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1 Introduction

1 Introduction

Optical pumping is a physical effect used to achieve population inversion. It was invented by Alfred
Kastler who won the Nobel price in 1966 [1]. The method is commonly used in laser physics and
made many precise measurements of nuclear spins and hyperfine structure splitting possible [2].
In this experiment, the method of optical pumping is demonstrated at the two isotopes 85Rb and
87Rb using circularly polarised light. The spectrum of the hyperfine structure of both isotopes
is measured in the first part of the experiment, followed by the measurement of the nuclear spin
of the two isotopes. Furthermore, the spin precession in the earth’s magnetic field is observed
and the strength of the earth’s magnetic field is determined. Finally, the relaxation time of the
pumped system is calculated using two different methods.

2 Theoretical background

This section provides a brief introduction to the theoretical background required for this experi-
ment. Most of the information presented here is gained from reference [3], but it will be referenced
in detail if something specific is taken from it. Apologizes are made, that the text inside some fig-
ures is in german, but this has happened since reference [3] was the best source for those pictures,
which is written in german.

2.1 Hyperfine structure

In this experiment optical pumping is applied to the hyperfine structure (HFS) of 85Rb and 87Rb.
The hyperfine splitting is caused by the interaction of the total angular momentum of the electron
~J with the nuclear spin ~I. These two quantities couple to the total angular momentum ~F of the
atom which is then given by

~F = ~I + ~J. (1)

A sketch of this coupling is shown in Figure 1.

Figure 1: Sketch of the coupling of the total angular momentum ~J of the electron and the nuclear
spin ~I. This occurs due to the interaction between the magnetic field generated by the electron
and the magnetic moment of the nucleus [3, p. 5].
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2 Theoretical background

Figure 2: HFS-spectrum of the D1-line (2S1/2 → 2P1/2) of 85Rb and 87Rb [3, p.12]. Each
transition line is label with the F -quantum number from the lower state (2S1/2)) and the one
from the upper state 2P1/2. The dashed line in the middle is the line without taking HFS into
account.

The mechanism is similar to the spin-orbit coupling, which is responsible for the fine structure
where the electron’s angular momentum ~L and the electron spin ~S add up to the total angular
momentum of the electron ~J . Similar to the quantum number J , F can only take the values
within the range

|I − J | ≤ F ≤ I + J , (2)

where the values proceed in integer steps. The energy splitting ∆EHFS of the HFS is given by

∆EHFS =
1

2

gIµKBJ√
J(J + 1)︸ ︷︷ ︸

=:A

[F (F + 1)− I(I + 1)− J(J + 1)]

=
A

2
[F (F + 1)− I(I + 1)− J(J + 1)] ,

(3)

where gI is the nuclear g-factor (analogue to the Landé-factor gJ of the fine structure), µK the
nuclear magneton and BJ the magnetic field at the nucleus caused by the electron shell. The
variable A defined in the above equation is called interval constant.

Since µK is approximately 3 orders of magnitudes smaller than the constant µS appearing in
the fine structure, the resulting energy shifting of the hyperfine structure is also three orders
of magnitude smaller then the energy shifting of the fine structure. Calculating the difference
between two neighbouring energy levels of the hyperfine structure for constant I and J yields

∆E∆F=1(F ) = ∆EHFS(F + 1)−∆EHFS(F ) = A(F + 1). (4)

By measuring the two frequencies ν(F + 1) and ν(F ) corresponding to the excitation energies
∆EHFS(F + 1) and ∆EHFS(F ), the interval constant can be calculated via

A =
∆E∆F=1(F )

F + 1
=
ν(F + 1)h− ν(F )h

F + 1
=

∆νh

F + 1
, (5)

where ∆ν is the difference between the two frequencies ν(F + 1) and ν(F ) and h the Planck’s
constant. The HFS spectrum of the two isotopes 85Rb and 87Rb is shown in Figure 2.

2



2 Theoretical background

Figure 3: Schematic visualisation of the Zeeman effect. The total angular momentum of the
atom precesses around the axis of the magnetic field [3, p. 16].

2.2 Zeeman effect of the hyperfine structure

Similar to the fine structure, there are (2F+1) degenerated states with the same quantum number
F but with different magnetic quantum numbers mF , where

|−F | ≤ mF ≤ F . (6)

Applying a weak magnetic field B in the sense of

B � A

gJµB
, (7)

where gJ is the Landé-factor and µB the Bohr magneton, an additional energy splitting occurs,
caused by the interaction of the external field with the total angular momentum of the atom F .
The total angular momentum F starts to precess around the axis of the magnetic field as shown
in Figure 3. The angular frequency ωL of this precession in the external magnetic field B is given
by

ωL =
gF µB

~
B . (8)

The energy of the atom is now depending on the alignment between ~F and the magnetic field
which is described by the magnetic quantum number mF . The resulting energy shift can be
calculated using perturbation theory and is given by

EHFSB = gF µB BmF . (9)

For J = 1
2 and therefore F = I± 1

2 the energy difference between two neighbouring Zeeman levels
levels is given by

∆EHFSB (∆mF = 1) =
gJ

2(I + 1
2)
µBB . (10)

The full term diagram including the Zeeman levels can be seen in Figure 26 in the appendix.

2.3 Transitions in a multi level system

For simplicity only a two level system is discussed here, although the principles can be extended
to a multi level system constisting of more than two states without any problems. The transition
from one state to the other within a two level system can occur in three different ways. Electrons

3



2 Theoretical background

from the lower energy state can interact with an external electric field by absorbing a photon
of appropriate wavelength to get excited into the higher energy state. This process is called
stimulated absorption. However, a photon of this specific wavelength can also cause an electron in
the higher state to transition into the lower energy state by emitting a photon of the same energy,
called stimulated emission. Furthermore, there is also the possibility to emit a photon randomly
in order to transition to the lower energy state, which is called spontaneous emission.
These three mechanisms are accountable for the change of the population of states within a

system. At thermal equilibrium, the distribution of the number of electrons in the higher energy
level N2 and the ones the lower energy level N1 is given by the Boltzmann distribution

N1

N2
=
g1

g2
exp

(
−E2 − E1

kT

)
. (11)

Here, g1 and g2 are the degeneration of the states with the corresponding energy E1 and E2, which
means that there are for example g1 states with the same energy E1, k is the Boltzmann constant
and T the temperature [3].
For the Zeeman splitting of the HFS, the energy differences (≈ 5 · 10−28 J) are much smaller

than kT (at T = 300 K: kT ≈ 5 · 10−21 J). Therefore, the equilibrium population is approximately
equally distributed among all Zeeman levels.

In order to describe the transition probabilities between different states of the multi level system,
transition matrices can be used. A matrix element of such a transition matrix can be calculated
depending on the external field [4, ch.15.3] by calculating∣∣∣〈i|V̂ |j〉∣∣∣2 , (12)

where i, j are two quantum states and V̂ is the operator of the external field. For linear polarised
light this leads to the following selection rules for atomic transitions:

∆mL = 0, ∆L = ±1, ∆n = arbitrary fine structure
∆mF = 0, ∆F = ±1, ∆n = arbitrary hyperfine structure

(13)

For circularly polarised light however, this leads to

∆mL = ±1, ∆L = ±1, ∆n = arbitrary fine structure
∆mF = ±1, ∆F = ±1, ∆n = arbitrary hyperfine structure

(14)

2.3.1 Line width

In general, the uncertainty principle makes it impossible to generate a photon with an exact
frequency. This would correspond to an infinitely spread wave. There is always a so called natural
line width of the frequency, depending on the lifetime of a transition. The shorter the lifetime,
the larger the natural line width. The frequency curve is gaussian shaped around the expectation
value.
In practice there are two more mechanism which broaden the frequency spectrum. One is the

Doppler broadening, caused by the relative motions of the atoms. If an atom flies towards a
detector, then the frequency of emitted photons are higher and vice versa.
The second mechanism is called pressure broadening. Higher pressure is accountable for more
atomic collisions within a system. These collisions cause a phase shift of the atoms whereby an
additional broadening can occur.

4



2 Theoretical background

Figure 4: Sketch of the principle of optical pumping [3, p.27]. Electrons in |3〉, transitioned from
|1〉 have a probability to transition to |2〉 via spontaneous emission. From here they can not come
back to |1〉. After a little time a certain amount of electrons is pumped into |2〉.

2.4 Optical pumping

The goal of optical pumping is to generate a population of states which is different to the pop-
ulation of states in the equilibrium case. This is widely used for lasers, where optical pumping
generates a population inversion, i.e. the state with higher energy is more populated than the one
with lower energy. Therefore, the electrons are "pumped" into a specific state.
The simplest case is drawn in Figure 4. Assuming we have a three level system with levels |1〉,
|2〉 and |3〉. If laser light of the frequency ν31 corresponding to the energy difference between |1〉
and |3〉 is shined in, stimulated absorption occurs in the system, lifting electrons from |1〉 to |3〉.
On |3〉, the electrons can transition to |1〉 back again or transition to |2〉 with a certain probability.
Once in state |2〉, the electrons have no chance to get to another level of the system. To get to |3〉,
there is the need of light with frequency ν32. Due to selection rules, electrons can not transition
from state |2〉 to |1〉. As a result of that, the electrons are so to say stuck in that state, which is
why the number of electrons in state |2〉 can be increased significantly with optical pumping.
In the experiment there are some processes, that work against the optical pumping by changing

the population towards the lower state again. These are called relaxation processes and are
discussed later in more detail. In general, this leads to the fact that not every electron can be
pumped into the higher level. Instead, there is an equilibrium when the changing rate of states
for both processes cancel each other out. When N+ is the number of electrons in the higher level
and N− in the lower level, then the difference n(t) between them can be calculated with

n(t) = N+(t)−N−(t) = (n0 − nmax) exp

(
− t
τ

)
+ nmax, (15)

with n0 = n(t = 0), the maximum difference nmax, the time t and a time constant τ . The time
constant τ can furthermore be expressed as

1

τ
=

1

TP
+

1

TR
, (16)

where TP is a time constant regarding the pumping process, called pumping time, and TR a time
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Figure 5: D1-transition (2S1/2 → 2P1/2) of Rubidium. The transition from the different Zeeman
levels are only possible with light with certain polarisations. The transitions with ∆mJ = 0 can
only be done with linear polarised light (π-light), whereas the transition with ∆mJ = ±1 are done
with circularly polarised light (σ±-light)

constant regarding the relaxation processes, called relaxation time.

2.4.1 Optical pumping of Rubidium

Since the hyperfine structure leads to very many different Zeeman levels, the explanation of the
optical pumping of Rubidium is done for the case of the fine structure here. The different Zeeman
levels and the possible transitions between them are shown in Figure 5. As indicated in Figure 5,
different transitions correspond to different polarisations of light. While transitions without a
change in the magnetic quantum number (∆mJ = 0) correspond to linearly polarised light,
transitions which change the magnetic quantum number of the electron (∆mJ = ±1) correspond
to circularly polarised light.
Therefore, to realise optical pumping in the case of the Rubidium D1-line, circularly polarised

light is used. In this section, the Zeeman levels are referred to as S(+1/2), S(−1/2), P (+1/2),
and P (−1/2). As described in subsection 2.3, the thermal equilibrium state of the Zeeman levels
of 2S1/2 is approximately at Nmj=+1/2 = Nmj=−1/2. If a cell containing Rb-gas is exposed to right
handed circularly polarised light (σ+-light), the electrons in the state S(−1/2) are excited into
the P (−1/2)-level by the absorption of a photon. From here, they have a transition probability
of 2/3 to go back into the old S(−1/2) level again but with 1/3 probability they can transition
to the S(+1/2) level. Once they are in this level, they can not absorb any more σ+ light to get
excited into a higher state, nor can they transition into the lower state due to selection rules. The
electrons are trapped in this level and pumping is possible. Due to reasons of symmetry, using
linearly polarised light would not change the population numbers of the different energy levels,
which is why optical pumping is not possible with linearly polarised light in this case.
The electrons in S(+1/2) are aligned parallel to the external magnetic field, while electrons in

S(−1/2) are aligned anti parallel. If there are more particles in a certain state due to the optical

6



2 Theoretical background

Figure 6: Pumping the D1-line of 87Rb. Every time a circularly polarised photon is absorbed,
the quantum number mF is increased by one. Then there are several ways to go back to a lower
level, but only one channel lowers mF back again. So in general the distribution gets shifted
towards a higher mF number until most of them are in mF = 2.

pumping process, the whole system becomes polarised. This is used for measuring the time that is
needed for pumping. If for example the direction of the magnetic field is switched, the population
of states is switched as well and pumping can begin again. This will be explained in more detail
in subsubsection 3.2.5.
A sketch of the possible states and transitions in the case of optical pumping of the Zeeman

levels of 87Rb can be seen in Figure 6. The nucleus of 87Rb has a nuclear spin of I = 3/2 and both
electron states that are examined here have a total angular momentum of J = 1/2. Therefore,
there are 8 hyperfine states for both 2S1/2 and 2P1/2, 3 with F = 1 with mF ∈ [−1, 1] and 5 in
F = 2 with mF ∈ [−2, 2]. If a right handed circularly polarised photon is absorbed, the magnetic
quantum number mF is increased by one due to conservation of angular momentum. As a result
of that, the population gets shifted towards a higher number of mF in general, causing a higher
polarisation. Therefore, many electrons populate the state 2S1/2, F = 2, mF = 2. Analogously,
the mainly populated state in the case of optical pumping of the 85Rb isotope is 2S1/2, F = 3,
mF = 3.

2.5 Relaxation processes

The relaxation of Rb-isotopes is primarily governed by the interactions with other atoms. Hence
energy can get lost, whereas this is not possible by the interaction with a radiation field, since the
needed transitions is forbidden.
In this experiment, the Rb-isotopes are in a cell of glass. Collisions of the Rb-isotopes with the

glass are one relaxation process. The other process are the collisions between two Rb-isotopes,
which can also cause an energy loss for one isotope. Both processes can be slowed down by
introducing a puffer gas in the cell with which the Rb-isotopes are not able to interact, reducing
the number of occurring relaxation processes. These puffer gases are noble gases in general.
Getting a long relaxation time is not a trivial task and depends on several parameters. These are
the choice of the element, the dimension and shape of the cell as well as the pressure applied to
the cell.

7



3 Experimental setup and execution

For a spherical cell, the inverse longitudinal relaxation time TD can be calculated with

1

TD
=
D0p0

p

(
2π

d

)2

, (17)

where D0 is the diffusion coefficient at a certain pressure p0, p the applied cell pressure and d the
diameter of the cell body. Using the values p0 = 101.3 kPa, p = 150 Pa, D0 = 0.16 cm2/s and
d = 5 cm given in [5, p.7, p.21] yields the value

TD = 5.9 ms . (18)

3 Experimental setup and execution

This section provides a description of the experimental setup used for the different parts of the
experiment. Furthermore, the execution and the used methods are briefly explained. The hand-
written notes which are taken during the experiment can be found in Figure 37 - Figure 39 in the
appendix.

Figure 7: Overview of the whole optical pumping setup. Details about each component can be
found in reference [5, p.9].

3.1 Setup

An overview of the whole setup can be found in Figure 7. The general setup consists of a beam
line consisting of a laser diode, two lenses for the alignment of the beam, a glass cell filled with
gas of Rubidium, in the following called Rb-cell, and a photodiode which detects the signal of
the transmitted light. Around the Rb-cell, there are four different coils which are later used to
create and compensate different magnetic fields. Components like a quarter-wave-plate, a linear

8



3 Experimental setup and execution

polariser, a etalon and different kinds of neutral filters are inserted in the beam line in different
parts of the experiment, which are discussed in more detail in the following.
For later parts of the experiment, there is also a chopper, which can be used to block the laser

beam as well as an radio frequency radiation emitter. The signals of the photodiode and the
magnetic fields are visualised with an oscilloscope. The photodiode, which is used to measure the
transmission signal, is preamplified by a 9V battery to avoid long rising times [5, p.7]. Further-
more, several power supplies and frequency generators are provided for the laser diode and the
different coils.

3.1.1 Laser diode and the beam line

The light source used in this experiment is a semiconductor laser diode. The frequency of the
emitted light can be adjusted with two parameters, namely the temperature of the diode and the
current of the power supply. The temperature is controlled by a so-called Peltier element which
is able to control the temperature of the diode within the range 30 °C - 40 °C. The power supply
can provide a current up to 100 mA, but the laser is at most driven at 80 mA, because otherwise
the laser is aging more quickly and gets slowly destroyed.
Changes in either of these two parameters lead to a change in the gap with of the diode, which

then leads to a change in the energy of the emitted photons. By increasing the current in the
diode the frequency of the emitted light is approximately decreasing linearly in certain intervals
[3, p.62]. Due to thermal effects, leaps in the frequency can occur between these intervals, which
can be seen in Figure 8. This effect is called mode hopping. In this report, the combination of
the two laser parameters (temperature and current) is called working point. These working points
vary between different measurements since these are performed on different days.
For some parts of this experiment, the laser frequency has to be varied over a specific interval

within a short period of time. In order to obtain a linear relation between the current of the laser
diode and the frequency of the emitted light, the corresponding interval of the current has to be
chosen in a way that there are no mode hoppings taking place within the chosen interval.
To optimize the beam path, there are two lenses available. The laser light is focused by the

first lense, creating a parallel beam. A second lens after the Rb-cell focuses the beam onto the
photodiode.

3.1.2 Etalon

In order to measure the frequency of the laser light an etalon is used in the first part of the
experiment. A sketch of an etalon is shown in Figure 9. The etalon is a glass plate of which the
front and back side are partially mirrored. The result of these partially mirrored planes is that the
incident light gets partially reflected at the transitions between the glass and the air. Therefore, if
the light gets reflected twice in the etalon as shown in the sketch, the beam interferes with itself,
resulting in either constructive or destructive interference. If the laser beam is perpendicular
to the glass of the etalon, the criteria for constructive interference and therefore a transmission
maximum is given by

λ =
2 dn

m
, (19)

where λ is the wavelength of the laser light, d is the thickness of the etalon, n is the refractive index
of the etalon’s material and m is an integer number corresponding to the order of the maximum.
Rearranging this formula for the frequency of the laser light leads to

ν(m) =
c

λ
=

cm

2nd
, (20)
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Laser diode current
F

re
qu

en
cy

Mode hop

Figure 8: Mode hopping of the laser diode. Scaling and units are arbitrary. If the energy of the
gap width and thus the frequency of emitted photons is increased by changing the current in the
diode. At a certain level mode hopping occurs, which are the non-linear leaks in the graph, can
occur due to thermal effects of the diode by changing either the current or the temperature of the
diode. A comparable plot can be found in [6, p.6].

where c is the speed of light in vacuum. The frequency difference between two neighbouring
frequencies that satisfy Equation 20 is then given by

δν =
c

2nd
. (21)

This parameter is called the free spectral range (FSR) and the corresponding value of the etalon
used in this experiment is δν = (9924± 30) MHz [3, p. 52].

3.1.3 Neutral filters, polarisers and quarter wave plate

In this experiment, right handed circularly polarised light is needed for the optical pumping
process. This is generated by a quarter wave plate. The light emitted by the laser diode is already
linear polarised light. If the polarisation vector is viewed in the two dimensional space, it can
be described by two orthogonal basis vectors. A quarter wave plate changes the relative phase
between the two basis vectors, causing the polarisation vector to rotate. A linear polarisation
filter after the quarter wave plate is then used for checking if the light is indeed right handed
circularly polarised. If this is the case, the measured transmitted intensity stays the same among
all angles of the linear polarisation filter.
In order to weaken the light intensity without changing the polarisation, neutral filter are used.

These are characterized by the optical density D, which is given by

D = − log10

(
I

I0

)
, (22)

where I is the intensity after the neutral filter and I0 the intensity without any filter [5, p.7]. The
transmittance, which is the relative intensity x is therefore

x = I/I0 = 10−D . (23)
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partially mirrored surfaces

d

Figure 9: Schematic representation of an etalon. The green and the blue lines are both part of
the incident light beam. While the blue beam passes both surfaces without any reflection, the
green beam is reflected two times in the etalon. The blue and the green beam interfere after
the etalon, leading to constructive or destructive interference depending on the path difference
between the two beams. Note that the green lines after the reflection are only shifted slightly for
the purpose of visibility. In reality, these lines are all on top of each other.

3.1.4 Rubidium cell

The heart of the experiment is the Rb-cell. It is a spherical glass object with ≈ 5 cm diameter,
filled with the natural ratio of the isotopes 85Rb (72.8%) and 87Rb (27.2%) [5, p.7]. To encounter
the relaxation processes, the cell is filled with Krypton as a puffer gas with a pressure of ≈ 150 Pa
at room temperature. Temperature and pressure can be changed by using a professional hair
dryer in order to get a better signal.
Build upon the cell, there a a radio frequency emitter (RF emitter). This is later used for

inducing transitions between Zeeman levels of the HFS structure. It can be tuned around a
frequency of 500 KHz.

3.1.5 Helmholtz coils for the magnetic fields

To adjust the magnetic field, there are 5 different Helmholtz coils. The coil parameters can be
found in Coil 1 and 2 in Figure 7 are in horizontal position. Coil 1 is used to get a constant
magnetic field while coil 2 is able to vary the magnetic field by a certain shape, in this case a sinus
function. Coil 3 has a small number of windings in order to be able to switch the magnetic field
fast because of the low inductivity. Coil 4 is used to create a a constant magnetic field in vertical
direction. Another coil with only 5 windings, coil number 5, which is attached to the Rb-cell but
is not shown in Figure 7, also has low inductivity. The conversion factors listed in 1 correspond
to the formula

B = µ0H ≈ 0.7155µ0
n

r
I

⇐⇒ B

I
≈ 0.7155µ0

n

r

(24)
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Table 1: Coil parameters. Coil 1, 2, 3 are the horizontal ones, coil 4 the vertical one which can
also be found in Figure 7 [5, p.8].

Coil number Windings Diameter [m] k = B
I (theo.) [ Vs

Am2 ] k = B
I (measured) [ Vs

Am2 ]

1 80 0.09 7.99 · 10−4 (7.99± 0.01) · 10−4

2 80 0.09 7.99 · 10−4 (8.14± 0.01) · 10−4

3 5 ≈ 0.09 1.00 · 10−4 -
4 60 0.246 4.38 · 10−4 4.76 · 10−4

3.2 Execution and methods

In this subsection, the execution of the different parts of the experiment and the used methods
are explained.

3.2.1 Laser characterisation

In order to characterise the laser diode and to find an appropriate working point for later measure-
ments, several measurements are performed. These measurements are done without the Rb-cell
but with the etalon in the beam line. The current applied to the laser diode is the sum of a
constant offset and a triangular shaped current. Several temperatures and diode currents are
tested in order to observe the relation between the frequency of the laser and these parameters.
Furthermore, this is done in order to ensure that the working point used for the measurement of
the HFS spectrum does not show mode hopping.

3.2.2 HFS spectrum of the D1-line of Rb

The general idea behind this method is that if the laser frequency matches a certain HFS transi-
tion, part of the photons will be absorbed and therefore the intensity of the transmission signal is
reduced. For this measurement only the two lenses and the Rb-cell are placed in the beam path.
Furthermore, a laser frequency gauge is made with the etalon.

Around the working point determined in the laser characterisation, the current of the laser
diode is then increased and thus the frequency decreased linearly in order to go through the HFS
spectrum, resulting in a drop of the transmission signal at the HFS lines. In this experiment,
a triangular function is used for the current of the laser diode, which results in a positive and
negative slope of the intensity, each showing the whole HFS spectrum. An exemplary plot can be
seen in Figure 10a. The change of the laser frequency with respect to the change in time can be
determined using the etalon described in subsubsection 3.1.2. For this gauge, the same ramping is
applied to the laser as used in taking the HFS spectrum later on, but with the etalon and without
the Rb-cell in the beam path. Since the difference in frequency between two etalon peaks is a
known quantity (see subsubsection 3.1.2), a conversion factor between time and frequency can be
calculated. To be more specific, only the change in frequency can be assigned, not the actual real
frequency, since there is an unknown offset. However, in this case only differences in frequencies
are relevant, which is why this is not a problem.

Since the ramping of the current is not symmetrical, the evaluation has to be made for both
ramping up and ramping down seperately. Furthermore, the parameters of the ramping are chosen
equally for measuring the HFS spectrum as well as the current-frequency gauge. This way, it is
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Figure 10: Measurement of the HFS spectrum. The blue curve shows the transmission signal
recorded by the photodiode, while the orange curve shows the ramping of the current. The
vertical axis of both graphs are scaled arbitrarily in order to make them visible in the same plot.
Remember that the intensity is increasing, frequency is decreasing, when the current is ramped
up. Vice versa when the current is ramped down on the right flank. On the left hand side in
(a), a example plot of the HFS spectrum is shown. Six out of eight possible absorption lines are
visible per ramping. On the right hand side (b), the frequency gauge is shown. The peaks from
the constructive interference are visible in a equidistant way. With the distance between them
the frequency gauge can be determined.

made sure that no mode hopping occurs and the assumption that the frequency changes linearly
with the current is viable.
The assignment of the peaks to the respective transitions can then be made with the spectral

lines shown in Figure 2. This can be done by a visual comparison of how the peaks look like here
with the actual data taken.
Now the energy difference between the hyperfine splitting of a fine structure state is given by

the differences of the frequencies of two transitions with a difference in F of ∆F = 1. The result
of this should either give the hyperfine splitting of the state 2S1/2 or 2P1/2. This is sketched in
Figure 11. Thus the interval constant A can be calculated with Equation 5.

3.2.3 Double resonance

In this part of the experiment, the strength of the earths magnetic field as well as the nuclear spin
of the two Rb isotopes are calculated. This is done by using the principle of double resonance.
Using a constant magnetic field in coil number 1, the energy levels of the Rb isotopes are split
according to the Zeeman effect as explained in subsection 2.2. Using optical pumping, there is
a significant deviation of the occupation numbers compared to the occupation numbers of the
equilibrium state.
In the ideal case, all atoms of the ground state would be pumped into the higher energy state

where the electrons are trapped. This would mean that the laser light, which is used for the
optical pumping is not absorbed at all, resulting in maximal transparency of the cell. In order
to redistribute the occupation numbers, and to allow transitions working against the pumping
process, radio frequency radiation is used.
If the energy of the RF-photons matches the energy between the Zeeman levels, induced emission

can occur, resulting in more atoms occupying the ground state. Subsequently, the transparency
of the Rb-cell decreases, since there are now more atoms in the cell that can be pumped again.
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Figure 11: Calculating the energy differences ∆EHFS(F + 1) − ∆EHFS(F ) of the hyperfine
splitting for 87Rb. The differences of each pair of arrows is equal to the hyperfine splitting of
either 2S1/2 or 2S1/2. The same can be applied to 85Rb by rasing all quantum numbers of F by
one.

In order to tune the constant magnetic field leading to the energy splitting corresponding to
the incident radiation, several adjustments of the magnetic fields are performed, while the RF-
radiation is kept at a constant frequency of approximately 500 kHz.
To compensate the vertical component of the earth’s magnetic field, a constant current is applied

in coil number 4, until the intensity of the absorption peaks is maximal. Afterwards, a sinusoidal
magnetic field is created with coil number 2 in horizontal direction. In the same direction as the
magnetic field of coil number 2, a constant magnetic field is applied with coil number 1. The
current of coil number 1 is adjusted in order to observe equidistant peaks in the signal. If this
is the case, then the energy of the Zeeman splitting created by the constant magnetic field in
horizontal direction (coil number 1 and earth’s magnetic field) is equal to the energy of the RF
photons. Using the information of the different applied magnetic fields, the earth’s magnetic field
as well as the nuclear spin of the Rb isotopes is calculated, which is explained in more detail later
in the analysis in subsection 4.3.

3.2.4 Spin precession

As previously mentioned in subsection 2.2, spin precession or in the case of I-J-coupling the
precession of the total angular momentum vector can occur when applying an external magnetic
field. This effect is used in this experiment in order to determine the strength of the earths
magnetic field. By applying an external field and using optical pumping, the spins of the atoms
in the system are aligned along the external field.
In this part of the experiment, the horizontal component of the earth’s magnetic field is com-

pensated by applying the corresponding current obtained in the double resonance measurement.
Furthermore, coil number 5 is connected to a rectangular current signal. As a result of that, the
spins are aligned along the magnetic field of coil number 5 when the current signal is non-zero.
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When this external field is switched off within a shorter time period than the timescale of the spin
precession in the earths magnetic field, this precession can be observed. Using Equation 8, the
vertical component of the earth’s magnetic field can then be calculated.

3.2.5 Measurement of the relaxation time using the Dehmelt method

This method uses the behaviour of the pumped system after changing the direction of the magnetic
field. Optical pumping aligns the spins of the Rubidium atoms along the magnetic field. At the
same time, relaxation processes as explained in subsection 2.5 are reducing the number of electrons
in the pumped state. Once the system is pumped long enough, there is an equilibrium point where
the number of atoms leaving the overpopulated state due to relaxation is equal to the number of
atoms which are pumped into that state. The result of this equilibrium is a constant transparency
of the Rb cell in the laser beam.
The earth’s magnetic field is compensated using coil number 1 (horizontal component) and coil

number 4 (vertical component). An alternating rectangular current which changes the sign after
a specific period is applied to coil number 3, resulting in an alternating magnetic field. When
reversing the direction of the magnetic field, the sign of the magnetic quantum number mF is
getting flipped as well, which leads to the situation where pumping is possible again. Therefore,
the resulting absorption signal has a negative peak right after the point in time at which the B-
field direction is changed. Afterwards, the transparency increases again following an exponential
curve as shown in Equation 15. As both pumping and relaxation processes are happening during
that time, the timescale τ of that exponential increase, which was introduced in Equation 16, is
given by

1

τ
=

1

TP
+

1

TR
, (25)

where TP is the pumping time and TR the relaxation time. Since the pumping time is inversely
proportional to the intensity of the laser light Ilight,

TP ∝
1

Ilight
, (26)

Equation 25 can be written as a linear function of the intensity

1

τ
=

1

TR
+ b · Ilight , (27)

where b is a constant factor. Using this linear relation between the inverse of the orientation time
τ and the intensity of the laser light, the relaxation time TR can be determined by calculating the
value of 1/τ for different laser intensities and afterwards applying a linear fit to these values. The
inverse of the relaxation time is then given by the offset of the linear fit.
In this experiment, several neutral filters are used in order to obtain the orientation time

for different values of the laser intensity. The values of 1/τ are determined by performing an
exponential fit. The resulting values are then plotted as a function of the relative intensity in
order to perform the linear fit explained above.

3.2.6 Measurement of the relaxation time using the Franzen method

With Franzens method to determine the relaxation time, one uses the fact that the intensity of
the transmitted light is exponentially decreasing when the pumping process is turned off. Here no
special magnetic field is required. The shut down of the pumping is simply done by blocking the
laser with the chopper wheel. The more time passes the more the system has relaxed. Therefore,
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(a) (b)

Figure 12: Relaxation with blocking the laser. While pumping is active, the transmitted light
converges to a maximum value Imax quickly (within <2ms). When the laser is blocked, only the
relaxation processes are active anymore and the transmitted light decreases exponentially until
the laser can shine in again (a). The initial values of the intensity curves when the laser shines
in again build the desired relaxation curve (b). (From [3, p.88], [5, p.22])

more absorption is possible again and the intensity of the transmitted light is lower. The intensity
follows a curve of the form

I(∆t) = Imin + (Imax − Imin) · exp−∆t

TR
. (28)

The problem with this is, that the intensity curve can not be measured directly, since the laser
is blocked and there is no transmitted light whatsoever. So the idea is to measure the intensity
of the laser right after the signal is back on. This is done for different time intervals ∆t in which
the system can relax. When the cell is exposed to the laser light again, there can be seen an
exponential increase with different starting values. Depending on how long the laser was blocked
(dark time), this curve starts at a different value, whereas the value is lower for longer dark times.
The first value of this curve represents the intensity of the desired curve at a certain relaxation
time ∆t, which can be seen in Figure 12. With several intensities Itrans(∆t) at different ∆t an
exponential fit can be performed to determine the parameter of the relaxation time TR.

4 Analysis

In this analysis, the uncertainty of a quantity x is called sx. All uncertainties are calculated via
gaussian error propagation. This means that the uncertainty sx of the quantity x(y, z) which
depends on the variables y and z is calculated with

sz =

√(
∂x

∂y
sy

)2

+

(
∂x

∂z
sz

)2

. (29)

The correlation between the quantities are assumed to be negligible throughout the protocol.

4.1 Characterisation of the laser diode

In order to characterise the laser diode several measurements are performed without the Rb-cell
but with the etalon in the beam path. The current applied to the laser diode is a constant offset
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Idiode in addition with a triangular shaped signal. This technique allows to visualise the change of
the laser’s frequency with the change of the current. In order to find an appropriate working point
for later measurements of the HFS spectrum, several combinations of temperature and current of
the laser diode are tested. First, the current at the laser is set to Idiode = (45.1± 0.1) mA and
four different temperatures in the range between (29.6± 0.1) °C and (36.1± 0.1) °C are applied.
The measured signals are shown in Figure 13. For the highest temperature, mode hopping can be
observed in the signal.
Furthermore, measurements with the same temperature of (34.7± 0.1) °C but four different cur-

rents of the laser diode are performed. The used currents are in the range between (38.9± 0.1) mA
and (57.7± 0.1) mA. The corresponding plots of the signal are shown in Figure 14. As in the
case of the measurements with different temperatures, mode hopping is observed here as well, in
the measurement with Idiode = (51.1± 0.1) mA. The plot in Figure 14d shows the working point
which is used for the measurement of the HFS spectrum. The corresponding signal does not show
any signs of mode hopping, making this an appropriate working point.
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Figure 13: Laser signal with the etalon for different temperatures of the laser diode. The scaling
of both signals is chosen such that they are visible together. The current applied to the laser
diode is in all four plots Idiode = (45.1± 0.1) mA while four different values for the temperatures
are used namely (a) T = (29.6± 0.1) °C, (b) T = (31.3± 0.1) °C, (c) T = (33.6± 0.1) °C and
(d) T = (36.1± 0.1) °C. Plot (d) shows the case where mode hopping occurs at a time right after
1 ms.
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Figure 14: Laser signal with the etalon for different currents of the laser diode. The temper-
ature of the laser diode is in all four plots T = (34.7± 0.1) °C while four different values for
the current are used namely (a) Idiode = (38.9± 0.1) mA, (b) Idiode = (45.1± 0.1) mA, (c)
Idiode = (51.1± 0.1) mA and (d) Idiode = (57.7± 0.1) mA. Plot (d) shows the working point
used for the measurement of the HFS spectrum later on. As one can see, no mode hoppings occur
in when using this working point
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4.2 Spectrum of the hyperfine structure

This measurement is performed at a working point of T = (34.5± 0.1) °C Temperature, Idiode =
(57.7± 0.1) mA current. The laser current is additionally driven with a triangular shape resulting
in U ≈ 1 Vpp voltage of the photodiode, f ≈ 155 Hz frequency, measured with the oscilloscope.
According to subsubsection 3.2.2, a measurement of the HFS-spectrum as well as a measurement
to gauge the etalon are performed within the same time range and therefore current range. These
measurements are shown in Figure 15.
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(b) Etalon gauge at entire measurement range
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(c) HFS-spectrum left flank in detail
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Figure 15: HFS spectrum measurements. The ramping up and ramping down ((c) and (d)) are
evaluated seperately. This also means, that the etalon gauge is also treated seperately for the left
and right part. Notice, that the bottom plots do have an arbitrary time offset. But since only
time differences are of importance, this does not change the evaluation.

4.2.1 Etalon measurement

First, the etalon measurement, which is shown in Figure 15b, is used to determine the conversion
factor between frequency and time c = ∆ν

∆t . This factor is used to calculate the differences in
frequency of the measured HFS-lines. The determination of this factor is done separately for both
ramp up and ramp down of the current since the slope of the the ramp up and ramp down are
not exactly the same. For each etalon peak a fit is performed in order to get the time value of
each signal maximum where constructive interference occurs. This is done by adding a gaussian
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function with a linear function, resulting in the fit function

ffit(t) = N · exp

(
−1

2

(
t− t0
σ

)2
)

+ a · t+ b, (30)

where t0 represents the center of each gaussian peak. These values of the center are used for the
determination of the points of constructive interference. An example plot is shown in Figure 16a.
The remaining fits can be seen in Figure 27 in the appendix. All values of the center of the
interference maxima are drawn in the plot in Figure 15 and are also listed in Table 2. Afterwards,
the differences ∆t0 between the points of constructive interference are calculated. As explained
in subsubsection 3.1.2, the difference δν in frequency corresponding to two neighbouring peaks
is known to be δν = (9924± 30) MHz. Since there are three etalon peaks fitted on each side of
the ramp, two values for of ∆t0 can be calculated for each side. The weighted average of the
respective two values of ∆t0 is calculated to

∆t0ramp up = (0.735± 0.003) ms ∆t0ramped down = (0.540± 0.003) ms (31)

Thus the conversation factor c = ∆ν
∆t0

from time to frequency is given by

cramped up = (−13 500± 50) MHz/ms cramped down = (18 400± 100) MHz/ms. (32)

The corresponding uncertainties are calculated via gaussian error propagation.

Table 2: Fit values of the etalon peaks. The mean value of a gaussian peak is represented by
t0, the error of this value by st0 , which are also obtained by the fit. Then the differences ∆t0 are
calculated as well as the errors s∆t0 , which are done via gaussian error propagation.

Ramp
Peak number

(chronologically ordered)
t0 [ms] st0 [ms] ∆t0 [ms] s∆t0 [ms]

up
1 1.663 0.003 - -
2 2.420 0.003 0.757 0.004
3 3.143 0.002 0.723 0.003

down
1 3.772 0.002 - -
2 4.300 0.003 0.528 0.004
3 4.875 0.005 0.575 0.006

4.2.2 HFS spectrum

Now the HFS-spectrum lines from the data in Figure 15c and Figure 15d are determined. The
fits are done with the same function as in Equation 30. However, if multiple peaks do overlap,
the sum of multiple gaussians is implemented. An example for this is shown in Figure 16b, where
two gaussians are fitted at the same time. The plots of the remaining fits can be seen in Figure 28
and Figure 29 in the appendix.
The values of the fit results are shown in Table 3. The different peaks are assigned to the

corresponding transitions using the spectral lines shown in Figure 2. The theoretical values of the
respective frequency relative to the D1-line are also listed in Table 3. Notice, that the horizontal
axis of the plot shown here is inverted compared to the plot in Figure 2, but nevertheless all peaks
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in Figure 15c can be assigned unambiguously. The assignment of the peaks to the respective
transition is discussed for the ramp up (Figure 15c) in the following.
The double gaussian on the left can be clearly identified as the transitions (87Rb, F:1-2) and

(87Rb, F:1-1). The peak in the center of the plot corresponds to the two lines of (85Rb, F:2-3)
and (85Rb, F:2-2). Since these two lines are very close to each other, the two corresponding peaks
are not distinguishable in the measured spectrum. Therefore, the fit value corresponding to the
sum of the two peaks represents a value between the two transition lines. For further calculations,
the center of the fitted peak is used for both lines, but the uncertainties of these two lines are set
to be the standard deviation of the fitted gaussian. Another possibility would be to fit a double
gaussian here to this single peak.
The triple gaussian in the measured spectrum is identified with the transitions (85Rb, F:3-3),

(85Rb, F:3-2), (87Rb, F:2-2) and (87Rb, F:2-1). Again, the first intense peak is assigned to two
transition lines for the same reasons as before. The complete assignment is also listed in Table 3.
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Figure 16: Example fits of the analysis of the etalon measurement and the HFS spectrum analysis.
The left side (a) shows the fit of the third peak (ramped up) in detail. The right side (b)shows
the fit of the first and second peak (ramped up) of the HFS spectrum in detail. The errorbars of
the data points are given by the resolution of the oscilloscope.

In order to determine the interval constant A given by

A =
∆EHFS(F + 1)−∆EHFS(F )

F + 1
=
ν(F + 1)h− ν(F )h

F + 1
=

∆νh

F + 1
, (33)

the differences in time between the peaks are converted to differences in frequency using the
conversion factor c. For 87Rb F is set to 1 in the formula, since the transitions are from F = 1 to
F = 2. Analogously for 85Rb F is set to 2. A sketch of the corresponding energy differences and
therefore frequency differences between the possible transitions of the HFS are shown in Figure 11.
For the interval constant of each state (87Rb2S1/2, 87Rb 2P1/2, 85Rb 2S1/2, 85Rb 2P1/2), there are
are in total 4 frequency differences (2 on each side of the ramp) used for the calculation. The
uncertainties are calculated via gaussian error propagation. The corresponding results can be
found in Table 7 in the appendix. From these values, the weighted averages of the frequency
differences are calculated.
The final results for the interval constants according to Equation 33 are listed in Table 4. Since

the transitions (85Rb, F:2-3) and (85Rb, F:2-2) as well as (85Rb, F:3-3) and (85Rb, F:3-2) can not
be resolved separately in the spectrum, the interval constant of the state 85Rb2P1/2 is calculated
to 0 MHz.
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Table 3: Fit values of the HFS-spectrum peaks. The mean value of a gaussian peak is represented
by t0, the error of this value by st0 , which are also obtained by the fit. Then the differences ∆t0
are calculated as well as the errors s∆t0 , which are done via gaussian error propagation. The
theoretical values are taken from Figure 2.

Ramp
Peak number

(chronologically ordered)
t0 [ms] st0 [ms]

Respective
transition

theo. frequency value
(relative to D1) [GHz]

up

1 1.077 0.006 87Rb,F:1-2 +4.58
2 1.139 0.002 87Rb,F:1-1 +3.76

3 1.3008 0.03
85Rb,F:2-3 +1.92
85Rb,F:2-2 +1.56

4 1.532 0.03
85Rb,F:3-3 -1.12
85Rb,F:3-2 -1.48

5 1.593 0.006 87Rb,F:2-2 -2.25
6 1.670 0.001 87Rb,F:2-1 -3.07

down

1 0.2795 0.0003 87Rb,F:2-1 -3.07
2 0.340 0.003 87Rb,F:2-2 -2.25

3 0.383 0.02
87Rb,F:2-2 -1.48
85Rb,F:3-3 -1.12

4 0.5622 0.02
85Rb,F:2-2 +1.56
85Rb,F:2-3 +1.92

5 0.689 0.001 87Rb,F:1-1 +3.76
6 0.7624 0.0004 87Rb,F:1-2 +4.58

Table 4: Interval constants of the related atomic states.

State ∆ν [MHz] Interval constant A/h [MHz]
87Rb2S1/2 (7440± 20) 3720± 10
87Rb2P1/2 (1100± 20) 598± 8
85Rb2S1/2 (3200± 200) 1080± 80
85Rb2P1/2 (0± 200) (0± 80)
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4.3 Double resonance measurement

The double resonance measurement is performed on two different days of the experiment. The
main difference between these two measurements is that in the second measurement an attempt
is made to rotate the experimental table in order to align it along the horizontal component of
the earth’s magnetic field.
To obtain the double resonance signal, RF radiation of a frequency of approximately νRF ≈

500 kHz is used. This frequency is measured with the built-in measuring functions of the oscil-
loscope and the uncertainty is estimated based on the fluctuations of the value shown on the
oscilloscope. The exact values can be found in Table 5 together with the other parameters of the
measurements.
The current in coil number 4 is adjusted to maximise the intensity of the double resonance signal.

In both measurements the signal is maximal for a current of I4 = (90± 1) mA. Since the signal
becomes maximal for complete compensation of the vertical component of the earth’s magnetic
field, the current of coil number 4 can be used to calculate this component of the stray field. The
measured values of the current in coil number 4 are also listed Table 5. The resulting absorption
signal and the oscillating magnetic field in horizontal direction are shown for one configuration in
Figure 17.
In all measurements the current of coil number 1 is adjusted in order to get equidistant ab-

sorption peaks, which means that the offset of the magnetic field generated by coil number 1 is
splitting the Zeeman levels such that the energy difference between these levels is equal to the en-
ergy carried by the radio frequency photons. Therefore, at the points in time when the oscillating
magnetic field is zero, the RF radiation induces transition between the Zeeman levels, leading to
a situation where pumping is possible again, i.e. the transparency of the Rb-cell decreases. This
leads to equidistant peaks in the absorption signal.
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Figure 17: Example plot of the double resonance measurement. The vertical axis is shown in an
arbitrary unit since the absorption signal and the signal of the magnetic field are scaled in order to
make both signals visible. The parameters used for this measurement are Idiode = (58.5± 0.1) mA,
T = 34.6 °C, I4 = (90± 1) mA, νRF = (512± 3) kHz and I1 = (146± 1) mA.
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Table 5: Measured values and used parameters for the double resonance measurement. The two
measurements are performed on two different days while the experimental table is aligned along
the horizontal component of the earths magnetic field in the second measurement series.

Idiode T I4 νRF Dir. of current I1 ∆I1

[mA] [°C] [mA] [kHz] [mA] [mA]

58.5± 0.1

34.6 90± 1 512± 3

normal 146± 1
11.0± 1.4

reversed 135± 1

59.0± 0.1
normal 100± 1

13.0± 1.4
reversed 87± 1

58.8± 0.1

34.5 88± 1 510± 3

normal 148± 1
20.0± 1.4

reversed 128± 1

59.3± 0.1
normal 102± 1

19.0± 1.4
reversed 83± 1

4.3.1 Calculation of the vertical component of the earth’s magnetic field

Using the conversion factor k4 = (4.76± 0.01) · 10−4 T
A between current and magnetic field given

in section 3, Table 1, the vertical component of the stray field is then

Bvert
earth = I4 · k4 (34)

and the corresponding uncertainty is calculated via gaussian error propagation as

sBearth, vert = Bvert
earth ·

√(
sI4
I4

)2

+

(
sk4
k4

)2

. (35)

The resulting values for the two different measurement series are

Bvert
earth, 1 = (42.8± 0.5) µT and Bvert

earth, 2 = (41.9± 0.5) µT , (36)

Calculating the weighted average of these two values using the exact numbers yields

Bvert
earth, 1 = (42.4± 0.3) µT . (37)

4.3.2 Calculation of the horizontal component of the earth’s magnetic field

As explained before, the magnetic field in horizontal direction created by coil number 1 is adjusted
in order to create a Zeeman splitting corresponding to the incident radio frequency radiation.
However, since the effective horizontal magnetic field Beff in the Rb cell is the sum of the horizontal
component of the earth’s magnetic field Bhor

earth and the field Bcoil 1 created by coil number 1,

Beff = Bhor
earth +Bcoil 1 , (38)

the magnetic field corresponding to the incident radio frequency is not exactly Bcoil 1. Instead, it
is either smaller than Bcoil 1, in case the earth’s magnetic field is anti parallel to the field of coil
number 1 or larger than Bcoil 1 in case the earth’s magnetic field is parallel to the field generated by
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Figure 18: Alignment of the horizontal magnetic fields. BZeeman shows the field which is nec-
essary to have to get a transition with the radio frequency of ≈ 500 KHz. If the polarity of the
current is normal (B1, normal) the earth magnetic field is anti parallel to the field of coil 1 and
therefore the current needs to be higher. If its parallel (B1, reversed), the fields add up together
and a lower current is needed.

coil number 1. A sketch of the two different cases is shown in Figure 18. Using this, the horizontal
component of the earth’s magnetic field can be determined by performing each measurement with
both parallel and anti parallel setting alignment of Bcoil 1 and Bhor

earth. This is realised by changing
the direction of the current of coil 1 between the measurements. The two different directions of
the current are referred to as normal polarisation and reversed polarisation.

For both directions of the current in coil number 1, the current is adjusted such that Beff is
equal to the magnetic field BZeeman needed to create a Zeeman splitting corresponding to the
incident radio frequency radiation

Beff = BZeeman . (39)

Therefore, the difference between the two values of the current in coil 1 is two times the current
needed to compensate the horizontal component of the stray field

∆I1 = I1, normal − I1, reversed =
B1, normal −B1, reversed

k1
(40)

=
BZeeman +Bhor

earth −
(
BZeeman −Bhor

earth
)

k1
(41)

= 2
Bhor
earth
k1

, (42)

with I1, normal and I1, reversed being the current applied at coil number 1 for the normal polarity
and the reversed polarity and k1 = (7.99± 0.01) · 10−4 T/A being the conversion factor given in
section 3, Table 1. Using this relation, the horizontal component of the earths magnetic field and
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the corresponding uncertainty are calculated to

Bhor
earth =

∆I1 · k1

2
and sBhor

earth
=
Bhor
earth
2
·

√(
s∆I1

∆I1

)2

+

(
sk1
k1

)2

. (43)

The resulting values of the two measurement series are

Bhor
earth, 1 = (4.4± 0.3) µT and Bhor

earth, 2 = (5.2± 0.3) µT (44)

for the measurements without aligning the experimental tables along the earths magnetic field
and

Bhor
earth, 3 = (8.0± 0.3) µT and Bhor

earth, 4 = (7.6± 0.3) µT (45)

for the measurements with aligning the experimental table properly. The mean values of the two
results for both measurement series are

Bhor
earth, not aligned = (4.8± 0.2) µT and Bhor

earth, aligned = (7.8± 0.2) µT . (46)

Since the current needed to compensate the horizontal component of the stray field is significantly
larger for the measurement with the aligned table, this effect seems to be quite relevant. Further-
more, combining the results of the two measurement series is not reasonable since they represent
different magnetic fields as the first measurement only accounts for a smaller part of the horizontal
component of the earths magnetic field since the table is not aligned along the earths magnetic
field.

4.3.3 Calculation of the nuclear spin of the two Rubidium isotopes

The nuclear spin of the two isotopes is calculated using the effective constant magnetic field in
the Rb-cell, which is

Beff = Ieff · k1 =
I1, normal + I1, reversed

2
· k1 . (47)

Using Equation 10, the nuclear spin of the two isotopes is then given by

Inuclear spin =
µB ·Beff

h · νRF
− 1

2
, (48)

and the corresponding uncertainty is calculated with gaussian error propagation to

sInuclear spin =
µB
h
·

√(
k1

νRF
sIeff

)2

+

(
Ieff
νRF

sk1

)2

+

(
k1 Ieff
ν2
RF

sνRF

)2

. (49)

The resulting values of the first measurement series are

I85Rb,1 = 2.569± 0.018 and I87Rb,1 = 1.542± 0.012 (50)

and the second measurement yields

I85Rb,2 = 2.526± 0.018 and I87Rb,2 = 1.528± 0.012 . (51)

26



4 Analysis

With these results, the working point of the lower current in the laser diode can be assigned to
the isotope 85Rb and the higher current to the isotope 87Rb using the literature values

I lit85Rb
= 2.5 and I lit87Rb

= 1.5 . (52)

As for the results for the horizontal component of the magnetic field, an average of the results of
the two different measurement series is not reasonable since the horizontal magnetic field measured
in the two runs is a quantity included in the calculations of the nuclear spin, but changed between
the runs due to changes of the experimental setup. Therefore, the two measurements should not
be combined.

4.4 Spin precession

In order to observe the spin precession of the atoms in a magnetic field, only the vertical component
of the earth’s magnetic field is used. Therefore, the horizontal component of the earth’s magnetic
field is compensated using a current of I1 = (10± 1) mA, which is the value determined in the
double resonance measurement. As in the previous part of the experiment, the rotated position
of the experimental table is used for this part as well in order to compensate the horizontal
component of the stray field completely. The working point of Idiode = (58.8± 0.1) mA and
T = (34.5± 0.1) °C is used for this measurement, since the signal is found to be stronger compared
to the signal at the higher working point. A rectangular current from zero to a certain value is
applied to coil number 5. Thus, the magnetic field from this source is basically getting switched
on and off. When the magnetic field is turned off, the spin precession can be seen.

4.4.1 Calculation of the vertical component of the earth’s magnetic field

The measured signal of the spin precession is shown in Figure 19a. This signal is triggered with the
rectangular pulse applied to coil number 5. Using equation Equation 8, the vertical component of
the earth’s magnetic field can be calculated from the period TL of the spin precession. The period
is calculated by identifying the time interval of a full period for each oscillation in the measured
signal. Afterwards, the mean of the values TLi is taken as TL.
The corresponding plot is shown in Figure 19b with the dashed green lines being the points

ti in time which are estimated to show full periods. These points are determined by eye. The
uncertainty of these estimations is set to sti = 0.2 µs. Since the value of each of the periods TLi is
the difference between two neighbours of these points, the uncertainty for each value of the period
is sTLi

= sti/
√

2 .
The mean value for the period is then calculated to

TL = (5.01± 0.05) µs , (53)

where the uncertainty is given by sTL = sTLi
/
√
N , with N being the number of values included

in the mean. By rearranging Equation 8 and using ωL = 2π /TL, the vertical component of the
earth’s magnetic field and the corresponding uncertainty can then be calculated with

Bvert
earth =

h

gF µB TL
and sBvert

earth
= Bvert

earth ·
sTL
TL

. (54)

Inserting the value of the period stated above yields

Bvert
earth, 2 = (42.8± 0.5) µT , (55)

with gF = 1
3 , corresponding to the pumped state 85Rb 2S1/2, [3, p.14] .
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Figure 19: Measured data of the spin precession. The horizontal component of the earth’s mag-
netic field is compensated while the vertical component is the magnetic field which is responsible
for the precession. Plot (a) shows the measured data while and (b) shows a zoomed in plot of
the same data including the time steps used for the calculation of the precession period.

4.4.2 Spin precession after partially compensating the stray field

In order to see the behaviour of the spin precession when changing the strength of the vertical
magnetic field, coil number 4 is used to partially compensate the vertical component of the mag-
netic field. The resulting signal for a current of I4 = (51± 1) mA is shown in Figure 20. As
expected from the theoretical relation in Equation 8, the period of the precession increases when
the magnetic field is smaller. The same calculations as explained in the previous subsection are
performed for this setting, resulting in

Tpart.comp. = (11.34± 0.16) µs and Bpart.comp. = (18.9± 0.3) µT . (56)

This result is consistent with the previously calculated vertical component of the earths magnetic
field, considering that the sum of Bpart.comp. and the magnetic field of coil number 4, which is in
this case B4 = k4 · I4 = 24.3 µT, have to add up to the same value as Bvert

earth, 2 in Equation 55.
As shown in Figure 21, the spin precession vanishes almost entirely when the earths magnetic

field is compensated completely. In this case, a current of I4 = (90± 1) mA is applied to coil
number 4.
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Figure 20: Measured data of the spin precession after partially compensating the stray field. Plot
(a) shows the measured data while and (b) shows a zoomed in plot of the same data including
the time steps used for the calculation of the precession period.
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Figure 21: Measured data of the spin precession signal with full compensation of the stray field.
As a result of the compensation of the magnetic field, no spin precession can be observed.
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4.5 Measurement of the relaxation time

The relaxation time of the system is determined with the two different methods explained in
subsubsection 3.2.5 and subsubsection 3.2.6.

4.5.1 Dehmelt method

For both isotopes the relaxation time of the system is determined using the Dehmelt method.
The current on the laser diode is Idiode = (58.8± 0.1) mA for the isotope 85Rb and Idiode =
(59.3± 0.1) mA for the isotope 87Rb. During both measurement series, the measured temperature
of the laser diode is T = 34.6 °C. In order to compensate the earths magnetic field, the current
of the coil number one and number four are set to I1 = (10± 1) mA and I4 = (90± 1) mA. For
both working points 6 different neutral filters are used to reduce the intensity of the laser light.
An alternating step function is applied to coil number 3 in order to create an alternating constant
magnetic field in the horizontal direction. The used filters are listed in Table 6. For each intensity
the increasing curve of the transmitting laser light after the reversal of the magnetic field is fitted
to the function

f(t) = a · e−t·b + c . (57)

The parameter b = 1/τ in this fit function is the inverse of the orientation time, which is related
to the relaxation time as shown in Equation 25.
Two example plots for the determination of the orientation time are shown in Figure 22 for the

working point of the isotope 85Rb without any filter and with the filter of optical density D = 1.0.
The relative intensity which is calculated using Equation 23 and the resulting fit parameters are
listed in Table 6. The plots of the other fits can be seen in Figure 32 and Figure 33 in the appendix.

Table 6: Used filters and resulting fit parameters in the measurement of the relaxation time using
the Dehmelt method. The fit parameter b = 1/τ is shown for both measurement series, i.e. for
both isotopes.

Filtername Transmittance 1 / τ [s−1]

85Rb 87Rb

- 1.000 1366± 11 2010± 6

D 0.3 0.501 625± 2 1043± 3

D 0.6 0.251 534± 1 872± 6

D 1.0 0.100 327± 1 617± 7

D 1.3 0.050 276± 2 540± 14

D 2.0 0.010 186± 6 454± 12

D 2.3 0.005 240± 13 488± 15

The values of the inverted orientation time are plotted as a function of the relative intensity x
in Figure 23a for the isotope 85Rb and in Figure 23b for the isotope 87Rb. A linear fit with the
function

g(x) = m+ d · x (58)
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Figure 22: Measured data and the corresponding exponential fit for the Dehmelt method. Both
measurements are performed at a workingpoint corresponding to 85Rb using (a) no neutral filter
and (b) the filter with optical density D = 1.0. In both measurements the averaging function of
the oscilloscope is used. In both plots the signal of coil number 3 is scaled in order to make both
signals visible in the same plot.

is performed for both isotopes, leading to the fit parameters

m85Rb = (250± 30) s−1 and d85Rb = (910± 140) s−1 (59)

for 85Rb and to

m87Rb = (400± 80) s−1 and d87Rb = (1480± 150) s−1 (60)

for the isotope 87Rb. According to the method explained in subsubsection 3.2.5, the offset m
of this fit is equal to the inverse of the relaxation time TR. The resulting uncertainty sTR of
the relaxation time is calculated from the uncertainty sm of the y-axis offset with gaussian error
propagation as

sTR =

√(
∂TR
∂m

sm

)2

=

√(
−1

m2
sm

)2

=
sm
m2

. (61)

This results in the relaxation time

TR,Dehmelt, 1 = (4.1± 0.5) ms and TR,Dehmelt, 2 = (2.5± 0.5) ms . (62)

The weighted average of these two values yields

TR,Dehmelt = (3.3± 0.3) ms , (63)

whereby the unrounded values are used for this calculation.
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Figure 23: Linear fit for the determination of the relaxation time using the Dehmelt method. At
(a) the working point corresponding to 85Rb and (b) the working point corresponding to 87Rb.
The errors of the data points are drawn in the graph, although they are too small to be visible.

4.5.2 Franzen method

This measurement is performed at the lower working point at Idiode = 58.8 mA, with a temper-
ature of T = 34.6 °C and DC settings on both photodiode and oscilloscope. The data of the
different chopper velocities are evaluated like shown in Figure 24. In this section Itrans is the
intensity of the transmitted light, which is measured with the photodiode and oscilloscope. Since
the oscilloscope only shows voltage values corresponding to the intensity, all following plots are
set to have arbitrary units (a.u.) on this axis.

First, the values of the start and end points of the relaxation, i.e. the time ∆t during which
the laser is blocked, are calculated.
As these start and end points are corresponding to either a steep ascent or descent of the

intensity, this is done by calculating the gradient at all data points and checking if the value of
the gradient is either above a certain threshold (corresponding to the end point of the relaxation)
or below a certain threshold (steep descent, corresponding to the starting point of the relaxation).
E.g. at a starting point, the difference of two values (i.e. the gradient) is starting to get very

low. If they differ by a certain threshold (1.5 units of raw data from the oscilloscope), this point
is considered to be a start point.
Furthermore, the evaluation point of Itrans(∆t) is shifted by 0.1 ms from the end point. This is

done due to the fact that an end point corresponds to one of the last data points before the signal
of the laser is back. Since the signal is expected to jump to a certain value and then increase
again as shown in Figure 12, the steep increase at the beginning is not considered to be part of
the exponential increase of the transmission signal due to pumping.
The time after which the transmission signal is back is estimated to be approximately 0.1 ms.

Thus, ∆t is defined as the time difference of the evaluation point with the starting point. Now ∆t
is calculated by the average of the differences of the evaluation- and starting points. Itrans(∆t) is
then given by the average of the Itrans values of the evaluation points.
This procedure is performed for 10 different data samples, each corresponding to a different

chopper time. Furthermore, the special case ∆t = 0 is considered by evaluating the transmission
intensity at the starting point of the relaxation. The plots of all choppertimes can be seen in
Figure 34 and Figure 35. The error of ∆t is set to be two time steps of the oscilloscope, which
varies for each data set because of different time scopes of the oscilloscope. The uncertainty of
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Figure 24: Evaluation with Franzen method. The intensity of the transmitted light is plotted
against the time. The relaxation time ∆t is measured by the average of the differences of the
evaluation point ("relaxation time end" (red) shifted by 0.1 ms) with the "relaxation time start"
(green). The Itrans(∆t) value is then given by the value at the evaluation point. The orange
horizontal line shows the average of the Itrans(∆t) values.

the intensity comes from taking the difference between the intensity two time steps ahead with
the intensity at the evaluation point and the same with two time steps before.

Based on this, the relaxation times ∆t are plotted against transition signals Itrans(∆t) and
fitted with an exponential of the form

I0 · exp
−t

TRFranzen

+ z , (64)

where I0 is the maximum intensity, t the time, TRFranzen the relaxation time and z an offset caused
by the way the oscilloscope works. Due to the scale of the oscilloscope, the intensity is negative
during the dark times. However, this is not a problem as shifting the data on this axis does not
change the physics. The fit is shown in Figure 25. Since the error bars are quite big at the bottom,
there is a second plot with cutted error bars to make the exponential more visible. This plot can
be found in Figure 35 in the appendix. The fit results in the relaxation time

TR,Franzen = (2.7± 1.7) ms . (65)
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Figure 25: Exponential fit of the intensity at different relaxation times. To make the exponential
more visible, there is also a plot with a cutted frame, which can be found in the appendix at
Figure 36.

5 Summary and discussion

In the first part of the experiment, the spectrum of the hyperfine structure of the two isotopes
85Rb and 87Rb is measured. The different peaks of the spectrum are successfully fitted with
gaussian peaks and subsequently assigned to the corresponding transitions of the HFS spectrum.
This allows to calculate the interval constants A of the two isotopes. The resulting values are
listed in the table below together with the corresponding literature values, which are taken from
reference [5].

State Interval constant A/h [MHz] Literature value Alit/h [MHz]
87Rb2S1/2 3720± 10 3417.3
87Rb2P1/2 598± 8 409.1
85Rb2S1/2 1080± 80 1011.9
85Rb2P1/2 0± 80 120.7

The measured values for the isotope 87Rb can not confirm the literature value within the
statistical uncertainties. However, these uncertainties are very small due to the small uncertainties
of the fit parameters used for the calculation.
The interval constants calculated for the isotope 85Rb can confirm the literature value within

one standard deviation for the 2S1/2 state and within two standard deviations for the 2P1/2 state.
It should be noted again, that the calculated value for the 2S1/2 state of 85Rb is zero since the
different lines needed for the calculation of this value could not be resolved. However, due to
the uncertainty of 80 MHz, this value can still confirm the literature value within it’s statistical
uncertainty. This could probably be improved by fitting the sum of two gaussians to the third and
fourth peak (current ramped up), where only a single gaussian is fitted in this analysis. Although
this might be difficult to do, this could lead into the separation of the two lines and giving a more
reasonable result than 0 MHz.
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The double resonance measurement is used in order to determine both the vertical and the
horizontal component of the earths magnetic field as well as the nuclear spin of the two Rubidium
isotopes. For this part of the experiment two different runs are performed, where the experimental
table is rotated in the second run. This is done in order to align the coils which lie in horizontal
direction with the horizontal component of the earth magnetic field. The vertical component of
the earth’s magnetic field is calculated in both runs. Since the rotation of the experimental table
in the horizontal plane does not change the vertical component of the earth’s magnetic field, the
results of the two runs are combined. The mean of these two values yields

Bvert
earth, 1 = (42.4± 0.3) µT . (66)

This value agrees within two standard deviations with the literature value Bvert
earth, lit = 42.9 µT [5,

p.14].
The resulting values for the horizontal component of the earth’s magnetic field are

Bhor
earth, not aligned = (4.8± 0.2) µT and Bhor

earth, aligned = (7.8± 0.2) µT . (67)

The resulting values of Bhor
earth obtained in the two different runs differ by approximately 63%.

This discrepancy and the fact that the resulting value of the second run is the larger one indicate
that the result of the first run does only correspond to part of the horizontal component of the
earths magnetic field. However, even the result of the second run is significantly smaller than the
literature value Bhor

earth, lit = 20.9 µT [5, p.14] and thus can not confirm the literature value. A
possible explanation of this difference could be the presence of another external magnetic field in
the horizontal direction, which is not considered in the experiment.
The results for the measurement of the nuclear spin are summarised in the following table.

Run Isotope Measured nuclear spin Literature value [5, p.14]

1
85Rb 2.569± 0.018 2.5
87Rb 1.542± 0.012 1.5

2
85Rb 2.526± 0.018 2.5
87Rb 1.528± 0.012 1.5

The results of the first run of the double resonance measurement only agree with the literature
values within 4 standard deviations. However, the relative difference of the literature values and
the measured values is only 2.7% for both isotopes. The deviations between the results of the
second run and the literature values are much smaller. Here, the literature values lie within two
standard deviations from the measured value for 85Rb and within three standard deviations from
the measured values for 87Rb. The relative difference is in this case 1.0% for 85Rb and 1.9% for
87Rb. The literature values of the nuclear spin of both isotopes can therefore be confirmed.
The signal of the spin precession in earth’s magnetic field can be observed for different strengths

of the magnetic field. Furthermore, as expected, the spin precession vanishes when the earth’s
magnetic field is entirely compensated. The vertical component of the magnetic field is measured
to

Bvert
earth, 2 = (42.8± 0.5) µT . (68)

This value agrees within one standard deviation with the literature value Bvert
earth, lit = 42.9 µT [5,

p.14]. The good agreement of the of the two results Bvert
earth, 1 and Bvert

earth, 2 indicates that there
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are no further stray fields in this direction, since the two results are determined with different
methods, reducing the possibility of effects leading to systematic errors.
The relaxation time TR of the Rb-cell is determined using the Dehmelt method. The transmis-

sion signals can be fitted very well. This means that the data confirms the theoretical behaviour
of an exponential increase to the maximum signal I0. Thus the uncertainties the fits are lead-
ing to are very small. The time constants are plotted against the relative intensities, which are
calculated from the optical densities label on each of them. These, however, can also have uncer-
tainties, which is not taken into account. These values are drawn into in a plot in which a linear
fit is made. Due to the very small errorbars, the fit does not lie within the uncertainty of most
of the data points. This could be explained by the fact the uncertainties may be too small. In
general though, the linear tendency is visible for both isotopes. Extrapolating the linear fit to
an intensity of zero yields the relaxation time. Doing this for both isotopes and calculating the
weighted average of these two values yields

TR,Dehmelt = (3.3± 0.3) ms . (69)

Obtaining the start and end points can be done precisely since the signal has a clear edge at
these points in time. However, it is rather difficult to determine the intensity after the dark time,
because at the end point there is no laser light shining in and no signal can be detected. Therefore
some time has to pass until the signal is getting back. The determination of this time can not be
made unambiguously. In this experiment it is set to 0.1 ms. The error of the intensity gets very
large, especially in the lower direction, because varying the time around the evaluation point has
a big effect of the intensity since it is exponentially rising. Therefore, is this delay between the
end of the dark time and the evaluation point for the current is estimated wrong, this leads to a
quite large systematic error. This systematic error would mean that all the measured intensities
are then either too small or too large, depending on if the delay is set too short or too long.
The exponential decrease of the relaxation curve is then reconstructed by plotting the intensity

values against the dark times. The fit curve lies within all errorbars. This results in a relaxation
time of

TR,Franzen = (2.7± 1.7) ms . (70)

The values of both Dehmelt and Franzen method confirm each other. The value of the Dehmelt
method is considered more reliable since the error caused by the uncertainty of the intensity
values in the Franzen method has a great impact. This is reflected in the fact that the errors of
the relaxation time determined by the Dehmelt method is much smaller than the one obtained by
the Franzen method.
Both values do not agree neither with the value of 5.7 ms from [3, p.83], nor with the theoretical

value of the longitudinal relaxation time of 5.9 ms, but they are in the same order of magnitude.
However, both literature values might not be comparable with the measured values, because the
relaxation time depends on different parameters such as pressure, temperature and dimensions of
the cell body. It is impossible to make sure these parameters are the same as in the measurement
performed in [3, p.83] which led to the literature value of 5.7 ms. Furthermore, the theoretical
longitudinal relaxation time calculated with Equation 18 might also differ from the measured
values since this formula only considers relaxation processes caused by collisions with the glass
cell and does not take collisions with the buffer gas into account.
Another consideration could be that the relaxation times may vary for the both isotopes. In

subsubsection 3.2.5 the relaxation time is measured for both isotopes separately but than averaged.
This might not be appropriate since the isotopes may interacting differently causing the relaxation
processes to have different impacts. Also the distribution of the isotopes may have an effect on
this. To investigate this further, the Franzen method could also be executed for the 87Rb. If
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this would result in a major difference to 85Rb this could be a hint, different interaction and the
distribution are effects of greater impact and the relaxation time has to be declared separately.
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Figure 26: Termsceme for 85Rb and 87Rb [3, p.15]. The energy scaling is not appropriate.
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Figure 27: Fits of the etalon measurement (see Figure 15b). On the left side, there are the left
flank peak, on the right side, there are the right flank peaks.
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Table 7: Differences in frequency for difference of two transitions with ∆F = 1. The time
differences ∆t are calculated with the values in Table 3, as well as the errors s∆t.

Ramp Corresponding state Considered transitions ∆t [ms]

up

87Rb2S1/2

87Rb,F:1-1 -
87Rb,F:2-1

(0.530± 0.002)

87Rb,F:1-2 -
87Rb,F:2-2

(0.516± 0.006)

87Rb2P1/2

87Rb,F:2-2 -
87Rb,F:2-1

(0.076± 0.006)

87Rb,F:1-2 -
87Rb,F:1-1

(0.062± 0.002)

85Rb2S1/2

85Rb,F:2-2 -
85Rb,F:3-2

(0.23± 0.04)

85Rb,F:2-3 -
85Rb,F:3-3

(0.023± 0.004)

85Rb2S1/2

85Rb,F:3-3 -
85Rb,F:2-3

(0.00± 0.04)

85Rb,F:2-3 -
85Rb,F:2-2

(0.00± 0.04)

down

87Rb2S1/2

87Rb,F:1-1 -
87Rb,F:2-1

(0.422± 0.004)

87Rb,F:1-2 -
87Rb,F:2-2

(0.410± 0.001)

87Rb2P1/2

87Rb,F:2-2 -
87Rb,F:2-1

(0.073± 0.001)

87Rb,F:1-2 -
87Rb,F:1-1

(0.061± 0.004)

85Rb2S1/2

85Rb,F:2-2 -
85Rb,F:3-2

(0.18± 0.03)

85Rb,F:2-3 -
85Rb,F:3-3

(0.18± 0.03)

85Rb2S1/2

85Rb,F:3-3 -
85Rb,F:2-3

0.00± 0.03

85Rb,F:2-3 -
85Rb,F:2-2

(0.00± 0.03)
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Figure 28: Fits of the HFS-spectrum measurement of the left flank (see Figure 28). Ordered
chronologically.
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Figure 29: Fits of the HFS-spectrum measurement of the right flank (see Figure 29). Ordered
chronologically.
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Figure 30: Data measured in the first measurement series of the double resonance measurement.
The upper plots correspond to the working point with Idiode = (58.5± 0.1) mA with (a) "normal"
polarity of the current in coil 1 and (b) "reversed" polarity. The lower plots correspond to the
working point with Idiode = (59.0± 0.1) mA with (c) "normal" polarity of the current in coil 1
and (d) "reversed" polarity.
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Figure 31: Data measured in the second measurement series of the double resonance measurement
after aligning the experimental table along the horizontal component of the earth’s magnetic field.
The upper plots correspond to the working point with Idiode = (58.8± 0.1) mA with (a) "normal"
polarity of the current in coil 1 and (b) "reversed" polarity. The lower plots correspond to the
working point with Idiode = (59.3± 0.1) mA with (c) "normal" polarity of the current in coil 1
and (d) "reversed" polarity.
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Figure 32: Measured data and the corresponding exponential fit for the Dehmelt method. Mea-
surements (a) - (e) are performed at the working point corresponding to 85Rb using the filter
with optical density (a) D = 0.3, (b) D = 0.6, (c) D = 1.3, (d) D = 2.0 and (e) D = 2.3.
The measurement corresponding to figure (f) is performed at the working point corresponding to
85Rb without using a neutral filter. In all plots the signal of coil number 3 is scaled in order to
make both signals visible in the same plot.
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Figure 33: Measured data and the corresponding exponential fit for the Dehmelt method. All
measurements are performed at the working point corresponding to 87Rb using the filter with
optical density (a) D = 0.3, (b) D = 0.6, (c) D = 1.0, (d) D = 1.3, (e) D = 2.0 and (f)
D = 2.3. In all plots the signal of coil number 3 is scaled in order to make both signals visible in
the same plot.
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Figure 34: Transition signal at all chopper velocities, data part one (as explained in subsubsec-
tion 3.2.6). Example description of the plots can be seen in Figure 24.
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(a) Chopper velocity 9
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(b) Chopper velocity 10

Figure 35: Transition signal at all chopper velocities, data part two (as explained in subsubsec-
tion 3.2.6). Example description of the plots can be seen in Figure 24.
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Figure 36: The exponential fit of the Franzen method with a cutted frame. See Figure 25.
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Figure 37: Lab notes part 1
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Figure 38: Lab notes part 2
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Figure 39: Lab notes part 3
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