective absorber thickness
print (’ effecitve absorber thickness
— ")

,_h
>
|

= 0.8 #debye—waller aus anleitung
d A = 25x10%x(—6) #meter

beta = 0.022 # anteil von 57 Fe in Probe
f = 0.98 #%, iron content in absorber
s f = 0.02 #%

## sigma__ 0 berechnen
lambdaa = 0.0861%10%x( —9)#meter

I e = 3/2 #spin excited state
I ¢ = 1/2 #sping ground state
alpha = 8.58

s_alpha = 0.18

sigma_ 0 = (lambdaa**2/(2+np.pi)) * (2xI_e+1)/(2xI_g+1) = 1/(1+alpha)# m
— 72
s_sigma_ 0 = sigma_0Oxs_alpha/(1+alpha)

print (f ’sigma={round (sigma_ 0%10%%(24) ,0)}+—{round(s_sigma 0x10%%(24) ,0)}
< 107-24 m2")

rho = 7874 #kg/m™3

M = 55.845%10%x(—3) # kg/mol

s M = 0.002x10%x(—3) #kg/mol

N_A = 6.02214076 * 10%*(23) #1/mol avogadro

n A rhox(N_A/M) * f

s n A  =n Axnp.sqrt ((s_f/f)*x2 + (s_M/M)*x%2)

print ({'n_ A={round (n_Ax%10x%(—28) ,1)}+—{round (s n Ax10%xx(—28),1)} *x10728 m
— 7=37)

T A = 1f Asxn_Axbetaxsigma_0xd_A
s T A=T A«np.sqrt ((s. n A/n A)*+2 4+ (s_sigma_0/sigma_0)x*2)
print ({ T _A={round (T_A,1) }4+—{round(s_ T A,1)}\n’)

## each line has its own effecitve absorber thickness

N_infty gauss = fitPara_gauss[—1]

N_infty_lorentz = fitPara_lorentz[—1]

N_infty_voigt = fitPara_voigt[—1]

s_ N_infty_ gauss = np.sqrt (fitCova_gauss|[—1][—1])
s_ N_infty_ lorentz = np.sqrt(fitCova_lorentz[—1][—1])
s_ N_infty voigt = np.sqrt(fitCova_voigt[—1][—1])

N_mu_gauss = []

s_N_mu_gauss = |
N_mu_lorentz = []
s N mu lorentz =

[]
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N_mu_voigt = []
s_N_mu_voigt = []
for i in range(0,6):
N_mu_gauss.append (multi_gauss (mu_gauss[i],xfitPara_gauss))
s_ N_mu_gauss.append (multi__gauss(mu_gauss|[i]—s_mu_gauss|[i],=*
— fitPara_gauss)— N_mu_gauss[i])
N_mu_lorentz.append (multi_lorentz (mu_lorentz[i],«fitPara_lorentz))
s_N_mu_lorentz.append (multi_lorentz (mu_lorentz[i]—s_mu_lorentz[i],x
— fitPara_lorentz) — N_mu_lorentz[i])
N_mu_voigt.append (multi_voigt (mu_voigt[i],*fitPara_voigt))
s_ N_mu_voigt.append (multi_ voigt (mu_voigt[i]—s_mu_voigt[i],*
— fitPara_voigt)— N_mu_voigt[i])

gauss = []
_j_gauss = |
lorentz = []
lorentz =
oigt = []

I
s_
I
s_1_j_
I v
s_ I j voigt = []
i
I
s

-
I
B
I
e
I

for in range(0,6):

_j_gauss.append (N_infty_gauss — N_mu_gauss[i])

I_j_ gauss.append(np.sqrt ((s_N_infty gauss)**2 4+ (s_N_mu_gauss[i]) x%2)

=)

I _j lorentz.append(N_infty lorentz — N_mu_lorentz[i])

s_1 j lorentz.append(np.sqrt((s_N_infty lorentz)**2 4+ (s_N_mu_lorentz]1i
= ])*%2))

I_j_voigt.append(N_infty_voigt — N_mu_voigt[i])

s_I_j voigt.append(np.sqrt ((s_N_infty_voigt)**2 + (s_N_mu_voigt[i]) **2)
=)

norm_gauss = sum(l_j gauss)
norm_lorentz = sum(I_j_lorentz)
norm_ voigt = sum(I_j voigt)

liste = []
for i in range(0,6):

liste .append(s_I_j_ gauss|[i]*x*2)
s_norm_ gauss=np.sqrt (sum(liste))

liste = []
for i in range(0,6):

liste .append(s_I_j_lorentz[i]x*2)
s_norm__lorentz=np.sqrt (sum(liste))

liste = []
for i in range(0,6):

liste .append(s_I_j_ voigt[i]**2)
s_norm_ voigt=np.sqrt (sum(liste))

w_j_ gauss = []
s_w_]j_gauss = []
lorentz = []

w_j_

s_w_j_ lorentz []
w_j_voigt = []
s_w_j_ voigt = []
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for i in range(0,6):

w_j_gauss.append (I_j_gauss[i]/norm_gauss)

s_w_j_gauss.append(w_j gauss[i]*np.sqrt ((s_I j gauss[i]/I_j gauss[i])
— x%2 + (2xs_norm_ gauss/norm_ gauss)*x%2))

w_j_lorentz.append(I_j_lorentz[i]/norm_lorentz)

s_w_Jj_lorentz.append(w_j_lorentz[i]*np.sqrt ((s_I_j_ lorentz[i]/
— I_j_lorentz[i])#*x2 + (2%s_norm_lorentz/norm_lorentz)*%2))

w__j_voigt.append (I_j_voigt[i]/norm_voigt)

s_w_j_ voigt.append(w_j_ voigt[i]*np.sqrt ((s_I j voigt[i]/I _j voigt[i])
— *%2 + (2xs_norm_ voigt/norm_ voigt)x%2))

T A j gauss = []
s_. T_A_j gauss = []
T_A_j_lorentz = []
s_T_A_j lorentz = []
T_A_j_voigt = []
s. T A _j voigt = []
for i in range(0,6):
T_A_j gauss.append (T _Axw_j_gauss[i])
s_. T _A_j gauss.append(T_A_j gauss[i]*np.sqrt ((s_T_A/T A)*x2 + (2x
— s_w_]j_gauss[i]/w_j_gauss[i])*x%2))
T _A_j lorentz.append (T Axw_j lorentz[i])
s_ T A _j lorentz.append(T_A_j lorentz[i]+np.sqrt ((s T A/T A)xx2 + (2x
— s w_j lorentz[i]/w_j lorentz[i])x%2))
T A j voigt.append (T Asxw_j voigt[i])
s T A j voigt.append (T A j voigt[i]*np.sqrt ((s T A/T A)*%2 + (2%
— s_w_j_voigt[i]/w_]j_voigt[i]) *%2))

print (’ gewichte und T_A_j ")

print ('\n Gauss ")
for i in range(0,6):
print (f’w_{i+1}: {round(w_j_ gauss[i],3)}+—{round(s_w_j_ gauss[i],3)}’)
for i in range(0,6):
print (f ' T_A {i+1}: {round(T_A_j_ gauss[i],2)}+—{round(s_T_A_j gauss|i
= 1,2)}7)

print ('\n———Lorentz——— )
for i in range(0,6):
print (f’'w {i+1}: {round(w_j lorentz[i],3)}+—{round(s_w_j lorentz[i],3)}
= )
for i in range(0,6):
print (f'T_A {i+1}: {round(T_A_j lorentz[i],2)}+—{round(s_T_A_j_ lorentz]
= i],2)}7)

print ('\n Voigt )
for i in range(0,6):
print (f’w_{i+1}: {round(w_j_voigt[i],3)}+—{round(s_w_j_ voigt[i],3)}’)
for i in range(0,6):
print ({'T A {i+1}: {round(T_A_j voigt[i],2)}+—{round(s_T A j voigt[i
= 1,2)}7)
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for i in range(0,6):

T_A_alle.append (T_A_j_gauss[i])

s. T A alle.append(s_T_A_j gauss[i])
for i in range(0,6):

T_A_alle.append (T_A_j_lorentz[i])

s_T_A_alle.append(s_T_A_j lorentz[i])
for i in range(0,6):

T A alle.append(T_ A j voigt[i])

s T A alle.append(s_T_ A j voigt[i])

]

[

(1

i in range(0,len(T_A_ alle)):

a.append (T_A_alle[i]/s_T A alle[i]*x2)
b.append(1/s_ T A alle[i]*%2)

a =
b
fo

r

T_A_alle_wert = sum(a)/sum(b)

s_T_A_alle_wert = np.sqrt(1/sum(b))
T_A_j lorentz = [9,9,9,9,9,9]
s T A_j lorentz = [0.3,0.3,0.3,0.3,0.3,0.3]

print (’\n——— Debye_ Waller factor f Q_j

f Q_gauss = []
f Q_lorentz = []

f_Q_voigt = []

_f Q_gauss = []
f Q_lorentz = []
f

S
S
s_f Q_voigt = []

for i in range(0,6):

f Q_gauss.append(np.real ((N_infty gauss—N_mu_gauss[i]) /(N_infty_ gauss
— *(l—np.exp(—T_A_j gauss[i]/2))*jv(0,1jx T _A j gauss[i]/2))))
f_Q_lorentz.append(np.real ((N_infty_lorentz—N_mu_lorentz[i]) /(
— N_infty_lorentzx(l—np.exp(—T_A_j_ lorentz[i]/2))*jv (0,1]x

— T_ A j lorentz[i]/2))))

f Q_voigt.append(np.real ((N_infty voigt—N_mu_voigt[i]) /(N_infty voigt
— *(l—np.exp(—T_A_j voigt[i]/2))*jv(0,1j*x T _A_j voigt[i]/2))))

s_f Q_gauss.append(np.sqrt (np.real ((N_mu_gauss[i]*s_N_infty_gauss/(

T A j gauss[i]/2

f —jv(0,1j+%T_A_j gauss[i]/2))=*%2))xx2)))
s

LA A A

N_infty_gauss**2x(1—np.exp(—T_A_j gauss[i]/2)*jv(0,1j*T_A_j_ gauss

[i]/2))))*x24+(—s_N_mu_gauss[i]/(N_infty_gauss*(l—np.exp(—
)xjv(0,1j*T_A_j gauss[i]/2))))**x24+(—np.exp(—

T_A_j gauss[i]/2)*(jv(0,1jx T_A_j gauss[i]/2)+1j*jv(1,1]x

T_A_j gauss[i]/2))xs_T_A_j gauss[i]/(2«(np.exp(—T_A_j gauss[i]/2)

_lorentz.append (np.sqrt (np.real ((N_mu_lorentz[i]*s_N_infty_lorentz
/(N_infty_ lorentz*x2x(1l—np.exp(—T_A_j lorentz[i]/2)*jv(0,1]x

T A_j lorentz[i]/2))))*+2+(—s_N_mu_lorentz[i]/(N__infty_ lorentz
*(1—np.exp(—T_A_j lorentz[i]/2)*jv(0,1j+«T_A_j_ lorentz[i]/2))))
#x24+(—np.exp(—T_A_j_ lorentz[i]/2)x(jv(0,1j% T_A_j lorentz[i]/2)+1
jxjv(1,1j*xT_A_j_ lorentz[i]/2))*s_T_A_j lorentz[i]/(2*(np.exp(—

T A_j lorentz[i]/2)—jv(0,1jxT_A_j lorentz[i]/2))*%2))xx2)))
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)
O

_voigt.append (np. sqrt (np. real ((N_mu_voigt[i]*s_N_infty_voigt/(
N_infty_voigt*x2+(1—np.exp(—=T_A_j_voigt[i]/2)*jv(0,1j*T_A_j_voigt
[i]/2))))**x24+(—s_N_mu_voigt[i]/(N_infty_voigt«(1l—np.exp(—

T_A_j voigt[i]/2)*jv(0,1j*T_A_j voigt[i]/2))))**2+(—np.exp(—
T_A_j voigt[i]/2)*(jv(0,1j% T_A_j voigt[i]/2)4+1j*jv(1,1jx

T_A_j voigt[i]/2))*s_T_A_j voigt[i]/(2*(np.exp(—=T_A_j_voigt[i]/2)
—jv(0,1j*T_A_j_voigt[i]/2))*%2))*x2)))

U

print ( ’\n Gauss )
for i in range(0,6):
print (f’'f Q {i+1}: {round(f_Q_gauss[i],2)}+—{round(s_f_Q_gauss[i],2)}’)

print (’\n——Lorentz———— )
for i in range(0,6):
print (f’'f Q {i+1}: {round(f_Q_lorentz[i]/w_j lorentz[i],5)}+—{round/(
— s_f_ Q_lorentz[i],2)}")

print ( ’\n Voigt )
for i in range(0,6):
print (f’'f Q {i+1}: {round(f_Q_voigt[i],2)}+—{round(s_f Q_voigt[i],2)}’)

wAA AR Line width

print (’\n line width gamma )

Gamma_gauss = [] #mm/s
s_Gamma_gauss = []
Gamma_ lorentz = []
s Gamma_lorentz =
Gamma_ voigt = []
s_Gamma_voigt = []
for i in range(0,6):

Gamma_ gauss. append (2+np.sqrt (2«np.log(2) )*fitPara_gauss[i+6])

s_ Gamma_ gauss. append (2+np.sqrt (2+«np.log (2))*np.sqrt (fitCova_gauss|[i+6]]|

— 1+6]))

Gamma_ lorentz.append (2« fitPara_lorentz [i+46])

s_Gamma_ lorentz.append (2+np. sqrt (fitCova_lorentz [i+6][i+6]))

Gamma_ voigt. append (2« fitPara voigt[i+12])

s_ Gamma_ voigt.append (2xnp.sqrt (fitCova_ voigt [1+12][i+12]))

[]

print ('\n Gauss )
for i in range(0,6):
print (f ’Gamma_{i+1}: {round (Gamma_gauss[i],2)}+—{round(s_Gamma_gauss]| i
= 1,2)} nm/s”)

print (’\n——Lorentz——— )
for i in range(0,6):
print (f ’Gamma_{i+1}: {round(Gamma_lorentz[i],2)}+—{round(
— s_Gamma_lorentz[i],2)} mm/s’)

print ( ’\n Voigt )
for i in range(0,6):
print (f ’Gamma_{i+1}: {round (Gamma_voigt[i],2)}+—{round (s_Gamma_voigt| i
= ],2)} m/s”)
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print ('\n Gauss ")
for i in range(0,6):
print (f’Gamma {i+1}: {round(Gamma_gauss[i]*(reee*10%%(9)) ,2)}+—{round(
— s_Gamma_gauss|[i]*(reee*x10%xx(9)),2)} neV’)

print(’\n——Lorentz——— )
for i in range(0,6):
print (f’Gamma {i+1}: {round(Gamma_lorentz[i]*(reeex10%%(9)) ,2)}+—{round
— (s_Gamma_lorentz[i]*(reee*10%%(9)),2)} neV’)

print ( ’\n Voigt )
for i in range(0,6):
print (f’Gamma_{i+1}: {round(Gamma_voigt[i]*(reee*10%%(9)) ,2)}+—{round (
— s_Gamma_voigt[i]|*(reeex10%%(9)),2)} neV’)

HHAA AR Lifetime

print (’\n life time tau
= ")

hquer = 6.582119569 *10%%(—16) #eVs

%
B

tau_g
s tau
tau_ 1
s tau
tau_ v
s_tau_ v []
for i in range(0,6):
tau_g.append (hquer /(Gamma_gauss[i]*reee)*x10%%9)
s_tau_g.append(tau_g[i]*s Gamma_ gauss[i]/Gamma gauss[i])
tau_1.append (hquer /(Gamma_lorentz[i]*reee)*10%%9)
s _tau l.append(tau 1[i]*s Gamma lorentz[i]/Gamma lorentz[i])
tau_v.append (hquer /(Gamma_voigt[i]*reee ) *x10%%9)
s_tau_v.append (tau_v[i]*s_Gamma_voigt[i]/Gamma_voigt[i])

a9

— |l

print ( ’\n Gauss )
for i in range(0,6):

print (f ’tau_{i+1}: {round(tau_g[i],2)}+—{round(s_tau_g[i],2)} ns’)
print (’\n——Lorentz———’
for i in range(0,6):

print (f’tau_{i+1}: {round(tau_1[i],2)}+—{round(s_tau_1[i],2)} ns’)
print ('\n Voigt )
for i in range(0,6):

print (f ’tau_{i+1}: {round(tau_v[i],2)}+—{round(s_tau_v[i],2)} ns’)

lifetime korrektur

print ( ’\n life time tau korrigiert
— )

rel width = 2

print ( ’\n Gauss )
for i in range(0,6):
print (f’tau_{i+1}: {round(tau_g[i]*rel_width,2)}+—{round(s_tau_g[i]x
— rel_width,2)} ns’)
print (’\n——Lorentz———— )
for i in range(0,6):
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print (f’tau_{i+1}: {round(tau_l[i]*rel_width,2)}+—{round(s_tau_1[i]x
— rel_width,2)} ns’)
print ( ’\n Voigt )
for i in range(0,6):
print (f’tau_{i+1}: {round(tau_v[i]*rel_width,2)}+—{round(s_tau_v[i]x
— rel_width,2)} ns’)

H. Laboratory Journal
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