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1. Introduction

The weak interaction is described within the Standard Model via interaction with the
W-boson or Z-boson fields. In a low energy limit, the weak interaction can be described
by an effective theory commonly referred to as Fermi Model. The effective theory can be
used to formulate predictions even if the gauge-boson mass is unknown, and measuring
the effective coupling constant can in turn be used to predict the gauge-boson masses.
Measuring the weak coupling constant also provides a test of the universality of weak
interaction. Although now known to be a limit of a more complete theory, the Fermi
Model is still used in weak predictions: The effective weak coupling constant can be
determined precisely and as it can be measured at an energy scale of ≈ 105 MeV, it is
suited as an input parameter for predictions.
The aim of this experiment is to determine the weak coupling constant GF. This is done
by measuring both mass and lifetime of cosmic muons, from which the weak coupling
constant can be determined.
This report is structured as follows: In Section 2, the theoretical concepts needed to
understand the measurements done in the experiment as well as their results will be
provided. Then, Sections 3 and 4 will detail the setup of the experiment and the steps
taken to perform the measurements. In Section 5, the results of the measurements as
well as the analysis of the data will be presented. Section 6 concludes the report by
summarizing the results obtained by the experiment and discussing their quality as well
providing an assessment of the experiment as a whole.

2. Theoretic background

In this section, the theoretical background needed in this experiment is briefly discussed.
If not stated otherwise, the discussion is based on Introduction to Elementary Particles
by Griffiths [2] and Gauge Theories of the Strong and Electroweak Interaction by Böhm,
Denner, and Joos [1]. Throughout this section, natural units are used.

2.1. The Standard Model of Particle Physics

The Standard Model of particle physics (SM) is a quantized gauge theory that to date
delivers the best known description of physical phenomena. It provides a consistent
description of three of the four fundamental interactions: the electromagnetic interaction,
the weak interaction, and the strong interaction, the first two of which can be unified,
resulting in the electroweak interaction. As of now, it is not possible to incorporate the
fourth interaction, gravitation, into a quantum field theory in a consistent way. However,
at currently available energy scales in high energy particle physics, gravitational effects
are negligible.
As a field theory, the Standard Model describes particles in terms of fields which are
quantized and act as creation and annihilation operators of quantum mechanical states.
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Quarks Leptons

i ui di li νi

1 u d e νe

2 c s µ νµ

3 t b τ ντ

Q 2/3 −1/3 −1 0

Table 1: Fermions of the Standard Model, sorted by generation i.

Particles are then identified as excitations of the quantized fields. They can be classified
according to their spin: Particles with half-integer spin are referred to as fermions, and
integer spin particles are called bosons.
Fermions can be classified into four types and three particle generations. Particles within
one particle type have, apart from their masses, identical properties. This excludes
neutrinos, which within the Standard Model are considered massless. Both up-type
quarks ui and down-type quarks di participate in the strong interaction, while leptons,
classified into charged leptons li and neutrinos νi, do not. In units of the elementary
electric charge e, up-type quarks carry a charge Q of +2/3, down-type quarks carry
−1/3, charged leptons −1, while neutrinos are, as their name suggests, neutral with
respect to electric charge. The electric charges are determined by experiments. The
Standard Model fermions are listed in Table 1.
The gauge group of the Standard Model is given by

SU(3)C × SU(2)W × U(1)Y . (1)

The electromagnetic and weak interactions are unified into the electroweak interaction
within the Glashow-Salam-Weinberg (GSW) Model, which is based on the gauge group
SU(2)W × U(1)Y . This gauge group is spontaneously broken as descried by the Higgs
mechanism, leaving the subgroup U(1)Q resembling the gauge group of Quantum Elec-
trodynamics (QED) as the remaining unbroken subgroup of the GSW model. The strong
interaction is described by Quantum Chromodynamics (QCD), and has the underlying
gauge group SU(3)C .
The elementary bosonic content of the Standard Model consists of the gauge fields, which
can thus be identified as mediators of the corresponding interaction, as well as the Higgs
boson. From the GSW model, the W ± bosons, the Z boson, and the photon γ emerge,
while QCD gives rise to eight gluons g. Due to the Higgs mechanism, which introduces
a scalar doublet, the W and Z bosons acquire mass, while the photon remains massless.
The massive Higgs boson appears as a remnant of spontaneous symmetry breaking and
is the only fundamental scalar boson, i.e. particle with spin 0, in the Standard Model.
The other bosons have spin 1, and are therefore vector bosons.
Through Yukawa couplings to the scalar doublet, the Higgs mechanism is also responsible
for the masses of charged fermions. Neutrinos, which are uncharged with respect to both
electroweak and strong interaction, are considered massless in the Standard Model.
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A more detailed description can be found in common textbooks such as Refs. [1, 6, 7].

2.2. Feynman Diagrams

In order to confront the theory with experimental results, predictions for observable
quantities have to be made. In high-energy particle physics, these quantities are mainly
cross sections and decay widths, which are related to transition amplitudes between
particle states. By squaring the transition amplitude, a probability for the transition
from one state into another can be obtained. The transition amplitude for an initial
state evolving into a final state is given by a matrix element of the so-called scattering
matrix. In general, the evaluation of scattering matrix elements is quite complex. If
the couplings of the theory are sufficiently small, perturbation theory can be applied.
The perturbative expansion can be represented diagrammatically by so-called Feynman
diagrams.

2.3. The Fermi Model of Weak Interaction

The Fermi Model was first proposed by Fermi in 1933 [10]. It describes the beta decay
of a neutron into a proton, an electron and an anti-electron neutrino via a four-fermion
vertex. The Fermi Model is now known to be the low-energy effective field theory for
the weak interaction, in which the beta decay is enabled via a coupling to the W-boson
field. The coupling constant of the four-fermion vertex is called the Fermi constant and
is denoted by GF.

2.4. Muon Decay and the Fermi Constant

Muons are not stable and have a mean lifetime of about 2.2·10−6 s [9]. They decay into an
electron, an anti-electron neutrino and a muon neutrino. Analogously, anti-muons decay
into a positron, an electron neutrino and an anti-muon neutrino. The decay process is
identical for both muon and anti-muon. In the Standard Model, the muon decays via the
weak interaction mediated by the W-boson. In the Fermi Model, the decay of the muon
is described by a local four-fermion vertex. The leading order (LO) contribution to the
muon decay in both the Standard Model and the Fermi Model is pictured in Fig. 1.
Evaluating the Fermi-model diagram shown in Fig. 1 and neglecting terms of order
m2

e/m2
µ leads to a prediction for the mean lifetime τµ of the muon of [2]

1
τµ

=
G2

Fm5
µ

192π3 . (2)

This can be used to express the Fermi constant in terms of the mass and mean lifetime
of the muon,

GF =
√

192π3

m5
µτµ

. (3)
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Figure 1: Feynman diagrams for the leading-order contributions to the muon decay. The
left side shows the diagram in the Standard Model, the right side shows the diagram
in the Fermi model. The corresponding diagrams for the decay of the anti-muon can
be obtained by charge conjugation of all particles in the diagrams.

2.5. Cosmic Muons

The goal of this experiment is the determination of the mass and lifetime of muons.
The source of muons used in this experiment are muons produced by the interaction
of cosmic radiation with the atmosphere. The discussion in this subsection is based on
Refs. [2, 3, 8].
Cosmic rays are high energy particles moving at velocities close to the speed of light.
They primarily consist of protons (about 85 %) and He-nuclei (about 12 %). When cos-
mic rays reach earth’s atmosphere, interaction with the molecules of the atmosphere
produces particles. These particles then subsequently decay and scatter in the atmo-
sphere, thus forming a so-called particle shower. The primary vertex of such a particle
shower is usually located at about 15 km to 20 km above sea level. The main components
of these showers are pions and kaons. Neutral pions π0 have a lifetime of approximately
8.4 · 10−17 s [9] and decay into two photons. Charged pions π± have a lifetime of ap-
proximately 2.6 · 10−8 s [9] and decay to about 99.99 % [9] into muons and neutrinos.
Charged kaons K± have a mean lifetime of approximately 1.2 · 10−8 s [9] and decay to
about 64 % [9] into muons and muon neutrinos. Positively charged pions and kaons
decay into an anti-muon and a muon neutrino, while negatively charged pions and kaons
decay into a muon and an anti-muon neutrino. As muons do not interact strongly with
matter, they can reach the ground. It is important to note that the muons produced by
cosmic rays are highly relativistic particles. When using the mean lifetime to estimate
the mean distance such a muon can travel, relativistic effects such as time dilation have
to be taken into account. A quick calculation shows that within its mean lifetime of
approximately 2.2 · 10−6 s [9], a muon can easily reach earth’s surface. At seal level,
muons constitute about 80 % of charged particles produced by cosmic radiation.

2.6. Energy Deposition and Bethe Bloch

Charged particles traveling through matter experience energy loss due to excitation and
ionization of the matter. The mean energy deposition per distance in a material due to
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ionization is described by the Bethe-Bloch formula. Adding the density effect correction
δ and the shell correction C results in a mean energy loss per distance of [4, 5]

−
〈

dE

dx

〉
= 2πNAr2

emec2 Z

A

z2

β2

[
ln
(

2meγ2v2Wmax
I2

)
− 2β2 − δ − 2C

Z

]
. (4)

In the above equation, re is the classical electron radius, NA is Avogadro’s number. Z
and A are the atomic number and the atomic weight of the absorbing material, ρ its
density and I its ionization potential. The charge of the incident particle in units of e is
denoted by z, and β and γ are the usual relativistic expressions for the incident particle,
β = v/c and γ = 1/

√
1 − v2/c2 , where v is the velocity of the incident particle. Wmax

is the maximum energy transfer in a single collision. The Bethe-Bloch formula in terms
of the energy of the incident particle is shown in Fig. 2.

Figure 2: Mean energy loss per distance of anti-muons in copper, taken from Ref. [5].
The minimum is at a value of βγ of approximately 3.

At low energies of the incident particle, the dominant contribution to the Bethe-Bloch
formula is the factor 1/β2, while for high energies the behavior is dictated by ln(γ). For
βγ ≈ 3, the Bethe-Bloch formula has a minimum. This effect can be observed for a
wide range of incident particles and absorber materials. Particles with βγ ≈ 3 are called
minimally ionizing particles (MIPs). In practice, cosmic radiation can be assumed to be
minimally ionizing.

2.7. Beta Decay Spectrum

The aim of this experiment is to determine the mass and lifetime of a muon. However,
it is not possible to determine the muon mass directly by measuring its energy: In the
rest frame of the muon, its kinetic energy is zero, and its total energy is precisely its
mass. However, energy is not Lorentz invariant, and thus the energy of the muon in the
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lab frame is the sum of its mass and its kinetic energy. In the setup of this experiment,
it is not possible to determine the kinetic energy of the muon separately. Thus, only
muons that enter the scintillation tank and subsequently lose all their kinetic energy
to interaction with the scintillation material are considered in this experiment. In this
case, the rest frame of the muon is the lab frame, and the mass of the muon corresponds
to its energy. The energy of the muon can be determined by measuring the energy of
its decay products. This however, is also not quite as straightforward as it sounds: As
discussed in Section 2.4, the muon decays into a muon neutrino, and electron and an
anti-electron neutrino. Thus, the only decay product that can be detected in the setup of
this experiment is the electron. As it is a product of a three-body decay, its spectrum is
continuous. Due to conservation of momentum, the maximum energy that the electron
can have is half the muon mass. In this case, the electron is emitted in opposite direction
to both neutrinos. The distribution of the electron energy Ee is obtained by integrating
the matrix element corresponding to Fig. 1 over the three-particle phase space and given
by [2],

dΓ
dEe

= 1
12G2

Fm2
µE2

e

(
3 − 4Ee

mµ

)
, (5)

where Γ is the decay width of the muon and mµ is the muon mass. The distribution is
cut off at the maximum electron energy of Ee = 1/2 mµ. In reality, due to background
effects occurring in the scintillator, the photo multiplier and during signal processing,
the measured distribution will differ from the expected distribution. The theoretic dis-
tribution of Ee as well as distributions incorporating background effects are pictured
in Fig. 3.

Figure 3: Spectrum for the energy of the electron produced in the decay of the muon.
The theoretical Beta spectrum is pictured in blue. The distribution incorporating
the geometry of the scintillation tank is pictured in red, and additionally considering
background effects caused in signal processing leads to a distribution such as the one
shown in green.
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2.8. Attenuation and Decibel

In signal processing, it is often of interest to compare the signal strength of an outgoing
signal to an incoming signal. The attenuation of a signal is often described as the ratio
of the signal strengths. This ratio is often represented as a level in Decibel (dB). The
level representing the ratio of a power P to a reference power P0 is given by

LP = 10 log
(

P

P0

)
dB , (6)

where log(. . .) refers to the base-10 logarithm. The definition of levels in Decibel are
designed to have the same value when considering ratios amplitudes instead of powers.
Thus, for a ratio of amplitudes, the level is defined by

LA = 20 log
(

A

A0

)
dB . (7)

As the power is given by the square of the amplitude, Pi = A2
i , this ensures that LP = LA.

In this experiment, measurements are done for amplitudes attenuated to 50 % and 75 %
of the original amplitude. The corresponding attenuation in Decibel can be calculated
from Eq. (7), resulting in adding approximately 6.021 dB for 50 % signal strength and
2.499 dB for 75 % signal strength.

3. Setup of the Experiment

In this section, the setup of the experiment as well as the signal processing circuits will
be described. The electronic modules used in the signal processing will also be discussed
briefly. This section is based on the instructions [4].
The main setup of the experiment consists of a tank filled with liquid scintillation ma-
terial. Photomultipliers (PMTs) are placed on both the right (R) and the left (L) side
of the scintillation tank. They are able to detect signals caused by ionizing particles
passing through the scintillation material. At the top and bottom of the tank, two more
scintillators are placed.
The signal processing consists of two distinct circuits: The analog circuit is used to
process and shape the signals detected by the left and right PMT and pass them on
to the multi channel analyzer (MCA). The trigger circuit is a logical circuit used to
determine which signals are passed on to the MCA. The schematic setup is pictured in
Fig. 4.

3.1. Electronic Devices

This subsection briefly discusses the function of the electronic devices used in this ex-
periment.
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Scintillator A scintillator is a device used to detect ionizing particles. The basic
working principle of a scintillator is as follows: Interaction with an ionizing particle
changes the state of scintillator atoms to an excited state. When these atoms relax into
their ground state, many low-energy photons are emitted. The amount of the emitted
photons is proportional to the energy deposited by the ionizing particle.

Photo Multiplier (PM) Photo multipliers are used to convert the photon signal
produced by a scintillator into an electric signal. The photons are directed onto a pho-
tocathode, where they are absorbed via the photoelectric effect and cause electrons to
be emitted. Additionally, the signal is amplified. The primary electrons directly pro-
duced from scintillator photons are accelerated and hit a dynode, where every incoming
electron causes the emission of a higher number of secondary electrons. This process is
usually iterated.

Amplifier The amplifier is a device that amplifies a signal. The factor by which the
signal is amplified can be adjusted.

Fan-In-Fan-Out (FIFO) The FIFO takes several analog signals as input adds them.
The module used in this experiment saturates at 2 V. It is therefore important to ensure
that the sum of the input signals does not exceed 2 V.

Discriminator A discriminator is a device that converts analog signals into a logical
signal if they exceed a certain threshold. Thus, the discriminator also filters signals and
reduces noise. The height of the threshold can be adjusted. The discriminator outputs a
logical signal. Both negative and positive outputs exist. The width of the logical output
signal can be adjusted as well.

Coincidence Unit A coincidence unit is a device that takes several input signals and
outputs a logical signal only if it receives a signal from all inputs. The coincidence units
used in this experiment can take up to four input signals. Every input signal has a
button. The coincidence unit only takes input signals for which the button is pushed
into account for the output signal.

Delay Unit A delay unit receives a signal and passes it on after a certain time has
passed. The time frame can be adjusted.

Timing Unit A timing unit is a devices that generates a logical signal of a certain
length upon receiving a logical input signal. The length can be adjusted. They can for
example be used as an enable signal for a linear gate.

11
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Hex Counter A hex counter counts the number of signals it receives. The hex counter
used in this experiment takes only negative logical signals as input.

Linear Gate A linear gate often combines a logical and an analog part of signal
processing. It has two inputs. One of these is a logical enable signal, the other one is an
analog input signal that is being processed. The linear gate passes on the analog input
signal only if there is a logical enable signal as well.

Attenuator An attenuator attenuates an input signal and then passes it on. In this
experiment, it is used to attenuate an analog signal. For the attenuator used in this
experiment, the attenuation can be set in dB in a range of 0.5 dB to 63.5 dB.

Shaping Amplifier (SA) A shaping amplifier takes an analog input signal and com-
putes the area underneath the signal. It then generates a signal whose height corresponds
to the area of the input signal. Usually, the amplification of the signal can also be ad-
justed. The SA used in this experiment can additionally be set to invert the polarity of
the signal.

Multi Channel Analyzer (MCA) A multi channel analyzer sorts analog signals
into bins by their amplitude. The resulting histogram can be exported as a .TKA file. It
is possible to adjust the amount of bins and cut off some of the lowest or highest bins.

Time-to-Amplitude Converter (TAC) A time-to-amplitude converter measures
the time that passes between two input signals. It then generates a signal whose ampli-
tude is proportional to the measured timespan.

Time Calibration Unit The time calibration unit generates logical signals. The
frequency at which it outputs these signals can be adjusted.

Function Generator The function generator generates electric signals of adjustable
shape, frequency and amplitude.

Light Diode Driver The light diode driver converts a pulsed input signal into a
pulsed output signal that can be passed on to the LEDs. The amplitude of the output
signal can be adjusted in arbitrary units.

12
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3.2. Analog Circuit

The analog circuit is responsible for preparing the signal obtained from the scintillation
tank for analysis at the MCA. The right and left PMTs are connected to amplifiers.
Both signals are added by the FIFO unit and subsequently delayed by the delay unit
DEL. Then, the signal is passed on to a linear gate LG. If the trigger circuit provides an
Enable signal, the linear gate passes on the signal to a capacitor. This capacitor is then
connected to an attenuator, a shaping amplifier SA and finally a multi-channel analyzer
MCA I.

3.3. Trigger Circuit

The trigger circuit identifies signals stemming from a muon decaying in the lab frame.
The right and left PMTs are connected to discriminators, which convert the analog signal
to a logical signal. In order to filter out noise originating in the PMTs, the discriminators
are connected to a coincidence unit AND I which only passes on a signal if it was registered
by both PMTs. AND I is then connected to another coincidence unit, AND II.
The top (T) and bottom (B) PMTs are also connected to discriminators, which in turn
provide to more input signals to AND II. This allows to distinguish between muons passing
through the scintillation tank, muons decaying within the scintillation tank and signals
unrelated to muons: As this experiment uses cosmic muons, they are expected to pass the
top PMT. A coincidence of only the left and right PMT points towards a signal unrelated
to muons. A coincidence of top, left and right PMTs can be identified as a muon entering
the scintillation tank and interacting with the scintillation liquid, causing a signal at the
left and right PMT. If there is a coincidence of all four PMTs, this corresponds to a
muon passing completely through the tank and leaving it at the bottom.
In order to measure the muon mass, signals stemming from muons that decay in the lab
frame have to be identified. As argued in Section 2.7, this means that the muon first
has to stop, and then decay. In the scintillation tank, this corresponds to two distinct
signals: First the signal caused by the muon moving in the scintillation liquid, and, as it
has to come to a full stop before decaying, a distinct second signal caused by its decay
products. The second signal is the one that should be passed through the linear gate in
the analog circuit and recorded by the MCA. The way this logic is implemented in the
trigger circuit is described in the following. If AND II detects a coincidence of top, left
and right PMT, it passes on a logical signal to the gate delay unit GD, which delays the
signal. This corresponds to a muon entering the scintillation tank. The delayed signal
then arrives at a timing unit TUI I, which outputs a 7.5 µs long logical signal. This logical
signal is passes on to a third coincidence unit AND III. Additionally to AND II, AND I (RL
coincidence) is also connected to AND III. Thus, if another signal is detected by the right
and left PMT within 7.5 µs, a logical signal is output by AND III. The second signal has
now been identified as a signal stemming from the electron. The gate delay ensures that
it is a distinct second signal, and can not be the signal from the same muon causing
scintillation by moving within the tank. The mean lifetime of a muon is 2.2 µs [9]. Thus
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the time frame of 7.5 µs, in which this second signal can be detected, ensures that in
over 99 % [4] of cases, the second signal is registered. This second signal is then passed
on to another timing unit TU II, which outputs a 400 ns logical signal, and then used as
an enable signal for the linear gate. The length of the signal ensures that the linear gate
is enabled long enough to pass on the whole analog signal.
The second purpose of the trigger circuit is the determination of the lifetime of the muon.
AND II and AND III are used as a start and stop signal for a time-to-amplitude converter
TAC, respectively. The amplitude of the signal that the TAC produces is proportional to
the time difference of the start and stop signal, that is the time difference between the
muon entering the tank and the muon decaying. The TAC is then connected to another
multi-channel analyzer MCA II.

14
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Figure 4: Schematic setup of the experiment. A scintillation tank is connected to two
Photomultipliers. There are additional scintillators placed at the top and the bottom
of the scintillation tank. The signal is then processed in two distinct circuits. They
are described in detail in Section 3.2 and Section 3.3.
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4. Execution of the Experiment

First, the left (L) and right (R) Photomultipliers (PMT) of the scintillation tank were
connected to the oscilloscope. The voltage of the PMTs was adjusted until both scin-
tillators showed clear signals, but almost no signals that were obviously noise. As on
average, the amount of signals as well as the signal strength for the left and the right
scintillator should be the same, the amplitude was adjusted to roughly the same height.
The final values were 1701 V for the left PMT and 2001 V for the right PMT.
Then, the top (T) and bottom (B) scintillators were connected to the oscilloscope. The
ranges in which there were clear signals were at 1700 V to 2000 V for the top PMT
1800 V to 2300 V for the bottom PMT. To find the area in which the count rate is
approximately proportional to the PMT voltage, the count rate for both PMTs was
measured at about ten different voltages within the ranges mentioned above. To record
the counts, the PMTs were connected to discriminators, which in turn were connected
to the hex counter. The time was measured using a smartphone. Then, by checking the
discriminator output, the voltages were fine-tuned to avoid dark counts.
The discriminator levels for the top and bottom discriminator output were adjusted
until the noise around the signals were minimized without lowering the count rate of
signals too much. In order to remove double signals which were quite common for
the top PMT, the discriminator width was set to 100 ns for both PMTs. Then, the
discriminator outputs for the top and bottom PMT were connected to the coincidence
unit. As the coincidence rate for was quite low, the voltage for the bottom PMT was
increased. The final voltages were 1850 V for the top PMT and 1850 V for the bottom
PMT.
Next, the left and right PMT were connected to their amplifiers. The oscilloscope was
used to confirm that in almost all cases, the signals of the left and right PMT coincide.
For both PMTs, the amplification was done in two steps: the output of the first amplifier
was connected to the input of the second amplifier. The amplification was adjusted such
that the amplitude of the amplified signals was below 1 V in most cases. This is important
because the FIFO module which adds the signals saturates at 2 V (for the sum of both
signals). The final settings for the amplifiers for the right PMT were factors of 6 and 5
resulting in a total amplification of 30, and the settings for the left PMT were 5 and 4
which corresponds to a total amplification of 20.
After the amplification was set, the amplifier outputs of the left and right PMT were
connected to the FIFO. It was confirmed that the FIFO output was not saturated. An
example for a signal from the right and left amplifier as well as the added FIFO signal
can be seen in Fig. 5
The amplifier outputs of the left and right PMT were then connected to their respec-
tive discriminators. As before, the threshold for both discriminators was adjusted such
that only clear signals triggered a discriminator output. Additionally, the with of the
discriminator output was adjusted to 1000 ns to match the width of the top and bottom
discriminators. Next, the R and L discriminator outputs were connected to the coin-
cidence unit AND I. By connecting the left and right discriminator outputs to the hex
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Figure 5: Signals from right (channel 1: yellow) and left amplifier (channel 2: cyan) as
well as the added FIFO output.

counter, it was could be seen that about 95 % of the signals coincide. As the left and
right PMT both measure signals stemming from the liquid scintillator, this behavior is
expected and an indication that the setup is working up to this point.
The output of the RL coincidence unit (AND I) was connected to the input of the TB
coincidence unit (AND II). The outputs of both AND I and AND II were connected to the
input of the third coincidence unit AND III. All discriminator thresholds were adjusted
to an optimal ration of noise to coincidence of signals for right and left PMT (RL
coincidence) as well as for the top, right and left coincidence (TRL) and the coincidence
for all four PMTs (TBRL coincidence).
Next, the FIFO output was connected to three delay units connected in series, which act
as a single delay unit DEL. AND III with TBRL coincidence was connected a timing unit
TU II. By observing the TU II output at the oscilloscope, the TU II width was set to
400 ns. The delay at the delay unit was adjusted until the analog signal was well within
the 400 ns window of TU II. The final settings at DEL were a total delay of 189 ns. An
example for the AND III trigger signal, the TU II signal as well as the delayed signal from
DEL is shown in Fig. 6.
The DEL output was connected to the linear gate LG signal input, and the window TU II
was used as gate signal. The LG switch was flipped to GATED, and the oscilloscope was
used to verify that signals outside of the gate are cut off. An example can be seen in
Fig. 7.
This concludes the calibration for the control of which signals get passed on to the multi
channel analyzer. Next, the trigger circuit for the beta spectrum measurement was set
up. For the beta spectrum, there should not be a coincidence of the top and bottom
PMT. AND II was set to output a digital signal for TRL coincidence. A second output
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Figure 6: The AND III trigger signal (channel 2: cyan), the TU II window (channel 3:
purple) as well as the delayed signal from DEL (channel 1: yellow). One can see that
the analog signal (yellow), which stems from the same event as the cyan trigger signal,
is delayed such that it is within the time in which TU II outputs a signal.

Figure 7: The delay unit output (channel 1: yellow), the AND III (channel 2: cyan)
trigger signal (TBRL coincidence) for TU II (channel 3: purple) and the signal after
the linear gate (blue), which is set to GATED. The purple signal matches the yellow
signal within the purple trigger signal and is set to zero otherwise: Note that the
fluctuations in the yellow signal after TU II is set back to zero do not show up in the
blue signal anymore.
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jack of AND II was connected to the gate delay GD, then another timing unit TU I and
finally to a third input of AND III. Now, AND III has three input signals: AND I, AND II
and TU I. By pressing buttons at AND III, it is possible to use AND III for the coincidence
of either AND I and AND II needed for the fly-through measurement or the coincidence of
AND I and TU I, which is needed for measuring the beta spectrum.
For the beta spectrum, it is important to make sure only electron signals are measured.
For this, after a TRL coincidence indicates a muon entered the tank, the linear gate
should be opened for a time frame of 7.5 µs, as 99 % of muons decay within this time [4].
However, the muon signal should not be recorded. In order to implement this setup, the
width of TU I was set to 7.5 µs. The width was measured using the oscilloscope. Then,
the delay of GD was adjusted until TU I window opened only after the TU II window
closed. This ensures that the muon signal, which arrives at the linear gate within the
TU II window, is not recorded by the multi channel analyzer. The time span between
the windows was set to approximately 450 ns, the corresponding settings at GD were a
delay of 2.9. An example for a decay signal can be seen in Fig. 8.

Figure 8: A muon decay signal: First, there is a TRL coincidence, causing a simultaneous
signal from AND 1 (yellow) and AND II (cyan). This signal does not pass the linear
gate (purple). However, shortly after the signal, TU I (blue) opens. The next signal
(the electron produced in the decay) is a RL coincidence and as this signal is within
the TU I window, it is passed on by the linear gate (purple). One can also see the
slight the purple signal has compared to the yellow AND I trigger signal.

After passing the linear gate, the signal is smoothed by a capacitor of 100 nF. As the
shaping amplifier (SA) can only handle input voltages up to 80 mV, the signal has to be
attenuated. In order to achieve this, the attenuator was set to 10 dB. Next, the SA was
connected to the first multi channel analyzer (MCA I). As low count rates are expected in
this experiment, the total number of bins was set to 1024. Unfortunately, MCA I had a
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dead-time of about 30 % and measured an extremely high count rate. The cause of this
was tracked to a malfunctioning cable, which added strong oscillations to each signal.
Since there were high count rates in very low bins, MCA I was set to not record the first
1 % of bins. This was later reversed, as after changing a few settings (described in the
following), the high count rates in the low bins could not be reproduced, and as due to
this a lot of signals were not recorded.
There was more trouble in signal processing: After connecting both the attenuator and
the SA, the output of the linear gate had large peaks at the beginning and end of the
gate period. This could be solved by terminating the LG output with 50 Ω. However, the
main problem lay in the pedestal caused by the linear gate. Often, the SA interpreted
the beginning of the pedestal as a signal, leading to a switch in polarity and strongly
distorted signals. An example of this is in Fig. 9. This made it impossible to measure
a meaningful spectrum. It was not possible to adjust the pedestal height by turning
the screw at the linear gate (it was possible to turn the screw, but it did not affect
the pedestal height). However, there was a button at the linear gate labeled PEDESTAL
which significantly lowered the height of the pedestal when pressed and lead to a strong
decrease in distorted signals. Examples of the effect of the button on the signals as well
as the case of an opened linear gate without a signal are pictured in Figs. 26 to 29 in
Appendix A. In the final setup, the pedestal button was bypassed.

Figure 9: An example for a distorted signal caused by the linear gate pedestal. The
FIFO output (yellow) shows the original summed up analog signal. The inverted gate
signal from TU II is pictured in cyan. The purple signal is the output from the linear
gate. The high pedestal can be seen clearly. The blue signal the SA output signal. It
is a negative signal, and as the shaping amplifier was set to INV, this means that it
detected a positive signal, which in this case is the pedestal and not the actual analog
signal itself.
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Finally, the time measurement was set up. The lifetime of a muon is measured by
starting a timer when the entry of a muon into the tank is recorded and stopped when
the electron is recorded. This is done in the configuration of the beta spectrum. As in
this configuration, a signal from AND II indicates a TRL coincidence (muon enters tank),
AND II is used as the start signal for the time to amplitude converter (TAC). A signal
from AND III indicates a signal with RL coincidence within 7.5 µs of the start signal (i.e.
a signal from the electron produced by the decay of the muon). This is why AND III is
used as a stop signal for TAC. Finally, the output of TAC was connected to the second
multichannel analyzer MCA II, which is used to measure the distribution of decay times.
An example of start and stop signal as well as the resulting amplitude is pictured in
Fig. 10. As for MCA I, since for the beta spectrum measurement, low count rates are
expected, the number of bins for MCA II was set to 1024. No bins were cut off at either
end of the spectrum.

Figure 10: An example for the start (yellow) and stop (cyan) signal for the TAC. The
resulting TAC output is shown in purple.

4.1. Time Calibration

In order to convert the bins of MCA II to the decay times, MCA II has to be calibrated.
This was done using a time calibration unit TC, which produces signals with a fixed
length. The signal length can be set to 2 µs to 10 µs in steps of 2 µs. First, in order
to determine the actual length of the signal produced by the time calibration unit, it
was connected to the oscilloscope. The time difference was measured using the delay
function falling edge 1 ↔ 2. The results are listed in Table 2.
Then, the start and stop outputs of TC were connected to the corresponding inputs of
TAC. Then, MCA II was started and short measurements were taken for the TC settings
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TC setting [µs] oscilloscope measurement [µs]

2 2.42 ± 0.01
4 4.52 ± 0.01
6 6.30 ± 0.01
8 8.62 ± 0.01

Table 2: Signal length settings of the time calibration unit compared to the actual signal
length measured using the oscilloscope.

2 µs to 10 µs. The 10 µs setting was not within the range that can be recorded by MCA II
and therefore not measured.

4.2. Energy Calibration

For the energy calibration, the fly-through spectrum was recorded at signal strengths
of 100 %, 75 % and 50 %. A signal strength of 100 % corresponds to the setup after
calibration. Weaker signal strengths are achieved by adjusting the attenuator settings:
For a signal strength of 75 %, the attenuator was set to 12.5 dB and for 50 % to 16 dB.
The spectrum was recorded over 74 036.01 s, 22 689.68 s and 65 276.32 s for 100 %, 75 %
and 50 %, respectively.

4.3. Beta Spectrum Measurement

In order to record the beta spectrum, AND II was set to TRL coincidence and AND III was
set to a coincidence of TU I and ANDI. The attenuator was set back to 10 dB. The Hex
counter was started at the same time as MCA I. The energy spectrum was recorded over
452 839.29 s, and the time measurement over 494 095.83 s. The difference in measurement
time stems from the significantly higher dead-time of 8.41 % for MCA I compared to 0.06 %
for MCA II.

4.4. Photoelectron Statistics

There are LEDs placed in front of both the right and left PMT. They can be used to
generate signals with a specific energy. In a spectrum, these correspond to straight lines
(delta peaks) in one bin. In reality, due to the resolution of the PMTs as well as signal
loss in the processing of the signal, they will appear as Gaussian peaks. The width of
these peaks can be used to estimate the resolution of the right and left PMT at different
energies.
In order to perform the measurement, AND III set to a coincidence of only the right and
left PMT. The function generator was connected to the LED driver LDD, which was used
to adjust the intensity. The function generator was set to a sine wave with a frequency
of 1 kHz and an amplitude of 5 V peak-to-peak. Then, the LED driver was connected to
the LEDs.
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However, once again there were problems with the signal. For low intensities, no signal
could be seen at MCA I. For slightly higher intensities, there was a sharp peak at a bin
of about 30. It was not possible to see any peaks at higher bins, even by trying a lot of
possible combinations of wave form, frequency, amplitude and intensity.
In the end, it was only possible to record peaks for LDD settings of 5.5, 6.0, 5.7, 5.3, 5.9
and 6.2.

4.5. Pedestal

The pedestal, which is the offset of the signal caused by the linear gate, was also mea-
sured. In order to do so, the linear gate input was terminated. The setup was still in
RL coincidence mode. The pedestal was recorded over 1448.18 s.

4.6. Background Measurement

The coincidence units were set to the configuration used for the beta spectrum mea-
surement. Then, on average, the linear gate is open for the same amount of time it
would be open when performing a measurement of the beta spectrum. The switch on
the gate delay was set to 110 µs. This ensures that the measured events can not be
electrons stemming from the decay of the muon that triggered the linear gate to open.
The delayed TU I signal can be seen in Fig. 11. The background was measured over a
time span of 74 539.52 s.

Figure 11: The delayed TU I trigger signal for the linear gate used for the background
measurement. The initial signal after AND II can be seen in yellow in the left. The
delayed TU I signal is pictured in cyan.
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All measurements and the time span over which they were taken are summarized in
Table 3.

Measurement Duration

Time Calibration < 1 min
Fly-through 100 % ≈ 20.6 h
Fly-through 75 % ≈ 6.3 h
Fly-through 50 % ≈ 18.1 h

Decay spectrum: Time ≈ 137.2 h
Decay spectrum: Energy ≈ 125.8 h
Photoelectron Statistics few minutes

Pedestal ≈ 24.1 min
Background ≈ 20.7 h

Table 3: All measurements that were performed together with the time span over which
they were performed. The time listed for measurements made using a multi channel
analyzer are the real measurement times as reported by the MCA (excluding dead
time).

5. Data Analysis

The data analysis of the whole experiment was performed in python. If not mentioned
otherwise, the fits were conducted performing a weighted least squares minimization
using scipy.optimize.curve_fit which takes y-uncertainties of the data points into
account. Some of the fits are orthogonal distance regression (ODR) fits, which ad-
ditionally take the x-uncertainties into account. These fits were performed using the
Python-package scipy.odr. The python code used for the analysis is shown in Ap-
pendix B.

5.1. Determination of the Muon Mass

The first major goal of this experiment was the determination of the muon mass at rest.
This is done by evaluating the decay spectrum obtained from the left and the right PMT.
It is processed by the analog circuit and triggered by the trigger circuit as explained in
Section 3 and pictured in Fig. 4 to filter the relevant signals. First, an analysis of the
fly-through spectrum is performed, then the uncertainties are estimated by analyzing
the results of the photoelectron statistics measurement. The results of the muon decay
measurement are evaluated and finally, the contribution of a possible background is
discussed.

5.1.1. Fly-Through Analysis

After the experiment was set up as described in Section 4, three energy measurements
in fly-through mode were performed, triggering on a coincidence of all four PMTs. As
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cosmic muons can be described in good approximation as minimum ionizing particles
(MIPs) with βγ ≈ 3, their mean energy loss in matter can be calculated, using an
approximation of the Bethe-Bloch equation [4]:

∂E

∂ρx

∣∣∣∣
MIP

= (1.95 ± 0.05) MeV cm2 g−1, (8)

with the density ρ = (0.87 ± 0.01) g cm−3 and the mean free path in the muon tank
s = (84 ± 5) cm. The values are taken from the instructions [4].
Thus, the mean energy loss of muons passing through the tank can be calculated using

Ē = ∂E

∂ρx

∣∣∣∣
MIP

· ρ · s , (9)

with uncertainties given by Gaussian error propagation,

sĒ =
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MIP

· ρ · ss

)2

. (10)

The calculation yields
Ē = (143 ± 9) MeV .

With this result it is possible to perform an energy calibration of the MCA spectrum,
converting channels to energy by recording the fly-through spectra for different atten-
uations of the signal. The channel zero does not correspond to zero energy deposition
because of noise in the electric circuit. Thus, more than one measurement is necessary
to determine the true zero. All in all, three measurements at different attenuations of
the signal are performed. The expected energy deposition for different attenuations can
simply be calculated by multiplying the mean energy loss with the attenuation factor.
The uncertainties follow via Gaussian error propagation.
Due to problems in the analog circuit with the pedestal setting of the linear gate, it
was not possible to record a fly-through spectrum at an attenuation of 25 %. Instead,
attenuations of 75 % and 50 % were chosen to perform the calibration with.
The energy deposition of a muon flying through the tank can be described by a Landau
distribution. The limited resolution of the Photomultipliers and noise from the electron-
ics affects the shape of the spectrum as well. It follows a Gaussian distribution. The
resulting spectrum observed at the MCA can thus be described by a convolution of a
Gaussian and a Landau function. This so-called Langau function has no exact analyt-
ical expression. It was implemented in python, using the pylangau package and the
pylandau.langau function.
The fly-through measurement without additional attenuation (100 %) can be seen in
Fig. 12. The peak between channels 320 and 350 most likely originates in saturation
effects in the shaping amplifier and is not considered in the further analysis.
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As the data is acquired in absolute counts, the count rate (in counts per second [cps])
can be calculated by

Ṅ = N

t
(11)

with the corresponding Poisson error

sṄ =
√

N

t
. (12)
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Figure 12: Count rate of the muon fly-through spectrum without further attenuation
(100 %) during an overall measurement time of 20.6 h. The uncertainties shown are
symmetric Poisson uncertainties. According to theoretical considerations (see Eqs. (8)
to (10)), the mean energy deposited in the tank is Ē100 % = (143 ± 9) MeV. To find
the channel at which the spectrum shows a maximum, a fit of the form Eq. (13) was
performed. The results can be seen in Table 6. The individual contributions of the
Gaussian and the Langau part are pictured as well. The reduced χ2 value of the fig
is χ2

ν = 1.29.

It can be seen that the previously addressed problems with the pedestal caused by the
linear gate also influence the recorded spectra. Instead of one peak, following a Langau
distribution, two peaks are visible. Comparing this observation with the attenuated fly-
through spectra, visible in Figs. 13 and 14, it can be seen that both peaks do not move
with respect to each other when the signal is attenuated. Instead, they are attenuated
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Figure 13: Count rate of the muon fly-through spectrum at an attenuation of 75 % during
an overall measurement time of 6.3 h. The uncertainties shown are symmetric Poisson
uncertainties. According to theoretical considerations (see Eqs. (8) to (10)), the mean
energy deposited in the tank is Ē75 % = (107 ± 7) MeV. To find the channel at which
the spectrum shows a maximum, a fit of the form Eq. (13) was performed. The results
can be seen in Table 6. The individual contributions of the Gaussian and the Langau
part are pictured as well. The reduced χ2 value of the fit is χ2

ν = 1.23.

in the same way which implies that both peaks originate from the analog circuit before
attenuating the signal.
Comparing these results with many oscilloscope pictures looked at in the same setup
indicated that sometimes the rising edge of the pedestal (visible for example in Fig. 9) was
misinterpreted as a signal. Steps taken to investigate this were for example adjusting or
exchanging the linear gate, the attenuator or the shaping amplifier as well as terminating
the linear gate output. However, the problem could not be resolved. Also, the pedestal
did not cause a constant offset or another systematic change to the data. This can be
seen in Figs. 30 and 31, which were taken using the exact same settings but resulted in
completely different pedestals. Thus, it was not possible to correct for the energy shifts
caused by the pedestal in any way when analyzing the data. Bypassing the PEDESTAL-
button at the LG provided some improvement to the signal but did not solve the problem
completely. In the time given for the experiment, it was not possible to further improve
the fly-through spectrum.
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Figure 14: Count rate of the muon fly-through spectrum at an attenuation of 50 % during
an overall measurement time of 18.1 h. The uncertainties shown are symmetric Poisson
uncertainties. According to theoretical considerations (see Eqs. (8) to (10)), the mean
energy deposited in the tank is Ē50 % = (71 ± 5) MeV. To find the channel at which
the spectrum shows a maximum, a fit of the form Eq. (13) was performed. The results
can be seen in Table 6. The individual contributions of the Gaussian and the Langau
part are pictured as well. The reduced χ2 value of the fit is χ2

ν = 1.30.

Instead, the analysis method was adapted in the following way. Observing several signals
at the oscilloscope indicated that the size of the pedestal was not always constant, but
varied from event to event. The size of the pedestal did not seem to be correlated with
the amplitude of the signals. This is why in the analysis, the effect of the misassigned
pedestal signals is treated as a statistical influence and thus assumed to follow a Gaussian
distribution. In most cases, the area of the pedestal was smaller than the area of the
muon peaks, resulting in a lower SA output. This is why the left peak at lower energies
and channels was attributed to misinterpreted peaks while the right peak was assumed
to originate from the energy deposit of muons flying through the tank, thus comprising
the actual signal.
With this motivation, the fit function used to estimate the channel of the maximum
energy deposition is given by the expression

Model(x) = AG · exp
(

−(x − µG)2

2σ2

)
+ AL · Langau

(
x − µL

C

)
+ D , (13)
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where µG < µL. The Gaussian part was also fitted instead of only estimating the position
of the right maximum to consider a possible distortions in the maximum position of the
muon peak due to the Gaussian-shaped underground.

5.1.2. Photoelectron Statistics

To estimate the uncertainties of the maximum peak positions due to the finite resolution
of the Photomultipliers, a measurement with the calibration LEDs was performed. The
results of this analysis can be used as uncertainties on the MCA channels, as (in first
approximation) a linear relation is expected between the deposited energy in the scintil-
lator and the width of the acquired signal and thus the width of the recorded peak. For
larger energies, the uncertainty on the channel increases. This effect is underestimated
by the performed fits in the spectrum and needs to be considered. As the LEDs are
expected to always deposit the same amount of energy in the tank, the width of the
peaks only depends on the resolution of the PMTs and thus characterizes it.
It was once again only possible to obtain clean signals from the LEDs in the lower MCA
bins. This was probably also caused by the problems with the signal processing in the
analog circuit. Also, only intensities with LDD settings of 5.3 to 6.2 could be recorded on
the MCA and used for the analyis: Lower settings were too low for the LEDs to work
properly or could not be measured due to their low energy, while higher settings would
cause saturation of the SA.
The results of the photoelectron measurements can be seen in Fig. 15. The saturation
effects already appear in the 6.2 intensity setting in form of a peak at a channel of around
30.
To estimate the peak positions µ and the widths of the LED peaks, fits of Gaussian form

G(x) = A · exp
(

−(x − µ)2

2σ2

)
+ C (14)

were performed. The parameter σ in Eq. (14) directly characterizes the standard de-
viation of the peak position. The fits can be seen in Fig. 15. The reduced χ2 values
are also listed in Fig. 15 and indicate a good accordance with the data, although they
indicate rather too small uncertainties of the values compared to the deviations to the
model functions.
Plotting the resulting parameters for the standard deviation σ against the peak positions
µ shows the expected linear behavior. It is pictured in Fig. 16.
To extrapolate this dependency to higher channels, a linear ODR fit was performed.
This fit method allows to take the x- and the y-uncertainties of the data points into
account, which in this case are the respective fit uncertainties of the Gaussian fits visible
in Fig. 15. The fit yields the following relation

σ(µ) = m · µ + c (15)
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Figure 15: Count rates of the photoelectron statistic measurement for different LED
intensities. Fits of Gaussian form Eq. (14) were performed and are pictured as well.
The reduced χ2 values of the fits are between χ2

ν = 0.93 and 2.0 and show an overall
good accordance between the fits and the measured data, although they indicate
rather too small uncertainties of the values compared to the deviations to the model
functions.

with

m = 0.106 ± 0.010 (15a)
c = 6.40 ± 0.08 . (15b)

Eq. (15) provides a better estimate for the measurement uncertainties in the recorded
energy spectra for each channel separately.
The reduced χ2 value of the fit, χ2

ν = 13.8, is very high. This however does not necessarily
indicate a bad accordance of the data and the linear model. It rather results from the
very few data points available for this fit and the fact that the uncertainties stemming
from the Gaussian fits shown in Fig. 15 are comparatively low. It also has to be said
that a reduced χ2 value is not the optimal method to indicate the goodness of an ODR
fit. It only takes the vertical distance between the model function and the data points as
well as the y-uncertainties into account. In contrast, an ODR fit performs an orthogonal
distance regression and as such does not minimize the vertical, but instead the orthogonal
distance of the fit to the data points. Therefore, it does not correspond to a minimization
of the χ2 value. As a consequence, the reduced χ2 value is not as suitable in evaluating
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Figure 16: Results of the photoelectron statistics measurement. The standard deviation σ
is plotted against the corresponding maximum position µ obtained from the Gaussian
fits shown in Fig. 15. The colors of the data points are the same as in Fig. 15. A linear
ODR fit and the resulting 1-σ confidence interval are shown as well. The fit results
are given in Eq. (15). The reduced χ2 value of χ2

ν = 13.8 is very high. This however
does not necessarily indicate a bad accordance of the data and the linear model. It
rather results from the very few data points available for this fit and the fact that
the uncertainties stemming from the Gaussian fits shown in Fig. 15 are comparatively
low.

the goodness of the fit as is the case in a normal least squares minimization algorithm.
However, there is no well motivated value yet that can be used instead.

5.1.3. Energy Calibration

As Eq. (15) allows to calculate the intrinsic uncertainty resulting from the measurement
method for a given channel, it is now possible to perform a sensible energy calibration
of the MCA channels. As a linear relation is expected between the triggered channel
and the deposited energy, the calculated energy for each attenuation is plotted against
the obtained maximum channel of the fly-through spectra pictured in Figs. 12 to 14. As
motivated above, the uncertainties obtained by applying Eq. (15) were used as uncer-
tainties for the maximum channels instead of the fit uncertainties of the fly-through fits.
The data used in the energy calibration is listed in Table 4 and the energy calibration
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plot can be seen in Fig. 17.
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Figure 17: Energy calibration of the MCA spectrum. The three data points were obtained
from the fly-through spectra at different attenuations (100 %, 75 % and 50 %, Figs. 12
to 14). The uncertainties were calculated using Eq. (15), as motivated in Section 5.1.2.
The expected energy deposition has been calculated using Eq. (9) and was multiplied
with the corresponding attenuation factor. The resulting values pictured in this plot
are listed in Table 4. The linear ODR fit performed for the energy calibration and the
resulting 2-σ confidence interval are pictured as well. The fit results can be seen in
Eq. (16). The reduced χ2 value is χ2

ν = 0.2.

Attenuation µL ± sµL [a.u.] µL ± σ(µL) [a.u.] Ē ± sĒ [MeV]

100 % 82.1 ± 0.5 82 ± 15 143 ± 9
75 % 51.3 ± 0.8 51 ± 12 107 ± 7
50 % 25.9 ± 0.4 26 ± 9 71 ± 5

Table 4: Data used for the energy calibration with the corresponding uncertainties. The
first column shows the channel of the maximum energy deposition µL in the fly-through
setup with the corresponding fit uncertainties sµL , visible in Figs. 12 to 14. Column
two shows the same values µL but with the uncertainties obtained from the photoelec-
tron statistic analysis in Eq. (15). Column three finally shows the expected energy
deposition for the different attenuations, as described and derived in Section 5.1.1
and Eq. (9).
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To obtain the relation between the MCA channels and the deposited energy, a linear
ODR fit was performed, which takes the x- and the y-uncertainties of the data points
into account. The fit yields the relation

E = m · Channel + c , (16)
where

m = (1.29 ± 0.07) MeV , (16a)
c = (39 ± 3) MeV . (16b)

The uncertainty of the obtained energy can then be calculated by Gaussian error prop-
agation and is given by

sE =
√

(Channel · sm)2 + s2
c . (17)

As mentioned before, the reduced χ2 value can only be used as a rough estimate of the
goodness of the energy calibration fit. As it is χ2

ν = 0.2, it can be said that the linear
relation is well fulfilled. However, it is not very expressive as the linear model of two
degrees of freedom was fitted to only three values.

5.1.4. Background Considerations

Before the final decay energy measurement is analyzed, the experimental background in
the beta decay setup has to be considered. As detailed in Section 4, it ensured that no
signal from the actual decay could be measured so that only randomly appearing signals
or electronic noise could contribute. The acquired spectrum can be seen on an energy
scale in Fig. 18.
It can clearly be seen that the background spectrum has only very few statistics, even
though the measurement time exceeded 20 h. The uncertainties on the count rate for all
values are very large and the count rate is in the order of 10−3 cps. This can also be seen
by plotting the absolute counts instead of the count rates against the energy. No bin
exceeds 14 counts. Therefore the statistical fluctuations are not surprising. The large
relative errors would result in a high uncertainty in the beta spectrum after subtracting
the background. There also seems to be a non vanishing contribution of the background
in the energy regime of 40 MeV to 150 MeV. The increased count rates at lower energies
were also visible in the fly through spectrum and were attributed to misassigned pedestal
peaks. As a similar effect can be seen in the background spectrum, it can not be excluded
that the increased count rate at those lower energies also partially originates from this
effect, caused by random events. However, the background spectrum count rate is not
sufficient to explain the second peak observed in the fly-through spectra. Overall, the
low background count rate combined with the very high relative error does not justify
subtracting the background from the beta spectrum.
It also needs to be said that the shape of the background is within statistical fluctuations
compatible with a constant offset which would not change the shape of the beta spectrum
and accordingly the result for the muon mass. This was also checked by applying a
running average to the background counts, as visible in Fig. 25.
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Figure 18: Count rate of the background spectrum on an energy scale during an overall
measurement time of 20.7 h. The MCA channels have been converted to energies
using the energy calibration in Eq. (16). The y-uncertainties shown are symmetric
Poisson uncertainties. The x-uncertainties result from the energy calibration and can
be calculated using the uncertainties of the energy calibration and Gaussian error
propagation Eq. (17).

5.1.5. Beta Spectrum

After all previously described background and uncertainty considerations, the beta spec-
trum can be examined. It was taken during a long time measurement of 125.8 h and
is depicted in Fig. 19 on an energy scale. As for the background spectrum, the energy
calibration in Eq. (16) has been used to convert the channels into energy. The resulting
x-uncertainties of all data points were calculated using Eq. (17) and are shown in Fig. 19
as well.
As described in Section 2.7, the energy distribution of the electron after the muon decay
should have a sharp edge which could be determined in the analysis. Due to the limited
dimensions of the tank and background effects in the scintillator and photo multiplier as
well as statistical effects during signal processing, the theoretical distribution is distorted.
A profound theoretical description of the measured energy distribution would include a
convolution of these effects. Instead, another approach is chosen here. As the measured
distribution falls off between an initial and final value around a sharp edge, a Fermi flank
can be used to estimate the cut-off energy in good approximation. The position of the
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Figure 19: Count rate of the beta spectrum on an energy scale during an overall mea-
surement time of 125.8 h. The MCA channels have been converted to energies using
the energy calibration in Eq. (16). The y-uncertainties shown are symmetric Poisson
uncertainties. The x-uncertainties result from the energy calibration and can be calcu-
lated using the uncertainties of the energy calibration and Gaussian error propagation
Eq. (17). An ODR Fermi fit according to Eq. (18) has been performed and can be
seen as well. The reduced χ2 value results in χ2

ν = 1.46.

flank gives the maximum electron energy Ee. The Fermi flank can be described by

F (E) = A

exp
(

E−Ee
dE

)
+ 1

+ C , (18)

where Ee is the maximum electron energy and dE describes the decrease of the flank.
The fit can be seen in Fig. 19. It results in Ee = (101 ± 5) MeV and thus

mµ = 2Ee = (202 ± 9) MeV .

This result has a strong deviation of 10.5 σ from the literature value (105.658 374 5 ±
0.000 002 4) MeV [9] and is therefor not compatible with it.

5.2. Determination of the Muon Lifetime

In the second part of the experiment, the lifetime of a muon at rest was determined. This
measurement only depends on the trigger circuit. Therefore, the problems of misassigned
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pedestal peaks and signal amplification are not expected to influence this measurement.
Via a time-to-amplitude converter (TAC), the time difference between a muon stopped
in the tank and its decay signal was recorded. The data was taken at the same time as
the beta spectrum. Before the lifetime can be determined, once again a calibration of
the corresponding MCA channels is necessary.

5.2.1. Time Calibration

To calibrate the MCA axis to time differences, a time calibration module was used.
As described in Section 4.1, the measured time difference between start and stop of
the calibration signal did not correspond to the setting. Instead of the TC setting, the
measured time differences with the oscilloscope listed in Table 2 were used for calibration.
The recorded MCA spectrum for the four different settings can be seen in Fig. 20.
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Figure 20: MCA2 spectrum used for time calibration of the TAC. Different settings were
set at the TC unit, resulting in signals recorded in different channels. The correspond-
ing time differences were measured with the oscilloscope, as described and shown in
Section 4.1 and Table 2. The channels of the maximum positions can be found in
Table 5. The uncertainty of ± 1 channel was estimated by hand.

With these results, a time calibration could be performed. The uncertainties on the
channels were estimated to ± 1 channel by hand due to the very narrow peaks. The and
the resulting values used for the calibration are listed in Table 5. An ODR fit has been
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Pulse Time [µs] Channel [a.u.]

2.42 ± 0.01 201 ± 1
4.52 ± 0.01 411 ± 1
6.30 ± 0.01 587 ± 1
8.62 ± 0.01 825 ± 1

Table 5: Values used for time calibration, as seen in Fig. 21.

performed to find the linear relation between the MCA channels and the corresponding
time differences, taking the x- and y-uncertainties into account. It can be seen in Fig. 21.
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Figure 21: Time calibration of the MCA2 spectrum, performed with a TC unit. The
channels and times can be found in Table 5 and were estimated using the oscilloscope
and the recorded MCA spectrum in Fig. 20. A linear ODR fit has been performed,
taking the x- and y-uncertainties into account. The corresponding 2-σ interval can
be seen as well. The results can be found in Eq. (19). A reduced χ2 value yields
χ2

ν = 6.55.

Again, the reduced χ2 value of χ2
ν = 6.55 has no significant meaning as it does not

characterize correctly the goodness of an ODR fit. Also, it describes a function of two
degrees of freedom being fitted through four data points which does not give enough
statistics to get a reliable estimate for the goodness of the fit.
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The fit results a conversion of

t = m · Cannel + c , (19)

where

m = (0.995 ± 0.006) µs per 100 channels , (19a)
c = (0.43 ± 0.03) µs . (19b)

As already used in Eq. (17), the uncertainty of the time calibration can be calculated
using Gaussian error propagation and

st =
√

(Channel · sm)2 + s2
c . (20)

5.2.2. Decay Time Spectrum

With this calibration, the decay time can be extracted from the decay time spectrum
taken with MCA2 during the beta spectrum measurement. As both MCAs had different
dead times, their overall measurement time differ. The decay time measurement was
taken over a time period of 137.2 h. The final result can be seen in Fig. 22 on a time
scale. The time was calculated using the time calibration Eq. (19). The uncertainties
were calculated using Gaussian error propagation as in Eq. (20).
As the decay time of a particle follows an exponentially decreasing law, the decay time
τµ of the muon can be extracted from the data by fitting an exponential distribution to
it. The spectrum pictured in Fig. 22 shows an unexpected jump for time measurements
of under 1 µs. As this part of the spectrum is not within the region for which the time
calibration was performed, it can not be excluded that there is a defect in the TAC
which causes a distortion for small time spans. This is why these data points were not
considered in the fit. Again, to include the x- and the y- uncertainties, an ODR fit was
performed.
Fitting the function

t = A exp
(

− t

τµ

)
+ C (21)

to the data points results in a muon lifetime of

τµ = (2.10 ± 0.05) µs .

The result is within 1.8 σ of the literature value of (2.196 981 1 ± 0.000 002 2) · 10−6 s [9]
and as such the two values are compatible.
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Figure 22: Count rates of the decay time spectrum, taken over a measurement time
of 137.2 h. The MCA channels have been converted to time using the time calibration
in Eq. (19). The y-uncertainties shown are symmetric Poisson uncertainties. The
x-uncertainties have been calculated with Eq. (20) but are not included in the plot for
clarity. An exponential ODR fit of the form described in Eq. (21) has been performed
to find the decay time τµ. The results are listed in the legend. The reduced χ2 value
results in χ2

ν = 1.13. The spectrum shows an unexpected jump for time measurements
of under 1 µs. As this part of the spectrum is not within the region for which the time
calibration was performed, it can not be excluded that there is a defect in the TAC
which causes a distortion for small time spans. This is why these data points were not
considered in the fit. A better view on the relevant region is visible in Fig. 23.

5.3. Weak Coupling Constant

With these results, the weak coupling constant in the Fermi model GF can be calculated.
In natural units, it is given by [2]

GF = 1
ℏ3c3

√
192π3

m5
µτµ

ℏ7

c4 (22)

with the uncertainty that can be calculated using Gaussian error propagation

sGF = 1
ℏ3c3

√
192π3ℏ7

c4

√√√√(1
2

5m4
µτµ

(m5
µτµ)3/2 smµ

)2

+
(

1
2

m5
µ

(m5
µτµ)3/2 sτµ

)2

. (23)
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Using the results for mµ and τµ derived in Sections 5.1.5 and 5.2.2, the weak coupling
constant can be calculated to

GF = (0.23 ± 0.03) · 10−5 GeV−2 .

This result shows a deviation of 34.7 σ from the literature value of (1.166 378 8 ±
0.000 000 6) · 10−5 GeV−2 [9], and therefore the values are not compatible. This how-
ever is not surprising, as already the muon mass exhibited a large deviation from the
literature value.
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6. Summary and Discussion

6.1. Results

In the first part of the experiment, the muon rest mass was measured. To do so, an
energy calibration of the MCA axis was performed.
The uncertainties of each MCA channel were estimated separately from a photoelectron
statistics measurement at different LED intensities. The relation between the standard
deviation σ and the channel µ was determined at

σ(µ) = (0.106 ± 0.010) · µ + (6.40 ± 0.08) .

With this result, the channel to energy conversion

E = (1.29 ± 0.07) MeV · Channel + (39 ± 3) MeV

was be found.
The experimental background in the decay spectrum setup was measured separately. As
the resulting count rates were much lower than the measurement itself, but had large
statistical uncertainties, it was not possible to subtract the background in a meaningful
way. As a result, the background measurement was not used for further analysis.
After these considerations, the muon rest mass could be determined from a long-term
measurement by fitting a Fermi fit to its decay spectrum via orthogonal distance regres-
sion. The resulting muon mass of

mµ = (202 ± 9) MeV

shows a strong deviation of 10.5 σ from the literature value [9]

mlit
µ = (105.658 374 5 ± 0.000 002 4) MeV .

The result is therefore not compatible with the literature value. The percentile deviation
of the muon mass to its literature value is 91 %. This shows that the large deviation is not
just caused by an underestimation of uncertainties. This deviation probably originates
in the already observed problems with the analog circuit: The number of misassigned
pedestal peaks was not negligible even in the fly-through measurement. This could also
have a major impact on the recorded beta spectrum for which especially lower electron
energies are important. Additionally, problems with the amplification of weak signals
made it impossible to detect energies of under 40 MeV. This poses a major problem, since
these energies lie in the most relevant energy interval for the muon mass determination
of around 1/2 mµ ≈ 53 MeV.
In the second part of the experiment, the muon lifetime was measured. A channel to
time calibration of the MCA axis was performed, resulting in

t = (0.995 ± 0.006) · 10−2 µs · Channel + (0.43 ± 0.03) µs .
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To determine the muon lifetime, an exponential ODR fit was performed, resulting in

τµ = (2.10 ± 0.05) µs .

Compared with the literature value [9] of

τ lit
µ = (2.196 981 1 ± 0.000 002 2) µs ,

the result has a 1.8-σ deviation and a percentile deviation of 4.3 %. Thus, the measure-
ment is in good accordance with the literature value.
By combining these two results, the weak coupling constant in the Fermi model could
be calculated. It was determined at

GF = (0.23 ± 0.03) · 10−5 GeV−2 .

As the measured muon mass showed large deviations from the literature value, it is not
surprising the weak coupling constant also has a rather large deviation of 35 σ from the
literature value [9]

Glit
F = (1.166 378 8 ± 0.000 000 6) · 10−5 GeV−2 .

The corresponding percentile deviation is 80 %.

6.2. Discussion

As was already observed while performing the experiment, some major problems with
the analog circuit led to strong deviations between the determined muon mass and the
values known from literature. There were several contributions to this fact. The main
problem was the influence of the pedestal on the measurement. The combination of
the gated linear gate and the attenuator seemed to add a pedestal to the signal which
was sometimes misinterpreted as a signal by the shaping amplifier. Unfortunately, this
did not cause a constant offset or another systematic change to the data. This can be
seen in Figs. 30 and 31, which were taken using the exact same settings but resulted
in completely different pedestals. Thus, it was not possible to correct for the energy
shifts caused by the pedestal in any way when analyzing the data. As a consequence, a
random background had to be considered when evaluating the fly-through measurements.
Surprisingly, the random background observed in the fly-through spectrum was not
visible in the decay spectrum. Thus, it was not possible to take this underground into
account when analyzing the beta decay measurement. This probably influenced the
result for the muon mass. In fact, the beta spectrum roughly had the expected shape,
and during the measurement it was not obvious that the resulting muon mass would
have such deviations from the literature value.
Another problem occurred with the amplification of weak signals and the fact that only
few low-energy signals were recorded by the MCA (which possibly was also caused by
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the large pedestal compared to small signals). The problem in the amplification made it
impossible to perform an energy calibration over a larger range. The signal attenuated
by 25 % was not visible any more on the MCA. In fact, it is quite possible that the
influence of the pedestal would have lessened with a stronger amplification. It is also
possible that only the high-energy part of the beta spectrum was recorded. In this
case, the actual edge of the spectrum would have continued towards lower bins, and the
position of the fermi flank from the fit would have shifted to lower energies. This is not
immediately evident from the decay spectrum recorded in this experiment, as it shows
a “peak” and drops towards lower bins. However, it might be the case that this drop
was caused by misassignment of small energies caused by the pedestal (which is then
large compared to the signal, and in combination distorts and shifts the smaller signals).
Observation of signals on the oscilloscope also showed a trend of smaller signals having
a higher rate of misassignment than larger signals.
A stronger amplification of the signal probably would have significantly reduced the
problems that occurred in signal processing. However, a final test measurement per-
formed to examine the influence of the amplifiers of the right and left PMTs found that
this would not have solved the problem completely. This indicates that it might have
been necessary to also increase the PMT voltages.
The photoelectron statistic measurement with the calibration LEDs posed a problem
as well since the shaping amplifier would saturate at intensities higher than 6.2. As a
result, the relation between standard deviation and channel could only be fitted up to
channel 25. As the beta spectrum was recorded roughly up to channel 400, the standard
deviation had to be extrapolated far over the calibrated region. This results in large
uncertainties of this relation which could not be considered in the conversion.
Another factor that might have influenced the muon mass result is the fact that it was not
possible to subtract the measurement background in a sensible way. As the count rates
were much lower than for the beta measurement, this would have needed much more
measurement time, which just could not be accomplished. When only considering the
available data, the background is still compatible with a constant offset in the relevant
energy regime (see Fig. 25). Thus, a background subtraction might have had only a
minor or no effect.
Other sources of errors are the geometry of the scintillation tank (a larger tank would im-
prove the detected signals), the limited resolution of the PMTs and statistical influences.
Those include for example the Poisson uncertainties of the detected counts. The length
of the path that the muon travels through the tank in the fly-through measurement also
influences the mean deposited energy. Thus, the path in the tank should be kept nearly
constant. The top and the bottom PMT could be replaced by two parallel PMT arrays.
The trigger circuit could then be set to only select events in which a muon hits a top
PMT and the bottom PMT directly below it. This solution would reduce statistics of
the energy deposition in the energy calibration.
Another major difficulty in improving and carefully calibrating the setup were broken
cables and devices. Several broken cables or connectors were replaced, which added
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significant noise to the signals. Additionally, the time needed to find the broken compo-
nents could not be used for longer measurements. It is also possible that not all broken
components were found and that they still had an impact on the acquired data.
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A.1. Fit Results of the Fly Through Spectra

Attenuation 100 % Attenuation 75 % Attenuation 50 %

AG [10−3 cps] 6.10 ± 0.09 6.36 ± 0.18 12.25 ± 0.14
µG [a.u.] 39.9 ± 1.5 18.8 ± 1.9 5.8 ± 0.9
σ [a.u.] 33.0 ± 1.4 26 ± 4 18.3 ± 0.7
AL [10−3 cps] 3.3 ± 0.4 3.9 ± 0.8 5.9 ± 0.3
µL [a.u.] 82.1 ± 0.5 51.3 ± 0.8 25.9 ± 0.4
C [a.u.] 8.2 ± 0.5 6.0 ± 0.7 4.08 ± 0.12
D [10−3 cps] 0.00 ± 0.08 0.00 ± 0.10 0.030 ± 0.010

Table 6: Fit results of the fly through spectra pictured in Figs. 12 to 14. The fits were
performed using the model function Eq. (13), as motivated in Section 5.1.1.
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A.2. Figures
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Figure 23: Count rates of the decay time spectrum, as in Fig. 22. The uncertainties and
the fit are not shown for more clarity. The unexpected jump, not considered in the
analysis is shown in red.
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Figure 24: Count rate of the background spectrum on an energy scale as in Fig. 18 but
in counts. It can be seen that the spectrum lacks higher count rates. To estimate a
structure, a running average has been performed in Fig. 25.
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Figure 25: Count rate of the background spectrum on an energy scale as in Fig. 18 but
in counts. To estimate a structure, a running average has been performed. It can be
seen that the spectrum has two roughly constant parts. The slowly decreasing part
originates from the calculation of the running average.
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Figure 26: Example for an open linear gate without the button with no signal. The
channels are trigger (yellow), SA input (purple) and SA output (blue).

Figure 27: Example for an open linear gate with the button with no signal. The channels
are trigger (yellow), SA input (purple) and SA output (blue).
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Figure 28: Example for an open linear gate without the button with a signal. The
channels are trigger (yellow), SA input (purple) and SA output (blue).

Figure 29: Example for an open linear gate with the button with a signal. The channels
are trigger (yellow), SA input (purple) and SA output (blue).
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Figure 30: Example for the pedestal caused by the linear gate. The offset shifts the
signal towards higher amplitudes. The settings are exactly the same as in Fig. 31
(right below this figure), in which the signal is shifted towards lower amplitudes. The
channels are FIFO output (yellow), TU2 (cyan), SA input (purple) and SA output (blue).

Figure 31: Example for the pedestal caused by the linear gate. The offset shifts the signal
towards lower amplitudes. The settings are exactly the same as in Fig. 30 (right above
this figure), in which the signal is shifted towards higher amplitudes. The channels
are FIFO output (yellow), TU2 (cyan), SA input (purple) and SA output (blue).
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A.3. Lab Notes
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B. Python Code

Photoelectron Statistics
1 # -*- coding : utf -8 -*-
2 """
3 Created on Thu Feb 29 14:17:39 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 import matplotlib . pyplot as plt
12 import pylandau
13 # import scipy
14 # import scipy.odr as s_odr
15 import mymodules . usefultools as mmu
16 # import mymodules . calculate as mmc
17 # import mymodules . measure as mmm
18 # import mymodules . optimize as mmo
19 import mymodules . functions as mmf
20 import mymodules .plot as mmp
21

22 # verbose = True
23 # si_format = False
24 # plot = True
25 # draft = False
26 save_images = False
27 # write_data = False
28

29

30 # %%
31

32 intensities = ["5.3 _gut", "5.5 _gut", "5.7 _gut", "5.9 _gut", "6_gut", "6.2
_gut"]

33 times = [1603.74 , 1580.25 , 1514.9 , 204.42 , 1459.98 , 139.08]
34

35 data = {}
36 for intensity_i , intensity in enumerate ( intensities ):
37 data[ intensity ] = pd. read_csv (f"../ data/MCA_1/led_{ intensity . replace

(’.’, ’_ ’)}. TKA", header =1, names =[" counts "])
38

39 data[ intensity ][" channel "] = data[ intensity ]. index
40

41 data[ intensity ]["cps"] = data[ intensity ][" counts "] / times[
intensity_i ]

42 data[ intensity ][" cps_err "] = np.sqrt(data[ intensity ][" counts "]) /
times[ intensity_i ]

43

44

45 # %%
46
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47 cut = [(3, 25) ,
48 (4, 25) ,
49 (3, 25) ,
50 (3, 25) ,
51 (3, 22) ,
52 (5, 25)]
53

54 out = {}
55

56 fig , ax = mmp. make_fig (grid=True)
57

58 for intensity_i , intensity in enumerate ( intensities ):
59 # intensity_i = 4
60 # intensity = intensities [ intensity_i ]
61

62 color , _ = mmp.plot(ax ,
63 data[ intensity ][" channel "], data[ intensity ]["cps"

],
64 y_err=data[ intensity ][" cps_err "],
65 config =" scatter ",
66 label=f" Intensity : {round(float( intensity . replace

(’_gut ’, ’’)), 1)}")
67

68 x_fit = data[ intensity ][" channel "][ cut[ intensity_i ][0]: cut[
intensity_i ][1]]

69 y_fit = data[ intensity ]["cps"][ cut[ intensity_i ][0]: cut[ intensity_i
][1]]

70 y_err_fit = data[ intensity ][" cps_err "][ cut[ intensity_i ][0]: cut[
intensity_i ][1]]

71

72 # mmp.plot(ax ,
73 # x_fit , y_fit * 1e3 ,
74 # y_err= y_err_fit * 1e3 , config_err =" fill_between ",
75 # color =" tab:red ")
76

77 out_gauss = mmp.fit(mmf. gauss_poly_0 ,
78 x_fit , y_fit , y_err=y_err_fit ,
79 absolute_sigma =False ,
80 # bounds =True ,
81 # show_results =[1, 2],
82 print_results =True ,
83 color=color ,
84 x_range =np. linspace (0, 50, 200) ,
85 ax=ax ,
86 label=" Gaussian Fit: <chi >")
87

88 out[ intensity ] = out_gauss
89

90 # break
91

92 ax. set_title (" Photoelectron Statistics ")
93 ax. set_xlabel (" Channel ")
94 ax. set_ylabel (r"Count rate [cps]")
95
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96 ax. set_xlim (0, 50)
97 ax. set_ylim (0, None)
98

99 mmp. legend (ax , loc =1)
100

101 if save_images :
102 mmp. save_fig (fig , path="../ report / figures ", name=" Photoelectron

Statistics ", extension ="pdf")
103

104 plt.show ()
105

106

107 # %%
108

109 # intensities = ["5.5 _gut", "6 _gut", "5.3 _gut "]
110 x = [out[ intensity ][0][1] for intensity in intensities ]
111 x_err = [out[ intensity ][1][1] for intensity in intensities ]
112 y = [out[ intensity ][0][2] for intensity in intensities ]
113 y_err = [out[ intensity ][1][2] for intensity in intensities ]
114

115

116 # %%
117

118 fig , ax = mmp. make_fig (grid=True)
119

120 for i in range (0, len(x)):
121 mmp.plot(ax , x[i], y[i], x_err=x_err[i], y_err=y_err[i], config ="

scatter ")
122

123 mmp. add_to_legend (ax , " Results of the PES Peaks", marker ="x", color="
black")

124

125 out_linear = mmp.fit(mmf.poly_1 ,
126 x, y,
127 x_err=x_err , y_err=y_err ,
128 odr=True ,
129 conf=True ,
130 conf_sigma =1,
131 print_results =True ,
132 # show_results =True ,
133 ax=ax ,
134 x_range =np. linspace (5, 25, 200) ,
135 label=" Linear ODR Fit",
136 color="tab:grey")
137

138 ax. set_title (" Photoelectron Statistics - Linear Fit")
139 ax. set_xlabel (r" Maximum Position $\mu$")
140 ax. set_ylabel (r" Standard Deviation $\ sigma$ ")
141

142 ax. set_xlim (5, 25)
143

144 mmp. legend (ax)
145

146 if save_images :
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147 mmp. save_fig (fig , path="../ report / figures ", name=" Photoelectron
Statistics Fit", extension ="pdf")

148

149

150 # %%
151

152 mmu. save_json (out_linear , " photoelectron_statistics .json")

Energy Calibration
1 # -*- coding : utf -8 -*-
2 """
3 Created on Thu Feb 22 10:46:31 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 import matplotlib . pyplot as plt
12 import pylandau
13 # import scipy
14 # import scipy.odr as s_odr
15 import mymodules . usefultools as mmu
16 # import mymodules . calculate as mmc
17 # import mymodules . measure as mmm
18 # import mymodules . optimize as mmo
19 import mymodules . functions as mmf
20 import mymodules .plot as mmp
21

22 # verbose = True
23 # si_format = False
24 # plot = True
25 # draft = False
26 save_images = False
27 # write_data = False
28

29

30 # %%
31

32 # Convolution of a gaussian and a landau function + Gaussian function +
offset

33 def f_langau (x, a, b, c, d, A, mu , sigma):
34 x = np.array(x)
35 return a * pylandau . langau ((x - b) / c) + d + mmf.gauss(x, A=A, mu=mu

, sigma=sigma)
36

37

38 def f_langau_p0 (x, y):
39 return [np.max(y), np. argmax (y), 1, 0, 1, 1, 1]
40

41
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42 langau = mmf. fit_function (
43 f=f_langau ,
44 p0= f_langau_p0 ,
45 bounds =([0 , 0, 0, 0, 0, -np.inf , 0],
46 [np.inf , np.inf , np.inf , np.inf , np.inf , np.inf , np.inf]
47 ),
48 params =["A_L", "mu_L", "C", "D", "A_G", "mu_G", "sigma"],
49 )
50

51

52 # %%
53

54 data_pes = mmu. read_json (" photoelectron_statistics .json")
55

56

57 def channel_err ( channel ):
58 return mmf. poly_1 (channel , * data_pes [0])
59

60

61 # %%
62

63 attenuations = ["100", "50", "75"]
64 times = [74036.01 , 65276.32 , 22689.68]
65

66 data = {}
67 for att_i , att in enumerate ( attenuations ):
68 data[att] = pd. read_csv (f"../ data/MCA_1/ fly_through_ {att }. TKA",

header =1, names =[" counts "])
69

70 data[att ][" channel "] = data[att ]. index
71

72 data[att ]["cps"] = data[att ][" counts "] / times[att_i]
73 data[att ][" cps_err "] = np.sqrt(data[att ][" counts "]) / times[att_i]
74

75 print(f" Measurement time: {times[att_i] / 3600} h")
76

77

78 # %%
79

80 P0 = {"100": [6, 60, 1 / 0.12 , 0, 6, 20, 10],
81 "50": [14, 30, 1 / 0.2, 0, 0, -20, 10],
82 "75": [8, 40, 1 / 0.2, 0, 6, 10, 20]}
83 cut = [(0, 150) , (0, 150) , (0, 135)]
84

85 out = {}
86

87 muon_channels = []
88 muon_channel_fit_err = []
89

90 for att_i , att in enumerate ( attenuations ):
91 # att_i = 2
92 # att = attenuations [att_i]
93

94 fig , ax = mmp. make_fig (grid=True)
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95

96 x_fit = data[att ][" channel "][ cut[att_i ][0]: cut[att_i ][1]]
97 y_fit = data[att ]["cps"][ cut[att_i ][0]: cut[att_i ][1]] * 1e3
98 y_err_fit = data[att ][" cps_err "][ cut[att_i ][0]: cut[att_i ][1]] * 1e3
99

100 mmp.plot(ax ,
101 x_fit , y_fit ,
102 y_err=y_err_fit , config_err =" fill_between ",
103 color="tab:blue", label="Data used for the fit")
104

105 mmp.plot(ax ,
106 [data[att ][" channel "][i] for i in range(len(data[att ]["

channel "])) if i <= cut[att_i ][0]] ,
107 [data[att ]["cps"][i] * 1e3 for i in range(len(data[att ]["cps

"])) if i <= cut[att_i ][0]] ,
108 y_err =[ data[att ][" cps_err "][i] * 1e3 for i in range(len(data

[att ][" channel "])) if i <= cut[att_i ][0]] ,
109 config_err =" fill_between ",
110 label="Data discarded for the fit", color="tab:grey")
111 mmp.plot(ax ,
112 [data[att ][" channel "][i] for i in range(len(data[att ]["

channel "])) if i >= cut[att_i ][1]] ,
113 [data[att ]["cps"][i] * 1e3 for i in range(len(data[att ]["cps

"])) if i >= cut[att_i ][1]] ,
114 y_err =[ data[att ][" cps_err "][i] * 1e3 for i in range(len(data

[att ][" channel "])) if i >= cut[att_i ][1]] ,
115 config_err =" fill_between ",
116 color="tab:grey")
117

118 xx = np. linspace (0, 400, 400)
119 out_langau = mmp.fit(langau ,
120 x_fit , y_fit , y_err=y_err_fit ,
121 p0=P0[att],
122 bounds =True ,
123 x_range =xx ,
124 # show_values =True ,
125 ax=ax ,
126 color=" darkorange ")
127

128 muon_channels . append ( out_langau [0][1])
129 muon_channel_fit_err . append ( out_langau [1][1])
130

131 out[att] = out_langau
132 # print( out_langau )
133

134 mmp.plot(ax , xx , langau (xx , 0, 0, 1, 0, * out_langau [0][4:]) , color="
tab:red", label=" Contribution of the Gaussian part")

135 mmp.plot(ax , xx , langau (xx , * out_langau [0][:4] , 0, 0, 0), color="tab:
green", label=" Contribution of the Langau part")

136

137 ax. set_title (f"Fly - Through Spectrum , {att} %")
138 ax. set_xlabel (" Channel ")
139 ax. set_ylabel (r"Count rate [$10 ^{ -3}$ cps]")
140
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141 ax. set_xlim (0, 400)
142 ax. set_ylim (0, None)
143

144 mmp. legend (ax , loc =1)
145

146 if save_images :
147 mmp. save_fig (fig , path="../ report / figures ", name=f"Fly Through

Spectrum , {att} %", extension ="pdf")
148

149 plt.show ()
150 # break
151

152 # %%
153

154 # mean muon energy deposition in the tank
155 muon_energy = 1.95 * 0.87 * 84 # MeV
156 muon_energy_err = np.sqrt ((0.87 * 84 * 0.05) **2 + (1.95 * 84 * 0.01) **2 +

(1.95 * 0.87 * 5) **2)
157

158 print( muon_energy , muon_energy_err , "MeV")
159

160 deposited_energies = [ muon_energy * int(att) / 100 for att in
attenuations ]

161 deposited_energies_err = [ muon_energy_err * int(att) / 100 for att in
attenuations ]

162 print( deposited_energies , deposited_energies_err )
163

164 muon_channels_err = channel_err (np.array( muon_channels ))
165

166

167 # %%
168

169 fig , ax = mmp. make_fig (grid=True)
170

171 mmp.plot(ax ,
172 muon_channels , deposited_energies ,
173 x_err= muon_channels_err , y_err= deposited_energies_err ,
174 config =" scatter ",
175 label=" Flythrough Peak Positions ")
176

177 out_energy_cal = mmp.fit(mmf.poly_1 ,
178 muon_channels , deposited_energies ,
179 x_err= muon_channels_err , y_err=

deposited_energies_err ,
180 odr=True ,
181 conf=True ,
182 # show_results =True ,
183 # result_units =[" MeV", "MeV "],
184 x_range =np. linspace (0, 150, 200) ,
185 ax=ax ,
186 label=" Linear ODR Fit")
187

188 ax. set_title (" Energy Calibration ")
189 ax. set_xlabel (" Channel ")
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190 ax. set_ylabel (r" Energy $E$ [MeV]")
191

192 ax. set_xlim (0, 150)
193 # ax. set_ylim (0, 200)
194

195 mmp. legend (ax , loc =2)
196

197 if save_images :
198 mmp. save_fig (fig , path="../ report / figures ", name=" Energy Calibration "

, extension ="pdf")
199

200

201 # %%
202

203 mmu. save_json ( out_energy_cal , " energy_calibration .json")
204

205

206 # %%
207

208 mmu. print_to_table (mmu. sc_round ( muon_channels , muon_channel_fit_err , SI=
True),

209 mmu. sc_round ( muon_channels , muon_channels_err , SI=True
),

210 mmu. sc_round ( deposited_energies ,
deposited_energies_err , SI=True),

211 SI=True , environment =True , header =True , copy=True)

Background Spectrum
1 # -*- coding : utf -8 -*-
2 """
3 Created on Wed Apr 10 13:56:22 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 import matplotlib . pyplot as plt
12 # import scipy
13 # import scipy.odr as s_odr
14 import mymodules . usefultools as mmu
15 import mymodules . calculate as mmc
16 # import mymodules . measure as mmm
17 # import mymodules . optimize as mmo
18 import mymodules . functions as mmf
19 import mymodules .plot as mmp
20

21 # verbose = True
22 # si_format = False
23 # plot = True
24 # draft = False
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25 save_images = False
26 # write_data = False
27

28

29 # %%
30

31 energy_calibration = mmu. read_json (" energy_calibration .json")
32

33

34 def channel_to_energy ( channel ):
35 return mmf. poly_1 (channel , * energy_calibration [0])
36

37

38 def energy_error ( channel ):
39 return np.sqrt (( channel * energy_calibration [1][0]) **2 + (

energy_calibration [1][1]) **2)
40

41

42 # %%
43

44 time = 74539
45

46 data = pd. read_csv ("../ data/MCA_1/ background .TKA", header =1, names =["
counts "])

47

48 data[" channel "] = data.index
49

50 data["cps"] = data[" counts "] / time
51 data[" cps_err "] = np.sqrt(data[" counts "]) / time
52

53 data[" energy "] = channel_to_energy (data[" channel "])
54

55 print(f" Measurement time: {time / 3600} h")
56

57

58 # %%
59

60 fig , ax = mmp. make_fig (grid=True)
61

62 mmp.plot(ax ,
63 data[" energy "], data["cps"] * 1e3 ,
64 x_err= energy_error (data[" channel "]),
65 y_err=data[" cps_err "] * 1e3 ,
66 config =" scatter ",
67 config_err =" fill_between ",
68 label=" Background Spectrum ")
69

70 ax. set_title (" Background Spectrum ")
71 ax. set_xlabel (r" Energy $E$ [MeV]")
72 ax. set_ylabel (r"Count rate [$10 ^{ -3}$ cps]")
73

74 ax. set_xlim (np.min(data[" energy "]), 400)
75 # ax. set_xlim (0, 400)
76 ax. set_ylim (0, None)
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77

78 mmp. legend (ax , loc =1)
79

80 if save_images :
81 mmp. save_fig (fig , path="../ report / figures ", name=" Background Spectrum

", extension ="pdf")
82

83 plt.show ()
84

85

86 # %%
87

88 fig , ax = mmp. make_fig (grid=True)
89

90 mmp.plot(ax ,
91 data[" energy "], data[" counts "],
92 config ="plot",
93 config_err =" fill_between ",
94 label=" Background Spectrum ")
95

96 ax. set_title (" Background Spectrum ( Counts )")
97 ax. set_xlabel (r" Energy $E$ [MeV]")
98 ax. set_ylabel (" Counts ")
99

100 ax. set_xlim (np.min(data[" energy "]), 400)
101 # ax. set_xlim (0, 400)
102 ax. set_ylim (0, None)
103

104 mmp. legend (ax , loc =1)
105

106 if save_images :
107 mmp. save_fig (fig , path="../ report / figures ", name=" Background Spectrum

counts ", extension ="pdf")
108

109 plt.show ()
110

111

112 # %%
113

114 fig , ax = mmp. make_fig (grid=True)
115

116 y, x = mmc. running_average (data[" counts "], x=data[" energy "], n=10)
117

118 mmp.plot(ax ,
119 x, y,
120 config ="plot",
121 config_err =" fill_between ",
122 label=" Background Spectrum ")
123

124 ax. set_title (" Background Spectrum ( Running Average )")
125 ax. set_xlabel (r" Energy $E$ [MeV]")
126 ax. set_ylabel (" Counts ")
127

128 ax. set_xlim (np.min(data[" energy "]), 400)
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129 # ax. set_xlim (0, 400)
130 ax. set_ylim (0, None)
131

132 mmp. legend (ax , loc =1)
133

134 if save_images :
135 mmp. save_fig (fig , path="../ report / figures ", name=" Background Spectrum

counts running average ", extension ="pdf")
136

137 plt.show ()

Beta Spectrum Analysis
1 # -*- coding : utf -8 -*-
2 """
3 Created on Thu Feb 29 09:23:25 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 import matplotlib . pyplot as plt
12 # import scipy
13 # import scipy.odr as s_odr
14 import mymodules . usefultools as mmu
15 # import mymodules . calculate as mmc
16 # import mymodules . measure as mmm
17 # import mymodules . optimize as mmo
18 import mymodules . functions as mmf
19 import mymodules .plot as mmp
20

21 # verbose = True
22 # si_format = False
23 # plot = True
24 # draft = False
25 save_images = False
26 # write_data = False
27

28

29 # %%
30

31 # Fermi - function
32 def f_fermi (x, A, x0 , dx , c):
33 x = np.array(x)
34 return A / (np.exp ((x - x0) / dx) + 1) + c
35

36

37 fermi = mmf. fit_function (
38 f=f_fermi ,
39 params =["A", "E_e", "dE", "C"]
40 )
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41

42

43 # %%
44

45 # data_pes = mmu. read_json (" photoelectron_statistics .json ")
46

47 # def channel_err ( channel ):
48 # return mmf. poly_1 (channel , * data_pes [0])
49

50

51 # %%
52

53 energy_calibration = mmu. read_json (" energy_calibration .json")
54

55

56 def channel_to_energy ( channel ):
57 return mmf. poly_1 (channel , * energy_calibration [0])
58

59

60 def energy_error ( channel ):
61 return np.sqrt (( channel * energy_calibration [1][0]) **2 + (

energy_calibration [1][1]) **2)
62

63

64 # %%
65

66 time = 452839.29 # s
67

68 data = pd. read_csv ("../ data/MCA_1/ myon_decay_energy .TKA", header =1, names
=[" counts "])

69

70 data[" channel "] = data.index
71

72 data["cps"] = data[" counts "] / time
73 data[" cps_err "] = np.sqrt(data[" counts "]) / time
74

75 data[" energy "] = channel_to_energy (data[" channel "])
76

77 print(f" Measurement time: {time / 3600} h")
78

79

80 # %%
81

82 fig , ax = mmp. make_fig (grid=True)
83

84 mmp.plot(ax ,
85 data[" energy "], data["cps"] * 1e3 ,
86 x_err= energy_error (data[" channel "]),
87 y_err=data[" cps_err "] * 1e3 , config_err =" fill_between ",
88 label="Beta Spectrum ")
89

90 cut = (18, 180)
91 cut = (18, 180)
92 # cut = (22, 200)
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93 # cut = (25, 200)
94 # cut = (30, 230)
95 x_fit = data[" energy "][ cut [0]: cut [1]]
96 x_fit_err = energy_error (data[" channel "][ cut [0]: cut [1]])
97 y_fit = data["cps"][ cut [0]: cut [1]] * 1e3
98 y_err_fit = data[" cps_err "][ cut [0]: cut [1]] * 1e3
99

100 mmp.plot(ax ,
101 x_fit , y_fit ,
102 x_err=x_fit_err , y_err=y_err_fit ,
103 config_err =" fill_between ",
104 # config =" scatter ",
105 color="tab:red",
106 label="Data used for the fit")
107

108 out_fermi = mmp.fit(fermi ,
109 x_fit , y_fit ,
110 x_err=x_fit_err ,
111 y_err=y_err_fit ,
112 p0 =[0.6 , 90, 28, 0],
113 odr=True ,
114 # bounds =True ,
115 show_results =True ,
116 result_units =[r"$\cdot 10^{ -3}$ cps", "MeV", "MeV", r

"$\cdot 10^{ -3}$ cps"],
117 x_range =np. linspace (0, 400, 200) ,
118 label="ODR Fermi Fit: <chi >",
119 ax=ax)
120

121 ax. set_title ("Beta Spectrum ")
122 ax. set_xlabel (r" Energy $E$ [MeV]")
123 ax. set_ylabel (r"Count rate [$10 ^{ -3}$ cps]")
124

125 # ax. set_xlim (0, data [" channel "]. max ())
126 # ax. set_xlim (np.min(data [" energy "]) , 400)
127 ax. set_xlim (0, 400)
128 ax. set_ylim (0, None)
129

130 mmp. legend (ax , loc =1)
131

132 if save_images :
133 mmp. save_fig (fig , path="../ report / figures ", name="Beta Spectrum ",

extension ="pdf")
134

135 plt.show ()
136

137

138 # %%
139

140 mmu. save_json (out_fermi , "./ muon_decay_energy .json")

Time Calibration
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1 # -*- coding : utf -8 -*-
2 """
3 Created on Thu Feb 22 11:00:43 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 # import matplotlib . pyplot as plt
12 # import scipy
13 # import scipy.odr as s_odr
14 import mymodules . usefultools as mmu
15 # import mymodules . calculate as mmc
16 # import mymodules . measure as mmm
17 # import mymodules . optimize as mmo
18 import mymodules . functions as mmf
19 import mymodules .plot as mmp
20

21 # verbose = True
22 # si_format = False
23 # plot = True
24 # draft = False
25 save_images = False
26 # write_data = False
27

28

29 # %%
30

31 data = pd. read_csv ("../ data/MCA_2/ TAC_calibration .TKA", header =1, names =[
" counts "])

32

33 data[" channel "] = data.index
34

35 calibration_times = [2.42 , 4.52 , 6.30 , 8.62] # micro s
36 calibration_times_err = [0.01 , 0.01 , 0.01 , 0.01] # micro s
37

38 max_channels = list(data[" channel "][ data[" counts "] > 250])
39 max_channels_err = [1, 1, 1, 1]
40

41 mmu. print_to_table ( calibration_times , "merge", calibration_times_err ,
42 list( max_channels ), "merge", max_channels_err ,
43 environment =True , SI=True , header =True , copy=True)
44

45

46 # %%
47

48 fig , ax = mmp. make_fig (grid=True)
49

50 mmp.plot(ax , data[" channel "], data[" counts "] / np.max(data[" counts "]),
label="Time Calibration Spectrum ")

51 mmp. add_to_legend (ax , r"Pulse Time ($\pm$ 0.01 $\mu$s)", color="black",
marker =".")
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52

53 for channel_i , channel in enumerate ( max_channels ):
54 ax.text( channel + 15, 0.87 , fr"{ calibration_times [ channel_i ]} $\mu$s"

, size =15)
55

56 ax. set_title ("MCA2 Spectrum used for Time Calibration ")
57 ax. set_xlabel ("MCA2 Channel ")
58 ax. set_ylabel (" Counts ( normalized )")
59

60 ax. set_xlim (0, data[" channel "]. max ())
61 ax. set_ylim (0, 1.1)
62

63 mmp. legend (ax , loc =2)
64

65 if save_images :
66 mmp. save_fig (fig , path="../ report / figures ", name="MCA2 Spectrum used

for Time Calibration ", extension ="pdf")
67

68

69 # %%
70

71 fig , ax = mmp. make_fig (grid=True)
72

73 mmp.plot(ax ,
74 max_channels , calibration_times ,
75 x_err= max_channels_err , y_err= calibration_times_err ,
76 config =" scatter ",
77 label="Peak Positions ")
78

79 print( max_channels , calibration_times )
80 out_time = mmp.fit(mmf.poly_1 ,
81 max_channels , calibration_times ,
82 x_err= max_channels_err , y_err= calibration_times_err ,
83 odr=True ,
84 x_range =np. linspace (180 , 850, 200) ,
85 print_results =True ,
86 # result_units =[r"$\mu$s", r"$\mu$s "],
87 # show_results =True ,
88 conf=True ,
89 ax=ax ,
90 label=" Linear ODR Fit")
91

92 # mmp. add_to_legend (ax , fr"$m = ({ mmu. sc_round ( out_time [0][0] * 1e3 ,
out_time [1][0] * 1e3 , plot=True)})$ ns")

93 # mmp. add_to_legend (ax , fr"$c = ({ mmu. sc_round ( out_time [0][1] , out_time
[1][1] , plot=True)})$ $\mu$s ")

94

95 # print( out_time )
96

97 ax. set_title ("Time Calibration ")
98 ax. set_xlabel (" Channel ")
99 ax. set_ylabel (r"Time $t$ [$\mu$s]")

100

101 ax. set_xlim (180 , 850)
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102 ax. set_ylim (2, 9)
103

104 mmp. legend (ax , loc =2)
105

106 if save_images :
107 mmp. save_fig (fig , path="../ report / figures ", name=" time_calibration ",

extension ="pdf")
108

109

110 # %%
111

112 mmu. save_json (out_time , "./ time_calibration .json")
113

114

115 # %%

Decay Time Analysis
1 # -*- coding : utf -8 -*-
2 """
3 Created on Thu Feb 29 09:33:37 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 import pandas as pd
11 import matplotlib . pyplot as plt
12 # import scipy
13 # import scipy.odr as s_odr
14 import mymodules . usefultools as mmu
15 # import mymodules . calculate as mmc
16 # import mymodules . measure as mmm
17 # import mymodules . optimize as mmo
18 import mymodules . functions as mmf
19 import mymodules .plot as mmp
20

21 # verbose = True
22 # si_format = False
23 # plot = True
24 # draft = False
25 save_images = False
26 # write_data = False
27

28

29 # %%
30

31 time_calibration = mmu. read_json (" time_calibration .json")
32

33

34 def channel_to_time ( channel ):
35 return mmf. poly_1 (channel , * time_calibration [0])
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36

37

38 def time_error ( channel ):
39 return np.sqrt (( channel * time_calibration [1][0]) **2 + (

time_calibration [1][1]) **2)
40

41

42 # %%
43

44 time = 494095.83 # s
45

46 data = pd. read_csv ("../ data/MCA_2/ myon_decay_time .TKA", header =1, names =[
" counts "])

47

48 data[" channel "] = data.index
49

50 data["cps"] = data[" counts "] / time
51 data[" cps_err "] = np.sqrt(data[" counts "]) / time
52

53 data["time"] = channel_to_time (data[" channel "])
54

55 print(f" Measurement time: {time / 3600} h")
56

57

58 # %%
59

60 fig , ax = mmp. make_fig (grid=True)
61

62 mmp.plot(ax ,
63 data["time"], data["cps"] * 1e3 ,
64 # x_err= time_error (data [" channel "]) ,
65 y_err=data[" cps_err "] * 1e3 ,
66 # config =" scatter ",
67 config_err =" fill_between ",
68 label="Decay Time Spectrum ")
69

70 # cut = (28, 850)
71 # cut = (30, 850)
72 cut = (60, 850)
73 x_fit = data["time"][ cut [0]: cut [1]]
74 x_err_fit = time_error (data[" channel "][ cut [0]: cut [1]])
75 y_fit = data["cps"][ cut [0]: cut [1]] * 1e3
76 y_err_fit = data[" cps_err "][ cut [0]: cut [1]] * 1e3
77

78 # mmp.plot(ax , 2.42 , None , x_err =[0] , config =" vspan ")
79 # mmp.plot(ax , 8.62 , None , x_err =[0] , config =" vspan ")
80

81 mmp.plot(ax ,
82 x_fit , y_fit ,
83 # x_err=x_err_fit ,
84 y_err=y_err_fit ,
85 config_err =" fill_between ",
86 color="tab:red",
87 label="Data used for the fit")
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88

89 mmf. exp_decay_poly_0 . params_tex = ["A", "\\ tau_ \\ mu", "C"]
90 out_decay = mmp.fit(mmf. exp_decay_poly_0 ,
91 x_fit , y_fit ,
92 x_err=x_err_fit , y_err=y_err_fit ,
93 p0 =[0.27 , 2, 0],
94 odr=True ,
95 # bounds =True ,
96 # show_values =True ,
97 # verbose =True ,
98 result_units =[r"$\cdot 10^{ -3}$ cps", r"$\mu$s", r"$\

cdot 10^{ -3}$ cps"],
99 show_results =True ,

100 ax=ax ,
101 x_range =np. linspace (0.4 , 10, 200) ,
102 label=" Exponential ODR Fit")
103

104 ax. set_title ("Decay Time Spectrum ")
105 ax. set_xlabel (r"Time $t$ [$\mu$s]")
106 ax. set_ylabel (r"Count rate [$10 ^{ -3}$ cps]")
107

108 # ax. set_xlim (0, data [" channel "]. max ())
109 ax. set_xlim (0.4 , 10)
110 ax. set_ylim (0, 0.4)
111

112 mmp. legend (ax , loc =1)
113

114 if save_images :
115 mmp. save_fig (fig , path="../ report / figures ", name=" decay_time_spectrum

", extension ="pdf")
116

117

118 # %%
119

120 mmu. save_json (out_decay , "./ muon_decay_time .json")
121

122

123 # %%
124

125 fig , ax = mmp. make_fig (grid=True)
126

127 mmp.plot(ax ,
128 data["time"], data["cps"] * 1e3 ,
129 # x_err= time_error (data [" channel "]) ,
130 # y_err=data [" cps_err "] * 1e3 ,
131 # config =" scatter ",
132 config_err =" fill_between ",
133 label="Decay Time Spectrum ")
134

135 cut = (30, 100)
136 x_cut = data["time"][ cut [0]: cut [1]]
137 x_err_cut = time_error (data[" channel "][ cut [0]: cut [1]])
138 y_cut = data["cps"][ cut [0]: cut [1]] * 1e3
139 y_err_cut = data[" cps_err "][ cut [0]: cut [1]] * 1e3
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140

141 # mmp.plot(ax , 2.42 , None , x_err =[0] , config =" vspan ")
142 # mmp.plot(ax , 8.62 , None , x_err =[0] , config =" vspan ")
143

144 mmp.plot(ax ,
145 x_cut , y_cut ,
146 # x_err=x_err_cut ,
147 # y_err=y_err_cut ,
148 config_err =" fill_between ",
149 color="tab:red",
150 label=" Unexpected Jump in the Count Rate")
151

152 # cut_fit = (60, 850)
153 # plt. axvline (data [" time "][60] , color =" tab: orange ", label =" Time Interval

used for the Fit ")
154 # plt. axvline (data [" time "][850] , color =" tab: orange ")
155

156

157 ax. set_title ("Decay Time Spectrum ( Unexpected Jump)")
158 ax. set_xlabel (r"Time $t$ [$\mu$s]")
159 ax. set_ylabel (r"Count rate [$10 ^{ -3}$ cps]")
160

161 # ax. set_xlim (0, data [" channel "]. max ())
162 ax. set_xlim (0.4 , 10)
163 ax. set_ylim (0, 0.4)
164

165 mmp. legend (ax , loc =1)
166

167 if save_images :
168 mmp. save_fig (fig , path="../ report / figures ", name="

decay_time_spectrum_jump ", extension ="pdf")

Determination of the Coupling Constant
1 # -*- coding : utf -8 -*-
2 """
3 Created on Wed Apr 10 11:30:04 2024
4 """
5

6

7 # %%
8

9 import numpy as np
10 # import pandas as pd
11 # import matplotlib . pyplot as plt
12 import scipy
13 # import scipy.odr as s_odr
14 import mymodules . usefultools as mmu
15 # import mymodules . calculate as mmc
16 # import mymodules . measure as mmm
17 # import mymodules . optimize as mmo
18 # import mymodules . functions as mmf
19 # import mymodules .plot as mmp
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20

21 # verbose = True
22 # si_format = False
23 # plot = True
24 # draft = False
25 # save_images = False
26 # write_data = False
27

28

29 # %%
30

31 muon_decay_time = mmu. read_json (" muon_decay_time .json")
32 muon_decay_energy = mmu. read_json (" muon_decay_energy .json")
33

34

35 # %%
36

37 tau = muon_decay_time [0][1] * 1e-6 # in s
38 tau_err = muon_decay_time [1][1] * 1e-6 # in s
39

40 m = 2 * muon_decay_energy [0][1] * 1e6 # in eV
41 m_err = 2 * muon_decay_energy [1][1] * 1e6 # in eV
42

43 print("tau: ", tau , tau_err )
44 print("m: ", m, m_err)
45

46

47 # %%
48

49 hbar = scipy . constants .value(" reduced Planck constant in eV s")
50 c = 1
51 G_F = np.sqrt ((192 * np.pi **3 * hbar **7) / (m**5 * tau * c**4)) / (hbar *

c)**3 * (1e9)**2
52 G_F_err = np.sqrt (192 * np.pi **3 * hbar **7 / c**4) * np.sqrt ((1 / 2 * (m

**5 * tau)**( -3 / 2) * 5 * m**4 * tau * m_err)**2 + (1 / 2 * (m**5 *
tau)**( -3 / 2) * m**5 * tau_err )**2) / (hbar * c)**3 * (1e9)**2

53

54 print("G_F , G_F_err :", mmu. sc_round (G_F , G_F_err , SI=True)) # per GeV **2
55

56

57 # %%
58

59 print("sigma deviation for m:", abs (105658374.5 - m) / np.sqrt(m_err **2 +
2.4**2) )

60 print("sigma deviation for tau:", abs (2.1969811 - tau * 1e6) / np.sqrt ((
tau_err * 1e6)**2 + 0.0000022**2) )

61 print("sigma deviation for G:", abs (1.1663788e-5 - G_F) / np.sqrt( G_F_err
**2 + (0.0000006e -5) **2))

62

63

64 # %%
65

66 print(" percentile deviation for m:", abs (1 - m / 105658374.5) )
67 print(" percentile deviation for tau:", abs (1 - (tau * 1e6) / 2.1969811) )
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68 print(" percentile deviation for G:", abs (1 - G_F / 1.1663788e -5))
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