
Contents

1 Theoretical Background 1

1.1 The Doppler Effect . 1

1.2 Gamma Radiation . 1

1.3 Interaction of Electromagnetic Radiation and Matter 1

1.4 The Mößbauer Effect . 3

1.4.1 Debye-Waller Factor . 4

1.5 Line Width of Spectral Lines . 5

1.6 Isomer Shift . 5

1.7 Hyperfine Splitting of Nuclei States . 5

2 Experimental Setup 7

2.1 Scintillator . 7

2.2 NIM Modules . 8

3 Procedure 10

4 Analysis 12

4.1 Energy Calibration . 12

4.2 Compton Background . 14

4.3 Acrylic Glass . 15

4.4 Measurements of Stainless Steel . 16

4.4.1 Isomeric Shift . 18

4.4.2 Effective Absorber Thickness . 18

4.4.3 Debye-Waller Factor . 19

4.4.4 Lifetime of the 14.4 keV State in Fe57 . 20

4.5 Measurements of Iron . 21

4.5.1 Isomeric shift . 23

4.5.2 Magnetic Moment and Magnetic Field . 23

5 Summary and Discussion 25

5.1 Stainless Steel . 25

5.2 Iron . 26

5.3 Estimation of Errors . 27

I

A Analysis 29

B Python-Code 30

C Lab Notes 48

II

1 Theoretical Background

In this section we will introduce all the theoretical background needed to perform the experiment
and gain some intuition about the underlying physics and experimental aspects of Mößbauer spec-
troscopy.

1.1 The Doppler Effect

The ability to adjust the radiated energy emitted by the source, to match the energy levels of the
absorber lies at the heart of resonant spectroscopy. In this experiment we use a radioactive source,
which emitts photons with the energy Eγ = 14.4 keV. To measure the absorbtion spectrum of the
absorber material (Iron and stainless steel) the absorber is moved relatively to the source, such that
the radiation emmited by the source gets Doppler shifted for the moving absorber. The Doppler
effect shifts the frequency of electromagnetic radiation by

fr =

√
1− v

c

1 + v
c

fs, (1)

where v is the relative speed with which the receiver moves away from the source and c is the speed
of light. Expanding eq. (1) to first order in the relative speed one obtains

fr ≈
(

1− v

c

)
fs. (2)

Now using the photon energy Eγ = h f one obtains

Eγ,r =
(

1− v

c

)
Eγ,s, (3)

where Plancks constant h cancels on both sides. Note however, that v is positive if the receiver
moves away from the source and v is negative, when it moves towards the source. So concluding
the energy of the photon emitted by the source is shifted by ∆E = v

cE0 and the sign depends on
the direction of propagation of the receiver.

1.2 Gamma Radiation

In this subsection we briefly introduce the mechanisms which lead to gamma radiation in this
experiment. First and foremost gamma radiation is just high energetic electromagnetic radiation
which arises from the radioactive decay of excited atomic nuclei. The photons, which are used in
this experiment, come from a radioactive cobalt source, which decays via the mechanisms shown in
fig. 1. Other then the used gamma decay there are also two more gamma decays which contribute
in this experiment as background, due to Compton scattering, as discussed in section 1.3.

1.3 Interaction of Electromagnetic Radiation and Matter

For every experiment it is necessary to understand the background processes that contaminate
the data. Since in this experiment electromagnetic radiation is used to investigate the energetic

1

57
26Fe

5/2

3/2

1/2

I EC

57
27Co

1
3
6
.6

k
eV

122.2 keV

14.4 keV

Figure 1: In this figure a simplified decay scheme of 57Co is shown. The cobalt decays via electron
capture to an excited state of 57Fe. This exited state decays to the ground state via the radiation
of high energy photons.

properties of two materials it is important to understand how this radiation interacts with matter.
The three main mechanisms are the photoelectric effect, Compton scattering and pair production.
The absorption coefficient is plotted against the photon energy in fig. 2 to illustrate the contribution
of the different mechanisms to the total absorption, in dependence of the photon energy.

Photoelectric Effect The photoelectric effect describes the extraction of an electron out of its
bound state by a photon. The resulting free electrons are called photoelectrons. The energy of a
photoelectron is given by Ee = Eγ−EB, where EB is the binding energy of the electron in its orbit.
This holds since the photon in in the photoelectric effect get fully absorbed by the shell electron.
This is also the reason why this process does not contribute to the underground in this experiment,
it only reduces the signal.

Pair Production Pair production describes the scattering event γ + Z → Z + e+ + e−, where
Z represents an atom with atomic number Z. This process is due to energy conservation only
possible for photons with an energy of Eγ ≥ 2 ·mec

2 = 1.022 MeVc2. Above this energy the pair
production mechanism gets more and more important as seen in fig. 2. Within the energy regime
of the radiation used in this experiment this effect has no influence at all.

Compton Scattering The most dominant background for this experiment is caused by Compton
scattering of high energy photons. Which is caused due to the fact that the photon is not absorbed
instantly but scattered while changing the frequency. As seen in fig. 1, there are two decay modes
in which high energy photons with Eγ > 14.4 keV get produced. The frequency of these photons
can be lowered to 14.4 keV by repeated Compton scattering.

Attenuation of Gamma Radiation The absorbers used in this experiment are covered with
acrylic glass. Therefore, it is of interest to know how much of the radiation is absorbed in these

2

Total Attenuation

Compton Effect

Photoeffect Pair Production

Figure 2: In this picture the photon absorption coefficient µ/ρ is plotted against the photon energy.
The three main interaction mechanisms between light and matter are displayed – Photoelectric
Effect, Compton Effect and Pair Production. The picture is taken from the textbook of B.Povh [11]

layers of acrylic glass. This attenuation can be quantified by the exponential attenuation law

T :=
I

I0
= exp

(
−µ
ρ
· ρd
)
, (4)

where I is the intensity, I0 is the incident intensity, ρ is the density of the absorber material and d
the thickness of the absorber.

1.4 The Mößbauer Effect

The central phenomenon of this experiment is the Mößbauer effect, which describes the “recoilless
emission”1 of gamma rays from a nucleus confined in a crystal lattice. It is somewhat instructive
to first discuss a classical two body decay. So lets assume a resting nucleus of mass m, which is
in an energy state with energy E2, decays to a lower energy state with energy E1 by emission of a
photon with frequency f . The conservation of momentum and energy reads

0 =
hf

c
+mv,

E2 = E1 + hf +
mv2

2
.

1The term “recoilless” is somewhat misleading, since the crystal as a whole is always recoiling after the emission of
a photon. In the literature the Mößbauer effect is also called “photon emission without transfer of energy to internal
degrees of freedom of the lattice” [3]

3

Solving this set of equations for the frequency of the photon one yields

hf = (E2 − E1)− h2v2

2mc2
=: E0 −R,

where R is the recoil energy of the nucleus. Therefore the photon energy is Eγ < E0, because
some of the energy from the decay gets absorbed as recoil of the nucleus. If however the excited
nucleus is bound within a crystal lattice, there is a non-vanishing probability2 for the emission
of a photon without excitation of a vibrational mode of the crystal lattice (phonon) which would
absorb a part of the decay energy E0. The recoil energy of the whole lattice can be neglected,
since mNucleus � MLattice. So the defining property which needs to be known to compute the
probability for the emission of a photon with Eγ ≈ E0 is the phonon spectrum of the lattice, to
which the nucleus is confined. There are two simple models, which make a prediction about the
phonon spectrum. These models are introduced very briefly in the following paragraphs.

Einstein Model In the Einstein model each atom is assumed to be bound in an harmonic po-
tential. Furthermore the harmonic potentials of all nuclei has the same natural frequency ωE (also
called eigenfrequency), therefore the atoms vibrate independently which is a strong physical re-
striction which gets relaxed in the Debye model. The Einstein model allows the description of the
heat capacity of the crystal at high temperatures. For a complete discussion of the model see e.g.
H. Meyers, Introductory Solid State Physics [8].

Debye Model The Debye model assumes the frequency spectrum to be that of an elastic contin-
uum. It therefore describes atomic vibrations as phonons in a box. In contrast to a free photon gas
confined to a box, there is a maximum frequency for phonons since there is only a finite amount
of vibrating atoms in the lattice. The Debye model allows the description of the heat capacity
at the low temperature and high temperature limits, but deviated from the observed behavior for
intermediate temperatures.

1.4.1 Debye-Waller Factor

To quantify the incidence of “recoilless” nuclear transitions the fraction of “recoilless” emissions of
photons can be used. This fraction is called the Debye-Waller factor f . The Debye-Waller factor
of the source can be computed via

fS =
Ṅ(∞)− Ṅ(0)

Ṅ(∞)

(
1− exp

(
−1

2
TA

)
J0

(
1

2
iTA

))−1
, (5)

where

J0(x) =
1

π

∫ π

0

cos(x sin(τ)) dτ (6)

and TA is the effective absorber thickness. A detailed discussion about these expressions is found
in [6].

2The Mößbauer effect is of purely quantum-mechanical nature. For a self-contained discussion based on basic
quantum mechanical principles we recommend [3]

4

1.5 Line Width of Spectral Lines

The natural line width of emission/absorption lines is related to the life-time of the state by

Γnat. =
~
τ
, (7)

wheren γnat. is the full width at half maximum of the absorption/emission peak, τ is the lifetime of
the state and ~ is the reduced Planck constant. This can be heuristically justified by the energy-time
uncertainty

∆E∆t ≥ ~. (8)

1.6 Isomer Shift

The energy levels of an atomic nucleus are dependent on exterior electric and magnetic fields like
the ones generated by the electron shell of the atom. If for example the atom is confined in a lattice,
the electron density of the atom may change a little and thus also the energy level of the state of
the nucleus. If now source and absorber are slightly different in their chemical composition of the
lattice, the energy states of the nuclei in the absorber and source are shifted differently with respect
to each other. Therefore, the isomer shift is also called chemical shift. This effect will be observed
by a slight shift of the resonances from the expected positions.

3/2

1/2

I

+1/2

−1/2

−3/2

−1/2

+1/2

+3/2

mIEnergy Levels Relative Isomer Shift Magnetic Splitting

14.4 keV
A B C

D E F

−5 0 5
80

90

100

A B C D E F

Doppler Velocity v / mm
s

T
ra

n
sm

is
si

o
n

%

Figure 3: Energy Level diagram and expected Mößbauer spectrum illustrating the magnetic level-
splitting in 57Fe nuclei states. Note that the displayed data is not actual measurement data but
generated to sketch the signal we expect to see.

1.7 Hyperfine Splitting of Nuclei States

In absence of any exterior fields a nucleus can be described by fermionic particles confined in
an effective spherical symmetric single particle potential, like a Wood-Saxon potential. Such an
Hamiltonian has degenerate eigenenergies. If now a magnetic field is applied, like the one generated
by the electron shell, the angular degeneracy is lifted. This lifting of degeneracy is closely related

5

to the fact that the spherical symmetry of the Hamiltonian is broken, since there is now a preferred
direction for the angular momentum given by the quantum number I. So the states which where
“2I + 1”-fold degenerate are now splitted due to their different magnetic quantum number mI ,
which is the z-axis projection of the angular momentum. The energy shift is given by

EHF =
µmIB

I
,

where µ is the magnetic moment mI is the magnetic quntum number assigned to the state, B is
the absolute value of the exterior magnetic field and I is the spin quantum number. So the photons
which would excite a state specified by (E1, I1,mI1) to a state specified by (E1, I1,mI1) needs to
have the energy

Eγ = (E2 − E1) + EIso. −
(
µmI2

I2
− µI1

I1

)
B, (9)

where E1, E2 are the energies of the degenerate I1, I2 states and EIso. is the energy of the relative
isomer shift between source and absorber. To decide which transitions are possible one finds for
dipole order in perturbation theory the selection rules: ∆I = ±1 and ∆mI = 0,±1. The transitions
of interest and the expected spectrum in this experiment are displayed in fig. 3.

6

2 Experimental Setup

In this section we will introduce the setup used in this experiment. The main setup is shown
in fig. 4, it consists of a high precision engine, which is able to run at very precise velocities. This
engine moves a mount on which the different absorbers can be placed. In this experiment we used
an iron and a stainless steal absorber. The 57Co source is fixed in the setup and cannot be moved.
Additionally there is a special mount for additional sources, which are used for calibration. At the
other end of the setup there is a scintillator detector to detect the gamma radiation. We will now
briefly discuss the functionality of a scintillator.

1 2 3 4 5

Figure 4: In this figure the actual setup used in this experiment is shown. (1) High precision engine
to move the absorber, (2) 57Fe Source, (3) Mount for radio active sources for calibration and the
absorber, (4) Mount for Aluminium/Plexiglas shielding, (5) Scintillator detector.

2.1 Scintillator

In this experiment one scintillator is used to detect high energy photons, so called gamma radiation.
There are two different types of scintillating materials, organic and inorganic ones. Inorganic
scintillators consist of doped crystals. When ionizing radiation hits the scintillator an electron is
excited from the valence band into the conduction band. When this excited electron decays back into
the valence band it emits photon. Since the crystal is doped, the photon will not be reabsorbed
by the scintillator and can leave the material and then be detected. In organic scintillators the
detectable photons are produced when molecular states are excited and decay again, usually these
photons are in the ultra violet frequency range.

Photomultiplier In the scintillator the high energy photons get absorbed and produce a number
of secondary photons with lower energy which can be detected. Therefore a photomultiplier is used.

7

The photons produced in the scintillator get directed towards a photo cathode by using a light guide.
There one or more electrons gets extracted via the photoelectric effect. These electrons are then
accelerated towards a dynode where secondary electrons are released. This is iterated multiple time
generating more and more electrons until a measurable signal is produced. This process is sketched
in fig. 5

R R R R
. . .

R

R

−
γ

Dynodes

Anode

Output

e

Forward voltage

Photo cathode

Figure 5: In this figure the functionality of a photomultiplier is sketched.

2.2 NIM Modules

In this experiment several nuclear instrumentation standard (NIM) modules are used for signal
processing. As shown in fig. 7 In this experiment we used a multi channel analyzer (MCA), a single
channel analyzer (SCA) and a linear gate. The single channel analyzer was used as a discriminator.
We set an upper and a lower boundary on the signal, such that the SCA only returns a positive signal
if a photon within the set window is detected (The goal is to filter for Eγ ≈ 14.4 keV photons.). This
logical signal is put into the linear gate along with the amplified signal from the photomultiplier
and then fed into the MCA if the SCA and the amplifier give a signal simultaneously. The wiring
is displayed in fig. 6.

Scintillator Computer

Delay Linear Gate MCA

E
n

g
in

e
D

ri
v
e

Amplifier

SCA Counter

Figure 6: In this figure a schematic setup of the NIM modules is shown to illustrate how we
connected the individual modules.

8

1

2

3

4 5 6 7 8 9

Figure 7: In this figure the electronic devices used in this experiment are shown. (1) High voltage
supplier for the photomultiplier, (2) Oscilloscope to show the signals of the NIM devices, (3) Voltage
supply for the engine, (4) Multi channel analyzer (MCA), (5) Counter, (6) Timing single channel
analyzer (SCA), (7) Linear gate, (8) Amplifier, (9) Delay.

9

3 Procedure

The goal of the experiment is the measurement of absorption spectra of stainless steel and iron.
This is done by moving the absorber in front of a 14.4 keV source, so we can make use of the Doppler
effect. As the source does not only emit photons of the right energy the setup has to be calibrated
and set to a proper energy window.

Analysis of the Setup The absorption spectrum is measured by a scintillator and passed through
different components to create a computer readable signal with proper settings. While connecting
the components following the scheme shown in fig. 6 an oscilloscope was used to check the signal
after every step.

100 50 0 50 100 150 200
t [s]

0.1

0.2

0.3

0.4

0.5

0.6

U
[V

]

(a) Signal of the preamplifier located behind
the photomultiplier.

4 2 0 2 4 6
t [s]

0

2

4

6

8

10

U
[V

]

Amplifier
Delay

(b) Amplified signal in comparison to the
delayed signal.

4 2 0 2 4 6
t [s]

0

1

2

3

4

5

6

U
[V

]

Amplifier
SCA

(c) The output of the amplifier triggers a
logical yes in the SCA.

4 3 2 1 0 1 2 3
t [s]

0

1

2

3

4

5

6

7

8

U
[V

]

SCA
Delay

(d) The delayed signal that passed the linear
gate that was opened due to the logical yes of
the SCA.

Figure 8: Path of the signal through the used setup.

In fig. 8 the signal after the steps is shown. The exponential decay in the preamplifier originates

10

from the discharge of a capacitor. Afterwards the signal gets amplified and shaped to a Gaussian
and is splitted into two signals. On signal is delayed with a delay unit and we can see, that the
signals are of the same shape but shown an offset. The other output of the amplifier is lead to a
SCA and triggers a logical yes. The signal of the SCA is connected to a linear gate, which opens
for a given logical yes and lets the delayed amplifier signal pass.

Calibration of the MCA The signal that passes the described signal is lead to a MCA and
the different energies are assigned to bins. As for the later measurements we are only interested
in detecting photons with 14.4 keV we need to be able to determine the bin that corresponds to
that energy. This is done by calibrating the MCA with help of five known spectra lines that were
measured, so we could determine the bin in the MCA that corresponds to the known energy of the
measured spectrum.

This calibration measurement was done twice. First with a small Corse Gain which gives a good
overview of the spectra and a second one with a higher Corse Gain, that was used for the later
measurements.

With help of these calibrations the SCA-discriminator window was set so that only photons in the
desired energy range pass, we found an upper bound of 2.10 and a lower bound of 1.10 for a Corse
Gain of 100.

Background To determine the count rate that originates by Compton scattering of the absorber
the count rate for different thicknesses of aluminium were measured. The sledge with the absorber
was at rest during this measurement and the stainless steel absorber was used, as for the later
calculations this is the probe for which the absolute count rate is of great interest. Nevertheless
this can also be used for the iron absorber as the background should be the same.

Furthermore the attenuation of gamma radiation by acrylic glass was determined by measuring the
count rate without an absorber, but acrylic glass inserted in the thickness of the acrylic glass that
wraps the absorber.

Mößbauer Spectroscopy After the calibration and the background measurements the spectra
of stainless steel and iron were measured. The absorber was placed on the sledge and a LabView

software was used to set velocity ranges and start and stop the measurement. The measurement
times, as well as the clustering density of the velocities were chosen as a compromise between
accuracy and time.

11

4 Analysis

4.1 Energy Calibration

For the measurements of the iron and the stainless steel spectra a sensitive energy window needs
to be determined. In this analysis the calibration with a Corse Gain set to 100 is shown, but it
was only used for error estimation on the chosen window as it was measured in the end of the
experiment. On the first day of the experiment a calibration for a Corse Gain of 20 was recorded
and the window of the experiment was set by eye with help of that calibration.

To find a window the Multi Channel Analyser is calibrated, so the position of the 14.4 keV peak
can be determined. For this calibration five different probes were measured and the channel that
corresponds to the Kα decay peak with the energies listed in the instruction [1] was determine by
fitting a Gaussian function of the form

G(x) = A exp

(
(x− µ)2

2σ2

)
+ C.

A is the amplitude, µ the position of the maximum, σ the variance and C the offset. The fits are
shown in fig. 15 and the fit parameters that lead to the linear regression can be found in table 3.

15 20 25 30 35 40 45
Energy [keV]

2000

3000

4000

5000

6000

7000

8000

Ch
an

ne
l

Figure 9: Linear regression to determine the relation between channel and energy. The shown
points correspond to the five different probes that were used for calibration (see fig. 15)

12

The found positions were plotted against the corresponding energy and a linear regression was
performed which yields

f(E) = (173± 3) Channel/keV · E − (77± 89) Channel. (10)

The fit looks as expected, the offset normally should be zero but this is fulfilled within the uncer-
tainty which is rather big due to the very few data points. This fit can now be used to determine
the channel for 14.4 keV would fill and we find Channel14.4 ≈ 2414± 46.

Anyways this calculated channel was not used to determine the window, as the amplification was
changed after the first calibration and it was not certain if there would be enough time for a second
calibration. To determine the window the Kα-line of Rubidium was used. With help of the first
calibration it was possible to determine the position of that peak and it was possible to follow that
peak to the higher Corse Gain. Therefore for the new amplification a window was chosen with regard
to that peak, as it is rather close to the Cobalt peak we later measure. Afterwards the Cobalt-
spectrum for this window was looked at and the window was adjusted a little. This results in the
peak that is shown in fig. 10. Later, after the second calibration was performed the energy the peak
corresponds to was calculated with the inverse of eq. (10) and we found ECo = (13.99± 0.02) keV,
so the window was chosen around the right peak, but we note that the window is much wider than
it needs to be to satisfy the uncertainty of the calibration, so this might lead to higher noise in the
later measurements. Nevertheless it is also not recommended to choose a really narrow window, as
this might cut of too much data and yield bad statistics.

0 20 40 60 80
Energy [keV]

0

20

40

60

80

100

Co
un

ts

Figure 10: Measured Cobalt spectrum after the window was set. The energies are calculated with
help of the second calibration.

13

4.2 Compton Background

With the set window of the SCA the Compton background was measured. The window just counts
photons with an energy around the searched 14.4 keV, but due to the Compton effect the higher
Cobalt energies 136 keV and 122 keV can be decreased and measured in the window. As these
photons do not correspond to the absorption that should be measured this background needs to
be determine and subtracted. The background was determined by measuring the count rates for
different thicknesses of aluminium in front of the scintillator for the stainless steel absorber. The
stainless steel absorber was chosen as the absolute count rate is of interest for determining the
Debye-Waller factor which is done for stainless steel and not of great interest for the iron absorber
as for that case we are only interested in the position of the peaks. The aluminium shielding will
absorb the 14.4 keV photons and for a thickness of about 1 mm around 90 % of the photons are
absorbed. The higher energy photons are not effected this much by the aluminium and around 95 %
of the photons can pass a thickness of 1 mm. Due to the different reactions on increasing aluminium
thickness a double exponential function can be observed when plotting the count rated against the
aluminium thickness.

0 2 4 6 8 10
Thickness in [mm]

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

N
 in

 [1
/s]

Double Exponential Model Fit
Single Exponential
Data

Figure 11: Measurement of the count rate for different thicknesses of aluminium and the stainless
steel absorber. The fit of a double exponential function is shown, as well as the slower decaying
part that is extrapolated to zero. The count rate of the slower part at zero corresponds to the
Compton offset.

14

As the data taken by the MCP are absolute counts the count rate is determine by

Ṅ =
N

t

sṄ =

√
N

t
,

where for the error on the count rate a normal Poisson error was applied. The taken data is shown
in fig. 11 and a double exponential was fitted to the data

Ṅ(d) = A exp(−µd) +B exp(−νd).

The slower decaying part of this double exponential corresponds to the Compton part and is shown
separately and extrapolated to an absorber thickness of zero. With the extrapolation to zero the
count rate of the Compton background can be determine to

ṄCompton = B = (20.68± 0.17) Counts/s.

4.3 Acrylic Glass

Both absorbers are fixed between two acrylic glass plates that also absorb gamma radiation. Thus
the absolute count rate is reduced, so to determine the Debye-Waller factor this dampening needs
to be determined, so the measurement can be cleared by this background. This was done by
measuring the count rate with two acrylic glass plates, but without an absorber, as well as a clean
measurement of the count rate without anything inserted. The absorption in acrylic glass follows
the Beer-Lambert law and is depended on the thickness of the glass d = (2.00± 0.02) mm, the

density ρa.g. = 1.19 g

cm3 and the attenuation coefficient µ/ρ(E = 14.4 keV) ≈ 1.101 cm2

g [1] that has
been extrapolated by the given data. The effect of this dampening can be calculated using these
material constants by

Ṅ(d) = Ṅ0 exp

(
−µ
ρ
ρa.g.d

)
= Ṅ0R(d).

R(d) is the dampening factor that can be calculated analytically with the given formula as well as
with the measured count rates by

Rexp. =
Ṅ(d)

Ṅ0

,

where N0 is the count rate without absorber of acrylic glass. The experimental measurement
gives Rexp. = 0.837± 0.007 and the analytical calculation gives Rana. = 0.77± 0.04, where both
errors were calculated with Gaussian error propagation. The values do not completely match but
are of the same magnitude, for the later calculations the experimental dampening factor is used as
this is expected to match the experimental behaviour and all uncertainties are well defined and not
dependend from extrapolating some given data to the needed energy.

15

4.4 Measurements of Stainless Steel

The measurements of the stainless steel absorber were done in a velocity range from circa −2 mm
s

to 2 mm
s and with varying measurement times. For each measurement the count rate Ṅmeas. was

calculated with its error, again a Poisson error was used. Afterwards the count rate was cleared
by the Compton background and the absorption due to the acrylic glass. First the rate is cleared
by the Compton background so only the rate created by the photons of interest, so the 14.4 keV
photons, remain. Afterwards this new rate is weighed with the damping factor due to the acrylic
glass, as this factor has just been measured or calculated for this energy. Thus the new cleared
count rate is given by

Ṅ =
Ṅmeas. − ṄCompton

Rexp.
. (11)

The error on this was propagated with Gaussian error propagation and the measured count rate
without its background is shown in the plot fig. 12.

2 1 0 1 2
Velocity [mm/s]

6

7

8

9

10

11

12

13

14

N
 [1

/s]

Gauß Model
Lorentz Model
Voigt Model
Data

Figure 12: Absorption spectrum of stainless steel. Three different models were fitted to the data.

16

The measured rate (see fig. 12) shows the expected behaviour. We can see one dip in the count rate
that is roughly located around zero and has the shape of a Lorentzian or a Gauss function. For an
absorption spectrum we would expect a negative Lorentzian, so a function of the form

ṄL(v) =
Aγ

π

1

(v − v0)2 + γ2
+ C

is fitted to the data. Here A is the amplitude (here expected to be negative), γ gives the width of
the peak, v0 describes the position of the peak and C is the offset.

Statistical effects in the measurements like changes in the temperature, a varying sledge velocity
or variations in the detection follow a Gauss distribution. This can be used to check whether the
fluctuation has a higher effect on the measurement than the absorption we actually want to measure
by also fitting a Gauss function and checking whether this function satisfies the data more than the
expected Lorentzian. The fit function is given by

ṄG =
A√
2πσ

exp

(
(v − v0)2

2σ2

)
+ C.

here σ corresponds to the standard deviation and the other parameters fulfill the same purpose as
in the Lorentzian.

Last a combination of these two things can be taken into account. This makes sense, as the statistical
effects effect every point in the measurement and even though they might not be high enough to
completely disturbed the measurement it might be nice to take it into account in the fit function.
This combination of both attributes is given by the convolution of a Gauss and a Lorentzian and
called a Voigt profile and given by

ṄV =

∫ ∞
−∞

G(v′;σ)L(v − v′; γ)dv′.

As this Voigt profile does not have a nice analytical expression the function voigt profile from
the Python package scipy.special was used.

Table 1: Fit parameters for all three fit functions for the measurement of stainless steel.

Gauss fit Lorentz fit Voigt profile

v0[mm / s] 0.194± 0.012 0.177± 0.010 0.177± 0.010
σ[mm / s] 0.303± 0.013 0± 53
γ[mm / s] 0.319± 0.019 0.32± 0.03
A[1 / s] −3.5± 0.6 −4.1± 0.3 −4.1± 0.3
C[1 / s] 11.86± 0.06 12.14± 0.07 12.14± 0.08

The fit parameters are shown in table 1 and a visualisation of the fits is given in fig. 12. We can
see that all the fitted functions describe the data quite well, but the Lorentzian model achieves a
better description of the depth of the data. To find a description for the fit quality the reduced χ2

was calculated and we find χ2
G = 0.94 and χ2

L = χ2
V = 0.82. For all fits this value is quite low, this

is most probably due to the rather high errors. Nevertheless the agreement between data and fit
seems okay but to decide for one or another fit a hypothesis test with one model against the other
would need to be performed. Furthermore data with lower errors, so longer measurement times is
desired.

17

Conversion from Velocity to Energy The Mößbauer effect can be used to determine small
shifts in energies. To do so the measured velocities have to be connected to energies and this is
done with help of the Doppler shift and we find

E(v) = E0
v

c
, (12)

where E0 is the initial photon energy E0 = 14.4 keV and c is the speed of light. The error on this
conversion is the error on the velocity scaled with the factor E0/c.

4.4.1 Isomeric Shift

The isomeric shift is a small shift in the energy of the ground state or the excited state and shows
in the measurements as a velocity offset of the measured dip. The isomeric shift depends on the
electronic charge distribution around the nucleus that can be different in emitter- and absorber
material. Thus the emitted energy does not perfectly match the required absorption energy which
can be compensated by the moving sledge. To calculate the isomeric shift it is therefore possible
to use the determined position of the peak, which has an offset of zero and convert this velocity to
an energy via eq. (12). For the three different fits this yields

Eiso, G = (9.3± 0.6) neV

Eiso, L/V = (8.5± 0.5) neV

4.4.2 Effective Absorber Thickness

For the calculation of the Debye-Waller factor the effective absorber thickness TA is needed. It can
be calculated with help of the material parameters of the stainless steel absorber [1] via

TA = fAnAβσ0dA. (13)

The needed parameters are (taken from [1]):

absorber thickness : dA = 25 µm

number of iron atoms per m3 : nA

proportion of Fe56 iron : β = 0.022

cross section : σ0

Debye-Waller factor of the absorber : fA = 0.8

The cross section can be calculated as given in [6] with

σ0 =
1

2π

(
hc

Eiron

)2(
2Ie + 1

2g + 1

)
1

1 + α
,

where Eiron = 14.4 keV. Ie = 3/2 and Ig = 1/2 are the contributing spin states and α =
8.58± 0.18 [2] the conversion coefficient. The calculation of the cross section yields

σ0 = (2.46± 0.05) · 10−22 m2.

18

The number of iron atoms is calculated with the Avogadro constant NA, the density of iron ρFe =
7.89 · 106 g

m3 [9], the molar mass mFe = 55.8 g
mol and the proportion of iron that is used in the

stainless steel absorber p = 0.70± 0.05 [1] via

nA =
NAρFe
MFe

p = (5.9± 0.4) · 1028
1

m3 .

Combining these results and inserting in eq. (13) gives

TA = 6.4± 0.5.

During all the steps the errors have been calculated with Gaussian error propagation.

4.4.3 Debye-Waller Factor

With the calculation of the effective absorber thickness and the results of the fits the Debye-Waller
factor of the source can be calculated. The Debye-Waller factor is the fraction of recoilless emitted
or absorbed photons and can be calculated by [6]

fS =
Ṅ(∞)− Ṅ(0)

Ṅ(∞)

(
1− exp

(
−1

2
TA

)
J0

(
1

2
iTA

))−1
.

J0 is the Bessel-function of zeroth order and the count rates are given by the fit parameters. Ṅ(∞) is
the rate without absorption, so it is given by the offset C of our fit and the difference Ṅ(∞)− Ṅ(0)
is the amplitude A of the fit, as we are not actually interested in the depth at zero, but at the
minimum, so at zero plus isomer shift. With this the equation can be rewritten and we can also
use the fit parameters and their errors to calculate an error for the Debye-Waller factor:

fS =
A

C

(
1− exp

(
−1

2
TA

)
J0

(
1

2
iTA

))−1
and

sfs =

√(
∂fS
∂C

)2

s2C +

(
∂fS
∂A

)2

s2A +

(
∂fS
∂TA

)2

s2TA
+

(
∂fS
∂C

)(
∂fS
∂A

)
sAC ∗ ∗2,

with (
∂fS
∂A

)
=
fS
A(

∂fS
∂C

)
= −fS

C(
∂fS
∂TA

)
= −A

C
·
(
1
2 exp

(
− 1

2TA
)
J0
(
1
2 iTA

)
+ 1

2 i exp
(
− 1

2TA
)
J1
(
1
2 iTA

))(
1− exp

(
− 1

2TA
)
J0
(
1
2 iTA

))2 .

The errors on the fit parameters sA, sC and sAC are taken from the covariance matrix as the root
of the corresponding diagonal entry for the uncorrelated uncertainties and the square root of the

19

correlated entry for sAC . For the three different fits this calculation of the Debye-Waller factor of
the source results in

fS,G = 0.39± 0.02

fS,L = 0.44± 0.02

fS,V = 0.44± 0.04.

4.4.4 Lifetime of the 14.4 keV State in Fe57

The natural line width Γ of a state is connected to its lifetime by τ = ~/Γ but this relation can
not be directly applied in this experiment. The finite size of the emitter and the absorber cause an
overlap between emission and absorption spectra, so the line width is increased and a correction
factor has to be introduced as shown in [5, 7].

Figure 13: Relative line broadening of the Mößbauer absorption due to the absorber and source
thickness. The values on the vertical axis range from 2 to 7, but are noted with a space as a
separator.

Taking a look at fig. 13 we can see that for effective absorber and source thickness approaching
zero the relative broadening approaches 2, so the observed line width is twice the natural line
width of the Mößbauer spectrum, so the line width of the source adds up with the line width of
the absorption spectrum. The effective absorber thickness has been calculated in section 4.4.2 and
we found TA = 6.4± 0.5 for a thickness of dA = 25 µm. In [1] an estimation for the thickness of
the source is given with dS ≈ 100 Å, so if the other parameters needed to calculate the effective

20

source thickness are of the same magnitude, the effective source thickness will be very small and
can be approximates by TS ≈ 0. For this case the formula of Visscher [5] can be used to calculate
a correction factor

W = 2(1.01 + 0.145TA − 0.0025T 2
A), for 4 ≤ TA ≤ 10

sW = 2(0.145TA − 0.005TA)sTA
.

This calculation yields

W = 3.68± 0.10.

The corrected line width can now be calculated by

Γcorr. =
Γ0

W

and this corrected line width can be inserted in the known formula τ = ~/Γcorr.. For the Gauss fit
the line width has to be calculated out of the fit parameters and is given by the Full-Width-Half-
Maximum, so ΓG = FWHMG = 2

√
2 ln(2)σ and the error scales with the same factor. For the

Lorentz fit the line width is given by the width of the fit, so γ, for the Voigt profile only the width
of the Lorenz part has to be used. The observed values are

τ57Fe, G = (71± 4) ns

τ57Fe, L = (158± 11) ns

τ57Fe, V = (158± 16) ns,

and the errors on these values were propagated with Gauss through the whole procedure.

4.5 Measurements of Iron

Besides measuring the lifetime or the Debye-Waller factor the Mößbauer effect can also be used to
investigate hyperfine structure splitting, as the resolution of the data is rather fine. To do so the
stainless steel absorber was replaced with an iron absorber and measurements for different velocities
and different measurement times were performed. The rates and the errors were calculated same
as for the stainless steel absorber and the data was cleared by its background, again using eq. (11).

The taken data is shown in fig. 14 and it shows the expected behaviour with six dips roughly
symmetrized around a small offset of zero. To determine the position of the peaks a Gauss and a
Lorentz both constructed as a sum of six single Gauss or Lorentz functions were fitted to the data,
the fit parameters are shown in table 4. Again due to the high noise and errors in the data the
reduced χ2 is rather low, and we find χ2

G ≈ χ2
L = 0.82. As the positions of the peaks do not vary

significantly for the two models only the calculation with the Lorentz parameters is shown here.

The velocities were the dips are located can be converted to energies with the Doppler shift. These
energies then indicate the shift due to the hyperfine splitting and are shown in table 2.

21

8 6 4 2 0 2 4 6 8
Velocity [mm/s]

9

10

11

12

13

14

N
 [1

/s]

Lorentz based Model
Gauss based Model
Data

Figure 14: Absorption spectrum of iron. Two models were fitted to the data.

Table 2: Location of the dips as taken from the fit parameters in terms of a velocity and converted
to energies.

Dip ∆EHFS[mm/s] ∆EHFS[neV]

1 −5.29± 0.06 −254± 3
2 −2.97± 0.04 −143± 2
3 −0.85± 0.08 −41± 4
4 0.96± 0.05 46± 2
5 3.36± 0.07 162± 3
6 5.41± 0.07 260± 3

22

4.5.1 Isomeric shift

Again the energies are shifted from a symmetry around zero by an offset. The energies that are
observed due to the hyperfine splitting are symmetrical, so if there was not an isomeric shift the
sum of positions of a dip and its counterpart on the other side would be zero. For an existing
isomeric shift this sum gives the shift, so the sum of the three dips with their corresponding other
were calculated:

Eiso,16 = E1 + E6

Eiso,25 = E2 + E5

Eiso,34 = E3 + E4.

All three shifts should give the same, so the mean of the three isomeric shifts is calculated and we
obtain

Ēiso = (10± 3) neV.

The error on this value was propagated from the error on the fit.

4.5.2 Magnetic Moment and Magnetic Field

When the energies are corrected by the isomeric shift they can be connected to the hyperfine
splitting and we find

E1 − Ēiso = (µe − µg)Bz

E2 − Ēiso = (
1

3
µe − µg)Bz

E3 − Ēiso = (−1

3
µe − µg)Bz

E4 − Ēiso = −(−1

3
µe − µg)Bz

E5 − Ēiso = −(
1

3
µe − µg)Bz

E6 − Ēiso = −(µe − µg)Bz
and by subtracting the corresponding energies a system of equations can be found

E16 = E1 − E6 = 2(µe − µg)Bz

E25 = E2 − E4 = 2(
1

3
µe − µg)Bz

E34 = E3 − E5 = 2(−1

3
µe − µg)Bz,

that can be solved for the magnetic field Bz and the magnetic moment µe. Solving the system of
equations gives

Bz = −E34 − E25

4µg

µe =
3µg(E34 − E25)

E34 + E25

23

and the error is calculated with Gaussian error propagation what gives

sBz
=

√(
1

4µg

)2

s2E34
+

(
1

4µg

)2

s2E25
+

(
E34 − E25

4µ2
g

)2

s2µg

sµe
=

√(
6µgE34

(E34 − E25)2

)2

s2E25
+

(
6µgE25

(E34 − E25)2

)2

s2E34
+

(
3(E34 − E25)

E34 + E25

)
s2µg

,

and the errors on E34 and E25 are calculated straight out of the fit. µg is the magnetic moment of
the ground state of Fe57 and given by µg = 0.090 44± 0.000 07µN [12] with µN = 3.152 45 · 10−8 eV

T
the nuclear momentum [10].

Inserting the measured energies in the equations gives

Bz = (34± 2) T

µe = (−4.75± 0.15)
neV

T
= (−0.151± 0.005)µN .

24

5 Summary and Discussion

Calibration First of all the MCA was calibrated and a channel-energy-relation was determine
with help of five known absorbers. The relation is linear and a fit gives

f(E) = (173± 3) Channel/keV · E − (77± 89) Channel.

With help of a first calibration the SCA window was set and checking the result with help of the
second calibration shows the maximum of the Cobalt peak at ECo = (13.99± 0.02) keV, but also
shows a rather big energy window. Therefore the setup of the window is satisfactory and the energy
of interest is going to pass through, but it will have to be considered as a reason for noise in the
data.

Background Measurements For the fixed energy window the Compton background was deter-
mine for the stainless steel absorber with help of Aluminium shielding. Extrapolation of the slower
decaying part of a double exponential fit gives the offset

ṄCompton = B = (20.68± 0.17) Counts/s.

Adding to that the attenuation of acrylic glass was determined, as both absorbers are inserted in
two layers of acrylic glass. This has been done with theoretical calculations using material constants
and with help of a measurement. The calculations and measurement give

Rexp. = 0.837± 0.007

Rana. = 0.77± 0.04.

These two background measurements now were used to clear the following data from its background,
for the dampening factor the experimental value was used. The reasoning for this decision is, that
even though the error is higher, this value should represent the experiment with higher certainty, as
the same setup was used to determine this value that is going to be used for the later measurements.

5.1 Stainless Steel

The spectrum of stainless steel has been recorded for different velocities and measuring times and
a Poisson error has been applied on the count rates. The data was cleared by its background by
subtracting the Compton background and taking the dampening into account. Afterwards three
different fits, a Gaussian, a Lorentzian and a Voigt-fit were applied. Because of the high error of
the data and the rather high noise it was not possible to determine the best model for the data
with a simple χ2-test and one would need to perform a hypothesis test with one model against the
other to quantify the models. As it was not possible to determine the best model with the done
calculations the different parameters that were calculated for stainless steel were calculated for all
models.

Isomeric Shift The isomeric shift was calculated out of the offset of the data and the velocity
offset was converted to an energy with help of the Doppler effect. The calculated isomeric shifts are

Eiso, G = (9.3± 0.6) neV

Eiso, L/V = (8.5± 0.5) neV.

25

Effective Absorber Thickness The effective absorber thickness, needed to calculate the Debye-
Waller factor was determine with material parameters and we found

TA = 6.4± 0.5.

Debye-Waller Factor The Debye-Waller factor describes the fraction of recoilless emitted or
absorbed photons and was calculated out of the fit parameters for offset and amplitude. The
calculated factors are

fS,G = 0.39± 0.02

fS,L = 0.44± 0.02

fS,V = 0.44± 0.04.

Lifetime The lifetime of the 14.4 keV state in Fe57 was determine out of the fitted line width
given by the FWHM of the peak. To take the absorber thickness into account the formula of
Visscher was used to calculate a correction factor to the line width. The calculation with help of
the fit parameters and the theoretically calculated effective absorber thickness gives

τ57Fe, G = (71± 4) ns

τ57Fe, L = (158± 11) ns

τ57Fe, V = (158± 16) ns.

The literature value found in [4] gives τ57Fe = 141 ns, so the Lorentzian and the Voigt-fit give a
sensitive estimation for the lifetime, but the Gaussian model underestimates the lifetime. This
was expected, as the lifetime depends on the width of the function and one difference between the
Gaussian and Lorentzian model is, that the Lorentzian model gives a sharper peak, so the width is
affected by the choice of the model. Anyways much more data with longer measurement times is
needed so it is possible to decide for one model.

5.2 Iron

The absorption spectrum of iron was measured with the same setup, but for a wider velocity range.
Again the data was cleared by the background and the error was determined as an Poisson error.
To determine the positions of the dips a sum of Gaussian functions and a sum of Lorentzians were
fitted to the data. Again the quality of the model could not be determined with help of a χ2-test,
but as we are only interested in the position of the peaks for the following calculations and both
fits show the same behaviour in this context it was decided to only show the calculations with help
of the Lorentzian here. This decision also makes sense, as the Lorentzian is the expected model
from the physical point of view.

Isomeric Shift The positions of the six dips were determine in terms of velocities as the fit
parameters and converted to energies with help of the Doppler shift. As the absorption spectrum
shows a symmetry around zero apart form the isomeric shift it can be calculated by summing up
the mirrored peaks. For higher certainty the mean of the three values was determine and we obtain

Ēiso = (10± 3) neV.

26

Magnetic Moment and Magnetic Field By relating the energies to the magnetic fields and the
magnetic moment of the excited and ground state, the magnetic field and the magnetic moment
can be calculated out of the fit parameters. Solving a system of equations and inserting the fit
parameters gives

Bz = (34± 2) T

µe = (−4.75± 0.15)
neV

T
= (−0.151± 0.005)µN .

Literature values for these two measurements are B = 33 T for the magnetic field at 300 K [4]
and µe = −0.1549± 0.0002µN [10]. Both of these values lie within 1σ of our measurements, which
also shows that the choice of the model is not of huge relevance for this measurement, as the
calculation only depends on the position of the peak and both models yield comparable results for
that parameter.

5.3 Estimation of Errors

During the whole experiment and analysis the estimation of errors is rather unpleasant and some
further measurements are desired in order to be ceartain about the results. First of all a smaller
energy window in the SCA would be of interest, this might yield better results as there is less back-
ground but also can lead to longer measurement times as interesting events might be accidentally
cut off.

Furthermore it is of interest to perform all measurements, so background and the absorption spectra
with longer measurement times, as the error in the used plots results from a combination of different
quite high counting errors. The smaller errors might also lead to a decision which model fits the
data better, as for high errors the difference between a Gaussian and a Lorentzian model is to small.

Apart from that it would be nice to take more data, so measure for more different velocities, but
also perform the same measurement more often, so possible statistic effects cancel out.

27

References

[1] A. Zwerger and S. Winkelmann and M. Köhli and J. Wollrath. “Mößbauer-Effekt” (2017).

[2] V.P. Chechev and N.K. Kuzemenko. “Table of Radionucléides” (2017).

[3] Leonard Eyges. “Physics of the Mössbauer Effect”. American Journal of Physics 33.10 (1965),
pp. 790–802. doi: 10.1119/1.1970986.

[4] Brent Fultz. “Mössbauer Spectrometry”. Characterization of Materials (2011).

[5] J. Heberle. “Linewidth of Mössbauer absorption”. Nuclear Instruments and Methods 58 (1968),
pp. 90–92.

[6] S. Margulies, P. Debrunner, and H. Frauenfelder. “Transmission and line broadening in the
Mössbauer effect. II”. Nuclear Instruments and Methods 21 (1963), pp. 217–231. doi: 10.
1016/0029-554X(63)90119-8.

[7] S. Margulies and J.R. Ehrman. “Transmission and line broadening of resonance radiation
incident on a resonance absorber”. Nuclear Instruments and Methods 12 (1961), pp. 131–137.
doi: 10.1016/0029-554X(61)90122-7.

[8] H.P. Meyers and H.P. Myers. Introductory Solid State Physics, Second Edition. Taylor &
Francis, 1997.

[9] “Physical Measurement Labatory” (). url: https://physics.nist.gov/cgi-bin/Star/
compos.pl?matno=026.

[10] “Physical Measurement Labatory” (). url: https://physics.nist.gov/cgi-bin/cuu/
Value?munev%7Csearch_for=nuclear+magneton.

[11] Bogdan Povh et al. Teilchen und Kerne. Physics and astronomy online library. Springer Berlin
Heidelberg, 2014.

[12] N.J. Stone. “Table of Nuclear Magnetic Dipole end Electric Quadrupole Moments” ().

28

https://doi.org/10.1119/1.1970986
https://doi.org/10.1016/0029-554X(63)90119-8
https://doi.org/10.1016/0029-554X(63)90119-8
https://doi.org/10.1016/0029-554X(61)90122-7
https://physics.nist.gov/cgi-bin/Star/compos.pl?matno=026
https://physics.nist.gov/cgi-bin/Star/compos.pl?matno=026
https://physics.nist.gov/cgi-bin/cuu/Value?munev%7Csearch_for=nuclear+magneton
https://physics.nist.gov/cgi-bin/cuu/Value?munev%7Csearch_for=nuclear+magneton

A Analysis

0 2500 5000 7500 10000 12500 15000
Channel

0

50

100

150

200

250

300

350

400

Co
un

ts

(a) Spectrum of Ag

0 2500 5000 7500 10000 12500 15000
Channel

0

50

100

150

200

250

300

Co
un

ts

(b) Spectrum of Ba

0 2500 5000 7500 10000 12500 15000
Channel

0

100

200

300

400

500

600

Co
un

ts

(c) Spectrum of Mo

0 2500 5000 7500 10000 12500 15000
Channel

0

100

200

300

400

500

600

700

Co
un

ts

(d) Spectrum of Rb

0 2500 5000 7500 10000 12500 15000
Channel

0

50

100

150

200

250

300

Co
un

ts

(e) Spectrum of Tb

Figure 15: Spectra of different radioactive sources used to calibrate the MCA

29

Table 3: Calibration energy of the different measured probes with the channel they fill in the MCP.
This data was taken with the later used Corse Gain of 100.

Probe Energy [keV] Channel

Ba 32.06 5503± 1
Ag 22.1 3929± 2
Mo 17.44 3132± 3
Rb 13.37 2371± 2
Tb 44.23 7771± 2

Table 4: Fit parameters of the Lorentz fit to the data of the iron spectrum. The offset is the same
for all dips, as this parameter was not fitted seperately.

Dip v0[mm / s] γ[mm / s] A[1 / s] C[1 / s]

1 −5.29± 0.06 0.55± 0.11 −3.0± 0.6 11.93± 0.10
2 −2.97± 0.04 0.35± 0.07 −1.7± 0.3 11.93± 0.10
3 −0.85± 0.08 0.57± 0.16 −1.3± 0.4 11.93± 0.10
4 0.96± 0.05 0.40± 0.08 −1.2± 0.3 11.93± 0.10
5 3.36± 0.07 0.51± 0.12 −2.2± 0.5 11.93± 0.10
6 5.41± 0.07 0.51± 0.12 −2.4± 0.5 11.93± 0.10

B Python-Code

Calibration

1 """

2 In this module the MCP calibration is performed.

3 """

4

5 from matplotlib import pyplot as plt

6 import numpy as np

7 from scipy.optimize import curve_fit

8

9 # This handles the used fonts in the plot to make it more or less consistent

10 # with the standard latex font.

11 plt.rcParams[’mathtext.fontset ’] = ’stix’

12 plt.rcParams[’font.family ’] = ’STIXGeneral ’

13 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

14 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

15 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

16

17

18 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

19 """

20 Gauss function used to fit data.

21

22 x: x-Position

23 mu: Mean

24 sigma: Standard Deviation

30

25 amp: Amplitude

26 off: Offset on y-Axis

27 """

28 return amp * np.exp(-(x - mu)**2/(2 * sigma **2)) + off

29

30

31 def linear(x: float , m: float , c: float) -> float:

32 """

33 Linear function used to fit data.

34

35 x: x-Value

36 m: slope

37 c: Offset

38 """

39 return m * x + c

40

41

42 # Name of data

43 PROBES = ["ba", "ag", "mo", "rb", "tb"]

44

45 # Container for raw data

46 CHANNELS = [[] for _ in range(len(PROBES))]

47 COUNTS = [[] for _ in range(len(PROBES))]

48

49 MUS = []

50 SIGMAS = []

51 S_MUS = []

52 S_SIGMAS = []

53

54 INIT_BA = [5500, 500, 270, 0]

55 INIT_AG = [4000, 500, 3000, 0]

56 INIT_MO = [3100, 300, 100, 0]

57 INIT_RB = [2400, 200, 70, 0]

58 INIT_TB = [7700, 200, 300, 0]

59 INITS = [INIT_BA , INIT_AG , INIT_MO , INIT_RB , INIT_TB]

60

61 LIM_BA = (4000, 7000)

62 LIM_AG = (3250, 4300)

63 LIM_MO = (2750, 3600)

64 LIM_RB = (1800, 2800)

65 LIM_TB = (7000, 8500)

66 LIMITS = [LIM_BA , LIM_AG , LIM_MO , LIM_RB , LIM_TB]

67

68 GAUSS_X = []

69 GAUSS_Y = []

70

71 # Read data

72 for i in range(len(PROBES)):

73 with open("./ cal_at100/" + PROBES[i] + ".TKA", "r") as data:

74 lines = data.read().split("\n")

75 for j, line in enumerate(lines [1: -1]):

76 COUNTS[i]. append(float(line))

77 CHANNELS[i]. append(j)

78

79 popt , pcov = curve_fit(gauss , CHANNELS[i][LIMITS[i][0]: LIMITS[i][1]],

80 COUNTS[i][LIMITS[i][0]: LIMITS[i][1]], p0=INITS[i])

81

82 MUS.append(popt [0])

31

83 SIGMAS.append(popt [1])

84

85 S_MUS.append(np.sqrt(pcov [0][0]))

86 S_SIGMAS.append(np.sqrt(pcov [1][1]))

87

88 xx = np.linspace(CHANNELS[i][LIMITS[i][0]], CHANNELS[i][LIMITS[i][1]], 100)

89 yy = gauss(xx , *popt)

90 GAUSS_X.append(xx)

91 GAUSS_Y.append(yy)

92

93

94 for i in range (5):

95 plt.scatter(CHANNELS[i], COUNTS[i], color="red", marker="x", s=0.5)

96 plt.plot(GAUSS_X[i], GAUSS_Y[i], color="black", label="Gauss")

97 plt.minorticks_on ()

98 plt.grid(which="minor", linestyle=":")

99 plt.grid(which="major", linestyle="-")

100 plt.xlabel("Channel")

101 plt.ylabel("Counts")

102 plt.savefig("calibration" + str(PROBES[i]) + ".pdf")

103 plt.clf()

104

105

106 ENERGIES = [32.06 , 22.10, 17.44, 13.37 , 44.23] # keV

107

108 # Linear regression for calibration

109 popt , pcov = curve_fit(linear , ENERGIES , MUS)

110

111 xx = np.linspace(min(ENERGIES) - 2, max(ENERGIES) + 2, 100)

112 yy = linear(xx, *popt)

113

114 print("energies = " + str(ENERGIES))

115 print("mus = " + str(MUS))

116 print("s_mus = " + str(S_MUS))

117

118 plt.scatter(ENERGIES , MUS , color="#A92112", marker="x")

119 plt.plot(xx , yy, color="black")

120 plt.minorticks_on ()

121 plt.errorbar(ENERGIES , MUS , yerr=S_MUS , fmt="none",

122 capsize =2.5, ecolor="#817 F7F")

123 plt.grid(which="minor", linestyle=":")

124 plt.grid(which="major", linestyle="-")

125 plt.xlim(12, 46)

126 plt.xlabel("Energy [keV]")

127 plt.ylabel("Channel")

128 plt.show()

129 # plt.savefig (" linreg_calibration.pdf")

130

131 print("Steigung: m = ", str(popt [0]), " channel/keV")

132 print("Steigung: m = ", str(np.sqrt(pcov [0][0])), " channel/keV")

133 print("Offset : c = ", str(popt [1]), " channel")

134 print("Offset : c = ", str(np.sqrt(pcov [1][1])), " channel")

135

136 # Save fit parameter to file

137 # with open("cal.txt", "w") as cal:

138 # calpar = "Slope [channel/keV]\t Offset [channel]\n" +\

139 # str(popt [0]) + "\t" + str(popt [1])

140 # cal.write(calpar)

32

Compton Background

1 """

2 This module contains code to extract the compton background from

3 a aluminum shielding measurement.

4 """

5

6 from matplotlib import pyplot as plt

7 import numpy as np

8 from scipy.optimize import curve_fit

9 import os

10

11 # This handles the used fonts in the plot to make it more or less consistent

12 # with the standard latex font.

13 plt.rcParams[’mathtext.fontset ’] = ’stix’

14 plt.rcParams[’font.family ’] = ’STIXGeneral ’

15 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

16 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

17 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

18

19

20 def double_exp(x: float , A: float , alpha: float ,

21 B: float , beta: float) -> float:

22 """

23 Function to perform a model fit:

24 f(x) = A exp(alpha * x) + B exp(beta * x)

25 """

26 return A * np.exp(alpha * x) + B * np.exp(beta * x)

27

28

29 def exp(x: float , A: float , alpha: float) -> float:

30 """

31 Function to plot exponential fit:

32 f(x) = A exp(alpha * x)

33 """

34 return A * np.exp(alpha * x)

35

36

37 # Get data names NOTE: Beware if the directory structure changes!

38 TMP = os.popen("ls").read()

39 DATA_NAMES = TMP [0: -1]. split("\n")[0: -2]

40

41 # Initialize container for data

42 DATA = [list() for _ in range(len(DATA_NAMES))]

43 TIMES = list()

44

45 for i, name in enumerate(DATA_NAMES):

46 with open(name , "r") as doc:

47 lines = doc.read().split("\n")

48 TIMES.append(float(lines [0]))

49 for line in lines [2: -1]:

50 DATA[i]. append(float(line))

51

52 CPERSEC = [sum(data)/time for data , time in zip(DATA , TIMES)]

53 S_CPERSEC = [np.sqrt(sum(data))/time for data , time in zip(DATA , TIMES)]

54 THICKNESS = [float(name.split("mm")[0]) for name in DATA_NAMES]

55

56 popt , pcov = curve_fit(double_exp , THICKNESS , CPERSEC , sigma=S_CPERSEC)

57 xx = np.linspace(min(THICKNESS) - 1, max(THICKNESS) + 1, 60)

33

58 yy = double_exp(xx , *popt)

59

60 yy_singl_exp = exp(xx, popt[2], popt [3])

61

62 plt.scatter(THICKNESS , CPERSEC , marker="x", color="#817 F7F", label="Data")

63 plt.errorbar(THICKNESS , CPERSEC , yerr=S_CPERSEC , fmt="none",

64 capsize =2.5, ecolor="#817 F7F")

65 plt.plot(xx , yy, color="#A92112", label="Double Exponential Model Fit")

66 plt.plot(xx , yy_singl_exp , color="#129 AA9", label="Single Exponential")

67 plt.minorticks_on ()

68 plt.grid(which="minor", linestyle=":")

69 plt.grid(which="major", linestyle="-")

70 plt.xlabel("Thickness in [mm]")

71 plt.ylabel(r"\dot{N} in [1/s]")

72 plt.xlim(0, 11)

73 plt.ylim(10, 30)

74 plt.legend ()

75 plt.savefig("compton.pdf")

76

77 print("Fit values \n ------------------------------------")

78 print("A = " + str(popt [0]) + " +- " + str(np.sqrt(pcov [0][0])))

79 print("alpha = " + str(popt [1]) + " +- " + str(np.sqrt(pcov [1][1])))

80 print("B = " + str(popt [2]) + " +- " + str(np.sqrt(pcov [2][2])))

81 print("beta = " + str(popt [3]) + " +- " + str(np.sqrt(pcov [3][3])))

Acrylic Glass

1 """

2 Program used to calculate the dampening of acrylic glass

3 """

4

5 import numpy as np

6

7 def read_data(filename: str) -> list:

8 with open(filename , "r") as data:

9 list = []

10 raw_data = data.read()

11 lines = raw_data.split("\n")

12 for line in lines [:-1]:

13 list.append(float(line))

14 return list

15

16

17 # calculate dampening with experimental values

18

19 PLEXI_DATA = read_data("plexi_without_ssteel.TKA")

20 CLEAN_DATA = read_data("../ compton_backgound /0.0mm.TKA")

21 CLEAN_DATA = read_data("../ calibration/cobalt_data/cobalt_first_wincut.TKA")

22

23 PLEXI_TIME = PLEXI_DATA [0]

24 CLEAN_TIME = CLEAN_DATA [0]

25

26 PLEXI_COUNTS = np.sum(PLEXI_DATA [2::])

27 CLEAN_COUNTS = np.sum(CLEAN_DATA [2::])

28

29 PLEXI_RATE = PLEXI_COUNTS / PLEXI_TIME

30 CLEAN_RATE = CLEAN_COUNTS / CLEAN_TIME

34

31

32 s_plexi_rate = np.sqrt(PLEXI_COUNTS) / PLEXI_TIME

33 s_clean_rate = np.sqrt(CLEAN_COUNTS) / CLEAN_TIME

34

35 damp = PLEXI_RATE / CLEAN_RATE

36

37 s_damp = np.sqrt((s_plexi_rate / CLEAN_RATE)**2 + (PLEXI_RATE * s_clean_rate /

38 (CLEAN_RATE **2))**2)

39

40

41

42 # calculate theoretical dampening

43

44 D_PLEXI = 0.2 # cm

45 S_D = 0.0002 # cm

46 RHO_PLEXI = 1.19 # g / (cm)**3

47 ATTEN_COEFF = 1.1 # (cm)**2 / g

48 S_ATTEN = 0.2 # (cm)**2 / g

49

50 r_calc = np.exp(- ATTEN_COEFF * RHO_PLEXI * D_PLEXI)

51 s_r = r_calc * np.sqrt((RHO_PLEXI * D_PLEXI * S_ATTEN)**2 +

52 (ATTEN_COEFF * RHO_PLEXI * S_D)**2)

53

54 print("experimental dampening factor r = " + str(damp) + " +- " + str(s_damp))

55 print("theoretical dampening factor r = " + str(r_calc) + " +- " + str(s_r))

Stainless Steel

1 """

2 This module is used to analyse the data measured using the

3 stainless steel absorber.

4 """

5

6 from matplotlib import pyplot as plt

7 import numpy as np

8 from scipy.optimize import curve_fit

9 from scipy.special import voigt_profile

10 from scipy.special import jv

11

12 # This handles the used fonts in the plot to make it more or less consistent

13 # with the standard latex font.

14 plt.rcParams[’mathtext.fontset ’] = ’stix’

15 plt.rcParams[’font.family ’] = ’STIXGeneral ’

16 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

17 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

18 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

19

20

21 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

22 """

23 Gauss function used to fit data.

24

25 x: x-Position

26 mu: Mean

27 sigma: Standard Deviation

28 amp: Amplitude

29 off: Offset on y-Axis

35

30 """

31 return (amp / (np.sqrt (2*np.pi) * sigma)) *\

32 np.exp(-(x - mu)**2/(2 * sigma **2)) + off

33

34

35 def lorentz(x: float , x0: float , gamma: float , A: float , C: float) -> float:

36 """

37 Lorentz function used to fit data.

38

39 x: x-Value

40 x0: Position of Maximum

41 gamma: Width of the Peak

42 A: Amplitude

43 C: Off -set

44 """

45 return (A * gamma / np.pi) * ((x - x0)**2 + gamma **2) **(-1) + C

46

47

48 def voigt(x: float , x0: float , gamma: float ,

49 s0: float , A: float , C: float) -> float:

50 """

51 Voigt function wrapper used to fit data.

52

53 x: x-Value

54 x0: Position of Maximum

55 gamma: Width of the lorentz part

56 s0: Width of the gaussian part

57 A: Amplitude

58 C: Off -set

59 """

60 return A * voigt_profile ((x - x0), s0 , gamma) + C

61

62

63 # def chi_square_g(x_data: list , y_data: list , popt):

64 # chi = 0

65 # for x, y in zip(x_data , y_data):

66 # chi += (y - gauss(x, *popt))**2 / gauss(x, *popt)

67 # return chi / 4

68

69 def chi_square_g(x_data: list , y_data: list , popt , yerr):

70 chi = 0

71 for x, y, err in zip(x_data , y_data , yerr):

72 chi += (y - gauss(x, *popt))**2 / err**2

73 return chi / (len(x_data) - 4)

74

75

76 def t_gauss(x_data , y_data , popt):

77 abw = []

78 for x, y in zip(x_data , y_data):

79 abw.append(y - gauss(x, *popt))

80 mean = np.mean(abw)

81 std = np.std(abw)

82 return mean / std

83

84 def t_lorentz(x_data , y_data , popt):

85 abw = []

86 for x, y in zip(x_data , y_data):

87 abw.append(y - lorentz(x, *popt))

36

88 mean = np.mean(abw)

89 std = np.std(abw)

90 return mean / std

91

92 def t_voigt(x_data , y_data , popt):

93 abw = []

94 for x, y in zip(x_data , y_data):

95 abw.append(y - voigt(x, *popt))

96 mean = np.mean(abw)

97 std = np.std(abw)

98 return mean / std

99

100 # def chi_square_l(x_data: list , y_data: list , popt):

101 # chi = 0

102 # for x, y in zip(x_data , y_data):

103 # chi += (y - lorentz(x, *popt))**2 / lorentz(x, *popt)

104 # return chi / 4

105

106 def chi_square_l(x_data: list , y_data: list , popt , yerr):

107 chi = 0

108 for x, y, err in zip(x_data , y_data , yerr):

109 chi += (y - lorentz(x, *popt))**2 / err**2

110 return chi / (len(x_data) - 4)

111

112

113 # def chi_square_v(x_data: list , y_data: list , popt):

114 # chi = 0

115 # for x, y in zip(x_data , y_data):

116 # chi += (y - voigt(x, *popt))**2 / voigt(x, *popt)

117 # return chi / 5

118

119

120 def chi_square_v(x_data: list , y_data: list , popt , yerr):

121 chi = 0

122 for x, y, err in zip(x_data , y_data , yerr):

123 chi += (y - voigt(x, *popt))**2 / err**2

124 return chi / (len(x_data) - 5)

125

126 COUNT_OFFSET = 20.684847 # 1/s

127 OFFSET_ERR = 0.170814 # 1/s

128

129 R_EXP = 0.837

130 S_R = 0.008

131

132 # Get raw data

133 VEL = list()

134 COUNTS = list()

135 TIME = list()

136 for i in ["1", "2", "3", "4"]:

137 with open("ssteel_" + i + ".txt", "r") as doc:

138 lines = doc.read().split("\n")

139 for line in lines [0: -1]:

140 entries = line.split("\t")

141 VEL.append(float(entries [0]. replace(’,’, ’.’)))

142 COUNTS.append(float(entries [2]. replace(’,’, ’.’)))

143 TIME.append(float(entries [1]. replace(’,’, ’.’)))

144

145 # Calculate counting rates NOTE: Go from ms to s

37

146 RATES = [(c/(t/1000) - COUNT_OFFSET) / R_EXP for c, t in zip(COUNTS , TIME)]

147 # Calculate counting rate errors

148 S_RATES_BETW = [np.sqrt((np.sqrt(c)/(t/1000))**2 + OFFSET_ERR **2) for c, t in

149 zip(COUNTS , TIME)]

150 S_RATES = [np.sqrt((s_x / R_EXP)**2 + (x * S_R / R_EXP **2) **2) for x, s_x in

151 zip(RATES , S_RATES_BETW)]

152

153 # Sort the data by velocity

154 DATA = list(zip(VEL , RATES , S_RATES))

155 DATA = sorted(DATA , key=lambda tup: tup [0])

156

157 # Split the data

158 VEL = [d[0] for d in DATA]

159 RATES = [d[1] for d in DATA]

160 S_RATES = [d[2] for d in DATA]

161

162 # Gauss Fit

163 INITS_G = [0.15, 0.2, -4, 31]

164 popt_g , pcov_g = curve_fit(gauss , VEL , RATES , p0=INITS_G , sigma=S_RATES)

165 xx_g = np.linspace(min(VEL), max(VEL), 200)

166 yy_g = gauss(xx_g , *popt_g)

167

168 # Lorentz Fit

169 INITS_L = [0.15, 0.2, -4, 31]

170 popt_l , pcov_l = curve_fit(lorentz , VEL , RATES , p0=INITS_L , sigma=S_RATES)

171 xx_l = np.linspace(min(VEL), max(VEL), 200)

172 yy_l = lorentz(xx_l , *popt_l)

173

174 # Voigt Fit

175 INITS_V = [0.15, 0.1, 0.1, -4, 31]

176 popt_v , pcov_v = curve_fit(voigt , VEL , RATES , p0=INITS_V , sigma=S_RATES)

177 xx_v = np.linspace(min(VEL), max(VEL), 200)

178 yy_v = voigt(xx_v , *popt_v)

179

180 # plt.plot(VEL , RATES)

181 plt.plot(xx_g , yy_g , label="Gauss Model", color="#A92112")

182 plt.plot(xx_l , yy_l , label="Lorentz Model", color="#129 AA9")

183 plt.plot(xx_v , yy_v , label="Voigt Model", color="purple", linestyle="dashed")

184 plt.scatter(VEL , RATES , marker="x", label="Data", color="#363635")

185 plt.errorbar(VEL , RATES , yerr=S_RATES , fmt="none",

186 capsize =2.5, elinewidth =0.5, ecolor="#363635")

187

188 plt.ylabel(r"\dot{N} [1/s]")

189 plt.xlabel("Velocity [mm/s]")

190 plt.minorticks_on ()

191 plt.grid(which="minor", linestyle=":")

192 plt.grid(which="major", linestyle="-")

193 plt.legend(loc=3)

194 plt.savefig("steel.pdf")

195 # plt.show()

196

197 print("Gauss fit: \n ---------------------------------")

198 print("mean = " + str(popt_g [0]) + " +- " + str(np.sqrt(pcov_g [0][0])))

199 print("sigma = " + str(popt_g [1]) + " +- " + str(np.sqrt(pcov_g [1][1])))

200 print("amp = " + str(popt_g [2]) + " +- " + str(np.sqrt(pcov_g [2][2])))

201 print("offset = " + str(popt_g [3]) + " +- " + str(np.sqrt(pcov_g [3][3])))

202 print("chi = " + str(chi_square_g(VEL , RATES , popt_g , S_RATES)))

203 print("t = " + str(t_gauss(VEL , RATES , popt_g)))

38

204 print("")

205 print("Lorentz fit: \n ---------------------------------")

206 print("mean = " + str(popt_l [0]) + " +- " + str(np.sqrt(pcov_l [0][0])))

207 print("sigma = " + str(popt_l [1]) + " +- " + str(np.sqrt(pcov_l [1][1])))

208 print("amp = " + str(popt_l [2]) + " +- " + str(np.sqrt(pcov_l [2][2])))

209 print("offset = " + str(popt_l [3]) + " +- " + str(np.sqrt(pcov_l [3][3])))

210 print("chi = " + str(chi_square_l(VEL , RATES , popt_l , S_RATES)))

211 print("t = " + str(t_lorentz(VEL , RATES , popt_l)))

212 print("")

213 print("Voigt fit: \n ---------------------------------")

214 print("pos of max lorentz = " + str(popt_v [0]) + " +- " +

215 str(np.sqrt(pcov_v [0][0])))

216 print("width lorentz = " + str(popt_v [1]) + " +- " +

217 str(np.sqrt(pcov_v [1][1])))

218 print("width gauss = " + str(popt_v [2]) + " +- " + str(np.sqrt(pcov_v [2][2])))

219 print("amp = " + str(popt_v [3]) + " +- " + str(np.sqrt(pcov_v [3][3])))

220 print("offset = " + str(popt_v [4]) + " +- " + str(np.sqrt(pcov_v [4][4])))

221 print("chi = " + str(chi_square_v(VEL , RATES , popt_v , S_RATES)))

222 print("t = " + str(t_voigt(VEL , RATES , popt_v)))

223

224

225 # calculate isomeric shift

226

227 def v_to_E(v: float) -> float:

228 """

229 Takes sledge velocity and return energy

230 """

231 E_GAMMA = 14.4e3 # eV

232 SPEED_OF_LIGHT = 2.99792 e8 # m / s

233 return E_GAMMA * v*10**(-3) / SPEED_OF_LIGHT

234

235

236 print("===")

237 print("isomeric shift [eV] \n------------------------------")

238 print("gauss model: E_iso = " + str(v_to_E(popt_g [0])) + " +- " +

239 str(v_to_E(np.sqrt(pcov_g [0][0]))))

240 print("lorentz model: E_iso = " + str(v_to_E(popt_l [0])) + " +- " +

241 str(v_to_E(np.sqrt(pcov_l [0][0]))))

242 print("voigt model: E_iso = " + str(v_to_E(popt_v [0])) + " +- " +

243 str(v_to_E(np.sqrt(pcov_v [0][0]))))

244

245 # effective absorber thickness

246

247 d_a = 25e-6 # m

248 beta = 0.022

249 f_a = 0.8

250 rho_fe = 7.87e6 # g / (m)**3

251 m_fe = 55.8 # g / mol

252 p_ssteel = 0.7

253 n_A = 6.022 e23 # 1 / mol

254 SPEED_OF_LIGHT = 2.99792 e8 # m / s

255 E_GAMMA = 14.4e3 # eV

256 h = 4.136e-15 # ev s

257 alpha = 8.58

258 s_alpha = 0.18

259

260 number_of_iron = n_A * rho_fe * p_ssteel / m_fe

261 s_noi = n_A * rho_fe * 0.05 / m_fe

39

262

263 cross_section = (1 / (2 * np.pi)) * (h * SPEED_OF_LIGHT / E_GAMMA)**2 *\

264 (4 / 2) * (1 / (1 + alpha))

265

266 s_cs = cross_section * (s_alpha / (1 + alpha)**2)

267

268 T_A = f_a * number_of_iron * beta * cross_section * d_a

269 s_TA = np.sqrt((f_a * s_noi * beta * cross_section * d_a)**2 +

270 (f_a * number_of_iron * beta * s_cs * d_a)**2)

271

272

273 print("\n effective absorber thickness \n --------------------------")

274 print("number of iron = " + str(number_of_iron) + " +- " + str(s_noi))

275 print("cross section = " + str(cross_section) + " +- " + str(s_cs))

276 print("absorber thickness = " + str(T_A) + " +- " + str(s_TA))

277

278 # debye -waller factor

279

280

281 def debye_waller(A: float , C: float):

282 """

283 Calculates the fucking debye waller factor for given shit.

284 A: Amplitude of Fit (Lorenz / Gauss)

285 C: Offset of Fit

286 """

287 return (- A / C) * (1 / (1 - np.exp(- 0.5 * T_A) * jv(0, 0.5j * T_A)))

288

289 def debye_error(A: float , C: float , s_A: float , s_C: float , s_AC: float):

290 """

291 Calculate a beatiful error

292 Kill me.

293 """

294 dfda = debye_waller(A, C) / A

295 dfdc = debye_waller(A, C) / C

296 dfdt = (0.5 * np.exp(- 0.5 * T_A) * jv(0, 0.5j * T_A) + 0.5j *

297 np.exp(- 0.5 * T_A) * jv(1, 0.5j * T_A)) /\

298 (1 - np.exp(- 0.5 * T_A) * jv(0, 0.5j * T_A))**2

299 return np.sqrt((dfda * s_A)**2 + (dfdc * s_C)**2 + (dfdt * s_TA)**2 + 2 *

300 dfda * dfdc * s_AC)

301

302

303 print("\n==============================")

304 print("Debyeeee waller lorentz = " + str(debye_waller(popt_l [2], popt_l [3])) +

305 " +- " + str(debye_error(popt_l [2], popt_l [3], np.sqrt(pcov_l [2][2]) ,

306 np.sqrt(pcov_l [3][3]) , pcov_l [2][3])))

307 print("Debyeeee waller gauss = " + str(debye_waller(popt_g [2], popt_g [3])) +

308 " +- " + str(debye_error(popt_g [2], popt_g [3], np.sqrt(pcov_g [2][2]) ,

309 np.sqrt(pcov_g [3][3]) , pcov_g [2][3])))

310 print("Debyeeee waller voigt = " + str(debye_waller(popt_v [3], popt_v [4])) +

311 " +- " + str(debye_error(popt_v [3], popt_v [4], np.sqrt(pcov_v [3][3]) ,

312 np.sqrt(pcov_v [4][4]) , pcov_v [3][4])))

313

314

315 # calculate lifetime

316

317 def lifetime(sigma: float):

318 correction = 2 * (1.01 + 0.145 * T_A - 0.0025 * T_A **2)

319 return v_to_E(sigma) / correction

40

320

321

322 def lifetime_err(sigma: float , sigma_err: float):

323 correction = 2 * (1.01 + 0.145 * T_A - 0.0025 * T_A **2)

324 s_c = 2 * (0.145 - 0.005 * T_A) * s_TA

325 return np.sqrt((v_to_E(sigma) * s_c / correction **2) **2 +

326 (v_to_E(sigma_err) / correction)**2)

327

328

329 def lifetime_seconds(lifetime: float):

330 return h / (2 * np.pi * lifetime)

331

332

333 def lifetime_sec_err(life: float , lifeerror: float):

334 return (h * lifeerror) / (2 * np.pi * life **2)

335

336

337 print("\n===========================")

338

339 print("correction factor = " + str(2 * (1.01 + 0.145 * T_A - 0.0025 * T_A **2))

340 + " +- " + str(2 * (0.145 - 0.005 * T_A) * s_TA))

341 print("lifetime gauss = " + str(lifetime (2*np.sqrt (2*np.log(2))*popt_g [1])) + " +- "

+

342 str(lifetime_err (2*np.sqrt (2*np.log (2))*popt_g [1], 2*np.sqrt (2*np.log(2))*np.

sqrt(pcov_g [1][1]))) + "eV")

343 print("lifetime gauss = " + str(lifetime_seconds(lifetime (2*np.sqrt (2*np.log(2))*

popt_g [1]))) + " +- " +

344 str(lifetime_sec_err ((lifetime (2*np.sqrt (2*np.log (2))*popt_g [1])),

345 lifetime_err (2*np.sqrt (2*np.log(2))*popt_g [1], 2*np.sqrt (2*np.log(2))*np.

sqrt(pcov_g [1][1])))) + "s")

346 print("lifetime lorentz = " + str(lifetime(popt_l [1])) + " +- " +

347 str(lifetime_err(popt_l [1], np.sqrt(pcov_l [1][1]))) + "eV")

348 print("lifetime lorentz = " + str(1e9 * lifetime_seconds(lifetime(popt_l [1]))) + "

+- " +

349 str(1e9 * lifetime_sec_err ((lifetime(popt_l [1])),

350 lifetime_err(popt_l [1], np.sqrt(pcov_l [1][1])))) + "ns")

351 print("lifetime voigt = " + str(lifetime(popt_v [1])) + " +- " +

352 str(lifetime_err(popt_v [1], np.sqrt(pcov_v [1][1]))) + "eV")

353 print("lifetime voigt = " + str(1e9 * lifetime_seconds(lifetime(popt_v [1]))) + " +-

" +

354 str(1e9 * lifetime_sec_err ((lifetime(popt_v [1])),

355 lifetime_err(popt_v [1], np.sqrt(pcov_v [1][1])))) + "ns")

356

357 print(len(VEL))

Iron

1 """

2 This module is used to analyse the hyperfine spectrum of iron. Two different

3 models for peak -position -estimation are fitted to the data.

4 """

5

6 from matplotlib import pyplot as plt

7 import numpy as np

8 from scipy.optimize import curve_fit

9 from scipy.special import voigt_profile

10

41

11 SINGLE_FIT = False

12

13 # This handles the used fonts in the plot to make it more or less consistent

14 # with the standard latex font.

15 plt.rcParams[’mathtext.fontset ’] = ’stix’

16 plt.rcParams[’font.family ’] = ’STIXGeneral ’

17 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

18 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

19 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

20

21

22 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

23 """

24 Gauss function used to fit data.

25

26 x: x-Position

27 mu: Mean

28 sigma: Standard Deviation

29 amp: Amplitude

30 off: Offset on y-Axis

31 """

32 return (amp / (np.sqrt (2*np.pi) * sigma)) *\

33 np.exp(-(x - mu)**2/(2 * sigma **2)) + off

34

35

36 def monster_gauss(x,

37 mu1 , mu2 , mu3 , mu4 , mu5 , mu6 ,

38 s1, s2 , s3 , s4, s5, s6,

39 a1, a2 , a3 , a4, a5, a6,

40 off):

41 """

42 Six added gaussian distributions to fit to the data.

43 """

44 output = gauss(x, mu1 , s1 , a1 , 0) +\

45 gauss(x, mu2 , s2 , a2 , 0) +\

46 gauss(x, mu3 , s3 , a3 , 0) +\

47 gauss(x, mu4 , s4 , a4 , 0) +\

48 gauss(x, mu5 , s5 , a5 , 0) +\

49 gauss(x, mu6 , s6 , a6 , 0) + off

50 return output

51

52

53 def lorentz(x: float , x0: float , gamma: float , A: float , C: float) -> float:

54 """

55 Lorentz function used to fit data.

56

57 x: x-Value

58 x0: Position of Maximum

59 gamma: Width of the Peak

60 A: Amplitude

61 C: Off -set

62 """

63 return (A * gamma / np.pi) * ((x - x0)**2 + gamma **2) **(-1) + C

64

65

66 def monster_lorentz(x,

67 mu1 , mu2 , mu3 , mu4 , mu5 , mu6 ,

68 s1, s2 , s3 , s4 , s5, s6,

42

69 a1, a2 , a3 , a4 , a5, a6,

70 off):

71 """

72 Six added lorentz distributions to fit to the data.

73 """

74 output = lorentz(x, mu1 , s1, a1, 0) +\

75 lorentz(x, mu2 , s2 , a2 , 0) +\

76 lorentz(x, mu3 , s3 , a3 , 0) +\

77 lorentz(x, mu4 , s4 , a4 , 0) +\

78 lorentz(x, mu5 , s5 , a5 , 0) +\

79 lorentz(x, mu6 , s6 , a6 , 0) + off

80 return output

81

82 def chi_square_g(x_data: list , y_data: list , popt , yerr):

83 chi = 0

84 for x, y, err in zip(x_data , y_data , yerr):

85 chi += (y - monster_gauss(x, *popt))**2 / err **2

86 return chi / (len(x_data) - 4)

87

88

89 def chi_square_l(x_data: list , y_data: list , popt , yerr):

90 chi = 0

91 for x, y, err in zip(x_data , y_data , yerr):

92 chi += (y - monster_lorentz(x, *popt))**2 / err**2

93 return chi / (len(x_data) - 4)

94

95 COUNT_OFFSET = 20.684847 # 1/s

96 OFFSET_ERR = 0.170814 # 1/s

97

98 R_EXP = 0.837

99 S_R = 0.008

100

101 # Get raw data

102 VEL = list()

103 COUNTS = list()

104 TIME = list()

105 for i in ["1", "2", "3", "4", "5"]:

106 with open("iron_" + i + ".txt", "r") as doc:

107 lines = doc.read().split("\n")

108 for line in lines [0: -1]:

109 entries = line.split("\t")

110 VEL.append(float(entries [0]. replace(’,’, ’.’)))

111 COUNTS.append(float(entries [2]. replace(’,’, ’.’)))

112 TIME.append(float(entries [1]. replace(’,’, ’.’)))

113

114 # Calculate counting rates NOTE: Go from ms to s

115 RATES = [(c/(t/1000) - COUNT_OFFSET) / R_EXP for c, t in zip(COUNTS , TIME)]

116 # Calculate counting rate errors

117 S_RATES_BETW = [np.sqrt((np.sqrt(c)/(t/1000))**2 + OFFSET_ERR **2) for c, t in

118 zip(COUNTS , TIME)]

119 S_RATES = [np.sqrt((s_x / R_EXP)**2 + (x * S_R / R_EXP **2) **2) for x, s_x in

120 zip(RATES , S_RATES_BETW)]

121

122 # Sort the data by velocity

123 DATA = list(zip(VEL , RATES , S_RATES))

124 DATA = sorted(DATA , key=lambda tup: tup [0])

125

126 # Split the data

43

127 VEL = [d[0] for d in DATA]

128 RATES = [d[1] for d in DATA]

129 S_RATES = [d[2] for d in DATA]

130

131 # Get size of data

132 # print (" Number of total data points: ", len(VEL))

133

134 # LET THE FITTING BEGIN \(0_o)/

135 # =============================

136

137 # PEAK 1

138 INIT1 = [-5.25, 0.5, -2, 30.25]

139 # PEAK 2

140 INIT2 = [-3, 0.2, -1, 30.25]

141 # PEAK 3

142 INIT3 = [-0.6, 0.2, -1, 30.25]

143 # PEAK 4

144 INIT4 = [0.6, 0.2, -1, 30.25]

145 # PEAK 5

146 INIT5 = [3, 0.2, -1, 30.25]

147 # PEAK 6

148 INIT6 = [5.25, 0.5, -2, 30.25]

149 INITS = [INIT1 , INIT2 , INIT3 , INIT4 , INIT5 , INIT6]

150

151 if SINGLE_FIT:

152 # Initialize Container

153 POPT_G = []

154 PCOV_G = []

155 XX_G = []

156 YY_G = []

157 for i in range (6):

158 # Perform model fit

159 popt_g , pcov_g = curve_fit(gauss , VEL , RATES ,

160 p0=INITS[i], sigma=S_RATES)

161 POPT_G.append(popt_g)

162 PCOV_G.append(popt_g)

163

164 # Save plot data

165 xx = np.linspace(min(VEL), max(VEL), 100)

166 XX_G.append(xx)

167 YY_G.append(gauss(xx, *popt_g))

168

169 # Monster model fit

170 # =================

171 MONSTER_INIT = [i[0] for i in INITS] +\

172 [i[1] for i in INITS] +\

173 [i[3] for i in INITS] + [30]

174

175 popt_gm , pcov_gm = curve_fit(monster_gauss , VEL , RATES ,

176 p0=MONSTER_INIT , sigma=S_RATES)

177 popt_lm , pcov_lm = curve_fit(monster_lorentz , VEL , RATES ,

178 p0=MONSTER_INIT , sigma=S_RATES)

179

180 xx_gm = np.linspace(min(VEL) - 2, max(VEL) + 2, 950)

181 yy_gm = monster_gauss(xx_gm , *popt_gm)

182

183 xx_lm = np.linspace(min(VEL) - 2, max(VEL) + 2, 950)

184 yy_lm = monster_lorentz(xx_lm , *popt_lm)

44

185

186 # Plot single gauss models

187 if SINGLE_FIT:

188 for i in range (6):

189 plt.plot(XX_G[i], YY_G[i])

190

191 # Plot data

192 plt.scatter(VEL , RATES , marker="x", color="#363635", label="Data")

193 plt.errorbar(VEL , RATES , yerr=S_RATES , fmt="none",

194 capsize =2.5, elinewidth =0.5, ecolor="#363635")

195

196 # Plot monster lorentz model

197 plt.plot(xx_lm , yy_lm , color="#129 AA9",

198 label="Lorentz based Model", linewidth =2)

199

200 # Plot monster gauss model

201 plt.plot(xx_gm , yy_gm , color="#A92112",

202 label="Gauss based Model", linewidth =2)

203

204 plt.minorticks_on ()

205 plt.grid(which="minor", linestyle=":")

206 plt.grid(which="major", linestyle="-")

207 plt.ylabel(r"\dot{N} [1/s]")

208 plt.xlabel("Velocity [mm/s]")

209 plt.xlim(-8, 8)

210 plt.legend(loc=3)

211 plt.savefig("iron.pdf")

212 # plt.show()

213

214 # Start calculating isomeric shift

215

216

217 def v_to_E(v: float) -> float:

218 """

219 Takes sledge velocity and return energy

220 """

221 E_GAMMA = 14.4e3 # eV

222 SPEED_OF_LIGHT = 2.99792 e8 # m / s

223 return E_GAMMA * v*10**(-3) / SPEED_OF_LIGHT

224

225

226 print("Position of the dips\n============================")

227 for i in [0, 1, 2, 3, 4, 5]:

228 print("Gauss Dip " + str(i + 1) + ": (" + str(popt_gm[i]) + " +- "

229 + str(np.sqrt(pcov_gm[i][i])) + ") mm / s")

230 print("Gauss Dip " + str(i + 1) + ": (" + str(v_to_E(popt_gm[i] * 1e9)) + " +- "

231 + str(v_to_E(np.sqrt(pcov_gm[i][i]) * 1e9)) + ") neV")

232 print("\n=================================\n")

233 for i in [0, 1, 2, 3, 4, 5]:

234 print("Lorentz Dip " + str(i + 1) + ": (" + str(popt_lm[i + 18]) + " +- "

235 + str(np.sqrt(pcov_lm[i + 18][i + 18])) + ") mm / s")

236 print("Lorentz Dip " + str(i + 1) + ": (" + str(v_to_E(popt_lm[i] * 1e9)) + " +-

"

237 + str(v_to_E(np.sqrt(pcov_lm[i][i]) * 1e9)) + ") neV")

238

239 ENERGIES_G = [v_to_E(popt_gm[i]) for i in [0, 1, 2, 3, 4, 5]]

240 S_ENERGIES_G = [v_to_E(np.sqrt(pcov_gm[i][i])) for i in [0, 1, 2, 3, 4, 5]]

241 ENERGIES_L = [v_to_E(popt_lm[i]) for i in [0, 1, 2, 3, 4, 5]]

45

242 S_ENERGIES_L = [v_to_E(np.sqrt(pcov_lm[i][i])) for i in [0, 1, 2, 3, 4, 5]]

243

244 print("chi = " + str(chi_square_g(VEL , RATES , popt_gm , S_RATES)))

245 print("chi = " + str(chi_square_l(VEL , RATES , popt_lm , S_RATES)))

246 # Isoshifts

247

248 ISO_16_G = ENERGIES_G [0] + ENERGIES_G [5]

249 ISO_25_G = ENERGIES_G [1] + ENERGIES_G [4]

250 ISO_34_G = ENERGIES_G [2] + ENERGIES_G [3]

251 ISO_16_L = ENERGIES_L [0] + ENERGIES_L [5]

252 ISO_25_L = ENERGIES_L [1] + ENERGIES_L [4]

253 ISO_34_L = ENERGIES_L [2] + ENERGIES_L [3]

254

255

256 S_ISO_16_G = np.sqrt(S_ENERGIES_G [0]**2 + S_ENERGIES_G [5]**2)

257 S_ISO_25_G = np.sqrt(S_ENERGIES_G [1]**2 + S_ENERGIES_G [4]**2)

258 S_ISO_34_G = np.sqrt(S_ENERGIES_G [2]**2 + S_ENERGIES_G [3]**2)

259 S_ISO_16_L = np.sqrt(S_ENERGIES_L [0]**2 + S_ENERGIES_L [5]**2)

260 S_ISO_25_L = np.sqrt(S_ENERGIES_L [1]**2 + S_ENERGIES_L [4]**2)

261 S_ISO_34_L = np.sqrt(S_ENERGIES_L [2]**2 + S_ENERGIES_L [3]**2)

262

263 MEAN_ISO_G = (ISO_16_G + ISO_25_G + ISO_34_G) / 3

264 MEAN_ISO_L = (ISO_16_L + ISO_25_L + ISO_34_L) / 3

265

266 S_MEAN_ISO_G = np.sqrt(S_ISO_16_G **2 + S_ISO_25_G **2 + S_ISO_34_G **2) / 3

267 S_MEAN_ISO_L = np.sqrt(S_ISO_16_L **2 + S_ISO_25_L **2 + S_ISO_34_L **2) / 3

268

269 print("\n Isomeric shifts \n==================================")

270 print("Gauss : " + str(MEAN_ISO_G * 1e9) + " +- " + str(S_MEAN_ISO_G * 1e9) +

271 " neV")

272 print("Lorentz : " + str(MEAN_ISO_L * 1e9) + " +- " + str(S_MEAN_ISO_L * 1e9) +

273 " neV")

274

275 # calc B field

276 E_16_G = ENERGIES_G [0] - ENERGIES_G [5]

277 E_25_G = ENERGIES_G [1] - ENERGIES_G [4]

278 E_34_G = ENERGIES_G [2] - ENERGIES_G [3]

279 E_16_L = ENERGIES_L [0] - ENERGIES_L [5]

280 E_25_L = ENERGIES_L [1] - ENERGIES_L [4]

281 E_34_L = ENERGIES_L [2] - ENERGIES_L [3]

282

283 MU_N = 3.15245e-8

284 MU_G = 0.09044 * 3.15245e-8 # eV / T

285 S_MU_G = 0.00007 * 3.15245e-8 # eV / T

286

287 B_GAUSS = - (E_34_G + E_25_G) / (4 * MU_G)

288 B_LORENZ = - (E_34_L + E_25_L) / (4 * MU_G)

289

290 # calculate B error

291

292 dbd34 = B_GAUSS / E_34_G

293 dbd25 = B_GAUSS / E_25_G

294 dbdmu = B_GAUSS / MU_G

295

296 dbd34_L = B_LORENZ / E_34_L

297 dbd25_L = B_LORENZ / E_25_L

298 dbdmu_L = B_LORENZ / MU_G

299

46

300 S_B_GAUSS = np.sqrt(dbd34 **2 * S_ISO_34_G **2 + dbd25 **2 * S_ISO_25_G **2 +

301 dbdmu **2 * S_MU_G **2)

302

303 S_B_LORENZ = np.sqrt(dbd34_L **2 * S_ISO_34_L **2 + dbd25_L **2 * S_ISO_25_L **2 +

304 dbdmu_L **2 * S_MU_G **2)

305

306 # calculate magnetic moment

307

308 MU_E_GAUSS = (3 * MU_G * (E_34_G - E_25_G)) / (E_34_G + E_25_G)

309 dmud34 = (6 * MU_G * E_25_G) / (E_34_G + E_25_G)**2

310 dmud25 = - (6 * MU_G * E_34_G) / (E_34_G + E_25_G)**2

311 dmudmu = MU_E_GAUSS / MU_G

312

313 S_MU_E_GAUSS = np.sqrt(dmud34 **2 * S_ISO_34_G **2 + dmud25 **2 * S_ISO_25_G **2 +

314 dmudmu **2 * S_MU_G **2)

315

316 MU_E_LORENZ = (3 * MU_G * (E_34_L - E_25_L)) / (E_34_L + E_25_L)

317 dmud34_L = (6 * MU_G * E_25_L) / (E_34_L + E_25_L)**2

318 dmud25_L = - (6 * MU_G * E_34_L) / (E_34_L + E_25_L)**2

319 dmudmu_L = MU_E_LORENZ / MU_G

320

321 S_MU_E_LORENZ = np.sqrt(dmud34_L **2 * S_ISO_34_L **2 +

322 dmud25_L **2 * S_ISO_25_L **2 +

323 dmudmu_L **2 * S_MU_G **2)

324

325 print("\n Magnetic field and moment\n===========================")

326 print("Gauss")

327 print(" B = (" + str(B_GAUSS) + " +- " + str(S_B_GAUSS) + ") T")

328 print(" MU_E = (" + str(MU_E_GAUSS) + " +- " + str(S_MU_E_GAUSS) + ") eV / T")

329 print(" MU_E in MU_N = (" + str(MU_E_GAUSS / MU_N) + " +- "

330 + str(S_MU_E_GAUSS / MU_N) + ") MU_N")

331 print("Lorentz")

332 print(" B = (" + str(B_LORENZ) + " +- " + str(S_B_LORENZ) + ") T")

333 print(" MU_E = (" + str(MU_E_LORENZ) + " +- " + str(S_MU_E_LORENZ)

334 + ") eV / T")

335 print(" MU_E in MU_N = (" + str(MU_E_LORENZ / MU_N) + " +- "

336 + str(S_MU_E_LORENZ / MU_N) + ") MU_N")

47

C Lab Notes

48

49

