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Abstract

Optical pumping is a method of changing occupation numbers of atomic system
by irradiation of the system with characteristic light. In the experiment this report
documents the method was used for determining several characteristics of Rubidium
(85Rb and 87Rb) as well as measuring earth’s magnetic field strength in various
directions.

The hyperfine structure of 85Rb and 87Rb was investigated and six out of eigth
expected spectral lines could be resolved. With the frequency of the hyperfine
structure energy shifts we were able to calculate three out of four hyperfine structure
constants A87Rb,2S1/2 = (1.44±0.03)×10−5 eV, A87Rb,2P1/2 = (1.54±0.27)×10−6 eV,

and A85Rb,2S1/2 = (4.71 ± 0.15) × 10−6 eV, the first two being in a 2-σ-environment
and the third in a 4-σ-environment of the literature value.

With optical pumping under double resonance with we determined the nuclear
spins of 85Rb and 87Rb to be I85Rb = 2.51±0.03 and I87Rb = 1.49±0.03, respectively;
the values are extremely well compatible with the literature values and feature a
relative error of ≈ 2 %. Further, earths magnetic field was measured with optical
pumping under double resonance to be Bvert = (33.9 ± 0.5) µT, Bhor = (5.6 ±
1.1) µT which deviates by about 18 standard deviations from the literature value.

Leveraging the precession of the ensembles spin in the vertical component of
earth’s magnetic field, the absolute value of the latter was determined to be Bvert =
(32.6±1.4) µT, deviating 7-σ from the literature value but compatible with the value
from the double resonance part of the experiment.

With the methods of Dehmelt and Franzen, the relaxation time of the system
was determined to be T

85Rb
R = (4.3 ± 2.5) ms, T

87Rb
R = (−5.1 ± 2.4) ms, and TR =

(8.5 ± 2.5) ms, deviating at most 5-σ from the literature value. While the methods
could be succesfully replicated, the results are not consistent with each other.
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1. Introduction

1. Introduction
Light especially in form of laser light is an excellent tool to manipulate matter on atomic
scale. One method to use light to manipulate atoms is called optical pumping and is
the focus of this report. During optical pumping the population some of the energetic
levels of atoms get overpopulated while others get pumped emptied by emitting resonant
light at the atoms. The idea of optical pumping was developed by Prof. Kastler in the
year 1949 and in the following years Brossel, Kastler and Winter, as well as Hawkins and
Dicke were able to polarise the ground state of atoms by optical pumping in experiments.

Since then, the principal of optical pumping could be used to measure a variety of
atomic quantities of several isotopes, as for example the nuclear spin and hyperfine
structure intervals which will also be done in this report.

In this report a experiment is presented and analyzed which uses the principle of
optical pumping to measure the nuclear spin and hyperfine structure constants of the
isotopes 85Rb and 87Rb. Further, the magnetic stray fields present at the experiment
will be measured and compared to the magnetic field of the earth in Freiburg. At
last, the relaxation time of the pumped ensemble will be measured once with Dehmelt’s
method using the inversion of a induced magnetic field and once with Franzen’s method
measuring the relaxation by turning the pumping light on and off.

The report itself is structured as follows: In section 2 the necessary theoretical back-
ground to understand the measurements done in this experiment and its results will be
provided. Afterwards, the setup of the experiment and the procedure how the experi-
ment was carried out will be explained in section 3. This is followed by the presentation
of the analysis of the data measured in section 4. At the end in section 5 we will summa-
rize the results obtained by the experiment and discuss their quality and the experiment
over all.
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2. Theory

2. Theory
In the following sections, some information specific to the optical pumping experiment
is summarized. The summary is closely based on the Staatsexamen [1] which should be
taken as basic reference for the following paragraphs if not otherwise indicated.

2.1. Hyperfine structure

The electric charge of the nucleus of an atom generates a Coulomb potential. When
considering the orbiting electrons classically, there are only discrete “allowed” orbits.
The difference in the energy levels of those orbits can be seen as spectral lines. Due
to the magnetic interaction of spin angular momentum and orbital angular momentum,
the energy levels of the atom system are degenerate. This so called fine structure can
be measured by increasing the frequency resolution as the energy shift of this effect is
small in comparison with the energy difference of the original energy levels. By further
increasing the spectral resolution another structure becomes visible: the hyperfine struc-
ture. The hyperfine structure is caused by the interaction of the nuclear spin I with the
total angular momentum J of the electron’s hull.

Total electronic angular momentum The total angular momentum j of a single
electron is defined as the sum of its spin angular momentum s and its orbital angular
momentum l:

j = l + s. (1)

If the quantum system consists of multiple electrons, their spin angular momenta may
be summed to yield a total spin angular momentum S; similarly, by summing all the
electron’s orbital angular momenta, one obtains the total orbital angular momentum L.
As the total orbital angular momentum and the total spin angular momentum couple
together in L-S-coupling to a total angular momentum J = L + S, the total magnetic
moment of the multi-electron system is given by

µJ = −µB
ℏ

gJJ , (2)

µB = eℏ/2me is known as Bohr magneton, while gJ is the Landé g-factor which can be
calculated from the quantum numbers J, L, and S:

gJ = 1 + J(J + 1) + S(S + 1) − L(L + 1)
2J(J + 1) . (3)

Angular momentum of the nucleus Protons and neutrons in the atomic nucleus are
both spin-1

2 -particles and feature an orbital angular momentum. The resulting angular
momentum I with

|I| =
√

I(I + 1)ℏ (4)

takes on only half-integer values between 0 and 15
2 . As I is an orbital angular momentum

operator, its z-component only measures discrete values ℏmI , where mI ist the magnetic
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2. Theory

quantum number of I and takes on values between −I and I in integer steps. Due to
the nucleus’ charge, the nucleus induces a magnetic moment

µI = γI = −µK
ℏ

giI. (5)

The constant γ = −gIµK/ℏ is known as the gyromagnetic ratio. Meanwhile, gI is
known as the nuclear g-factor and it is characteristic for each nucleus, meaning that it
can’t be calculated from other quantum numbers. Analogously to the Bohr magneton,
µK = eℏ/(2mp) refers to the nuclear magneton and is calculated using the mass mp of
the proton. The z-component of the magnetic moment of the nucleus can be calculated
from the formulas already given:

(µI)z = γIz = γℏmI = gIµKmI . (6)

The magnitude of the nucleus’ magnetic moment is usually 3 orders lower than its
electronic counterpart.

Hyperfine interaction The hyperfine structure already mentioned at the beginning
of the section originates from the interaction of the nuclear magnetic moment with the
electromagnetic field of the electronic hall. Due to the magnitude of the nuclear magnetic
moment being reduced by 3 orders of magnitude, the effect is very hard to detect. The
total angular momentum of the electrons J couples with the total nuclear spin I to a
new total angular momentum of the atom as a whole F :

F = I + J . (7)

For quantum number F of F it holds that

|I − J | ≤ F ≤ I + J (8)

as F is the sum of angular momenta. This means that F can take on exactly 2 ·
min{I, J} + 1 possible values. When the magnetic field BJ of the electronic hull is
present, the energy due to the interaction of the atom’s magnetic moment is given by

EHFS = −I · BJ . (9)

Expressed in the quantum numbers and using eqs. (4) and (5), we arrive at

EHFS = −|µI ||BJ | cos(∠(I, J)) (10)

= gIµK

√
I(I + 1)|BJ | cos(∠(I, J)). (11)

By taking the squared absolute of eq. (7) and imposing |F | = ℏ
√

F (F + 1), one obtains

cos(∠(I, J)) = I(I + 1) + J(J + 1) − F (F + 1)
2
√

I(I + 1) + J(J + 1)
. (12)
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2. Theory

Inserting this relation into the interaction energy between the magnetic field of the
electrons and the nuclear spin I, this gives

EHFS = A

2 [F (F + 1) − I(I + 1) − J(J + 1)] , (13)

where A is known as interval or hyperfine constant:

A = µKgIBJ√
J(J + 1)

. (14)

Using this hyperfine constant, the energy difference between two neighbouring atomic
states, say, the state with quantum number F and the one with F + 1, is given by

EHFS(F + 1) − EHFS(F ) = A(F + 1). (15)

Zeeman effect of the hyperfine structure The degeneracy of the 2F +1 hyperfine-
structure terms can be lifted by applying an external magnetic field: The 2F + 1 energy
levels are split according to the magnetic quantum number mF . This so-called Zeeman
effect only occurs, if the energy of the atom in the external magnetic field is small in
comparison to the coupling of I and J . This condition may be written as gJµBB ≪ A,
where A is the hyperfine constant. The total angular momentum F is quantized relative
to the z-component (here: the direction of the external magnetic field) such that Fz may
take on 2F + 1 different values. By averaging the interaction EB = −µF · B over time,
where µF = µI + µJ , and using perturbation theory in B, one obtains

EB = gF µBBmF , (16)

where gF is the atom’s total Landé factor:

gF = gJ
F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)

− gI
µK
µB

F (F + 1) + I(I + 1) − J(J + 1)
2F (F + 1) .

(17)

As the ratio µK
µB

≈ 1
2000 is negligible, the second term can be neglected as well. In our

experiment our focus is on Rubidium, which has an electronic total angular momentum
of J = 1

2 . Then, by considering the cases F = I + 1
2 and F = I − 1

2 seperately and
neglecting the second summand, eq. (17) may be simplified to

gF = ± gJ

2(I + 1
2)

. (18)

This allows us to explicitly calculate the energy difference between two neighbouring
Zeeman states (with ∆mF = 1) by inserting this relation into eq. (16):

∆νh = ∆EB = EB(mF + 1) − EB(mF ) = gJ

2(I + 1
2)

µBB. (19)

Table 1 shows an overview over the quantum numbers that are relevant for our exper-
iment while fig. 1 shows the relevant term schema. The spectral lines of the hyperfine
structure transitions can be seen in fig. 2 for both Rubidium isotopes.
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2. Theory

Table 1: Overview over the quantum numbers of the Isotopes of Rubidium that we con-
sider for our experiment.

Isotope I Term S L J gJ F gF

85Rb 5
2

2S1/2
1
2 0 1

2 2 2 − 1
3

2 1
3

2P1/2
1
2 1 1

2
2
3 2 − 1

9
3 1

9
87Rb 3

2
2S1/2

1
2 0 1

2 2 1 − 1
2

2 1
2

2P1/2
1
2 1 1

2
2
3 1 − 1

6
2 1

6

2P3/2

2P1/2

2

1
2

3

2S1/2

2

1

2

3

D
1

=
3.

77
×

10
14

H
z

D
2

=
3.

58
×

10
14

H
z

3.
03

6
×

10
9

H
z

6.
83

0
×

10
9

H
z

0.362 × 109 Hz

0.818 × 109 Hz

85Rb
I = 5

2

72.8 %
87Rb

I = 3
2

27.2 %

Figure 1: Term schema of both Rubidium isotopes. The energy shifts are not up to scale.
Adapted from the Staatsexamen [1].
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Figure 2: Transition frequencies of the hyperfine transition between the 2S1/2 and the
2P1/2 terms for both Rubidium isotopes.

2.2. Optical pumping

Optical pumping refers to the principle that the statistical occupation of energy levels of
a system of atoms is changed by irradiation with light of specific characteristics. While
some energy levels get occupied more, others are emptied over time.

Optical pumping in a simplified model The principle of optical pumping will be
explained using a simplified model: We assume that the nucleus of the Rubidium atoms
do not posess a magnetic moment. This results in the abscence of a coupling between
the nuclear magnetic moment and the electron’s field, i. e. the hyperfine structure is
missing. The Zeeman energy levels will instead be split by an external magnetic field.
The splitting is visualized on the left in fig. 3. The figure also shows the four possible
transitions. With linearly polarized light (denoted here by π), the magnetic quantum
number mJ does not change in the transition. The magnetic quantum number increases
(∆mJ = 1) for circularly polarized light in the right hand sense and decreases (∆mJ =
−1) for circularly polarized light in the left hand sense. The principle of optical pumping
can be understood by considering the graphic on the left in fig. 3. If one irradiates
the system only using π-light, the energy states will not be occupied by a distribution
different from the statistical one due to symmetry. By exposing the system to σ+-light,
however, changes the distribution: This is because the only state which can absorb σ+-
light is the 2S1/2, mJ = −1

2 state which transitions to the 2P1/2, mJ = +1
2 . The excited

state will then decay to the 2S1/2, mJ = −1
2 state with a probability of 66 % or to the

2S1/2, mJ = +1
2 state with a probability of 33 %. The latter state, however, will not

get excited to the 2P1/2 state by the σ+-light. Further, due to the selection rules, the
state cannot transition to the other 2S1/2-state. Thus, the state most encountered after
continuos irradiation of the system with σ+-light will be the 2S1/2, mJ = +1

2 state while
the other 2S1/2, mJ = +1

2 state will be almost empty in theory. In praxis, however, there
exist so-called relaxation processes which inhibit the pumping process to some extent
and are described later in this section. Nevertheless, the optical pumping causes most
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2P1/2

+ 1
2

− 1
2

2S1/2

+ 1
2

− 1
2

π

σ+

σ−

π

Fine structure Zeeman splitting mJ
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2

1
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Figure 3: Simplified terms of Rubidium without hyperfine structure (left: vertically or-
dered by energy, right: rearranged by magnetic quantum number). Adapted
from the Staatsexamen [1].

of the atoms’ spins in the system to be oriented in the same direction.

Zeeman pumping with Rubidium Now we consider the process of optical pumping
of Rubidium where we do not neglect the nuclear spin. To be more specific, we focus
on 87Rb in the following. As the hyperfine structure’s energy levels are split in an
external magnetic field, there are more transitions to consider than in the simplified
case. Still, fig. 4 shows some of the possible transitions of 87Rb when irradiated with
σ+-light. Under exposure to this light, atoms in the 2S1/2 state transition into a Zeeman
niveau in the 2P1/2 state while the magnetic quantum number mF must increase by one.
Thus, a transition from the 2S1/2, F = 2, mF = +2 state is not possible through σ+-light.
An excited state may decay into a lower state under the selection rule ∆mF = −1, 0, +1.
This means that the probability to decay into a state with mF > 1 is 2/3. Thus, atoms
tend to accumulate in the 2S1/2, F = 2, mF = +2 state where they can’t escape due to
the selection rules and the nature of the irradiating light, exactly like in the case where
the nuclear spin was neglected.

Analogously, when considering 85Rb, the state that is occupied the most is the state
with 2S1/2, F = 3, mF = +3.

2.3. Relaxation processes

As already mentioned in the preceding paragraphs, relaxation processes act contrary
to the pumping process: while the pumping process results in one state occupied more
that other states, relaxation processes strive towards a statistical equilibrium. In the
following, a selection of several of such processes is briefly presented.
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−2 −1 0 1 2

−1 0 1

−2 −1 0 1 2

−1 0 1

F = 2

F = 1

mF

mF

F = 2

F = 1

mF

mF

2S1/2

2P1/2

Figure 4: Polarisation schema of 87Rb under irradiation with σ+-light. Dashed lines
signify decays in lower states while lines that are drawn through refer to tran-
sitions caused by σ+-light.

• Collision with the wall: The Rubidium of our experiment is enclosed in a glass
sphere which also contains some buffer gases (here, they are given by noble gases).
If a Rubidium atom collides with the glass wall, its orientation is presumably lost.
If one assumes the pressure inside the glass sphere to be sufficiently high, the
collisions with the glass wall can be modeled via diffusion: If n is the difference in
the occupation numbers of the oriented and un-oriented states, we have

∂n

∂t
= D∇2n, (20)

where D is diffusion constant which depends on the pressure inside the glass sphere.

• Collision with buffer gas atoms: Although noble gases don’t feature a magnetic
field, the orientation of the Rubidium atoms can still be influenced by direct colli-
sions of Rubidium atoms with buffer gas atoms. However, a re-orientation of the
Rubidium spin is relatively rare due to the fact that both the wave function of
the ground state of Alkali atoms and noble gases is spherically symmetric. The
relaxation process can then happen only due to weak dipole-dipole interactions or
spin-orbit interaction.

• Spin interchange: If two Rubidium atoms collide, their valence electrons may in-
terchange their spin. Even though the electron spin of the total ensemble remains
unchanged, the total nuclear and the electronic angular momentum is uncoupled
which results in the occupation numbers of the F = I ± 1

2 states to compensate.
This is also known as ∆F -pumping.

Relaxation times In order to better quantify the evolution of the occupation of our
states in time, we will take a more general point of view and consider a system with

10



2. Theory

a state from which pumping is possible and another state that we can pump in. We
call the occupation numbers of these states N− and N+, respectively. Further, we
call n = N+ − N− the difference in the occupation numbers and N = N+ + N− the total
occupation number which we assume to be constant. Then, the pumping process obeys
the following differential equation:(dn

dt

)
pumping

= N − n

TP
. (21)

TP is the so-called pumping time which is proportional to the inverse of the intensity I
of the pumping light:

TP = 1
αI

, (22)

where α is a proportionality constant. Now we take relaxation processes into account.
It is reasonable to assume that the rate of change in the difference in the occupation
number is proportional to the value of that number as we are dealing with the process
of striving toward a statistical equilibrium. Thus,(dn

dt

)
relax

= − n

TR
. (23)

TR is the so-called relaxation time. The pure relaxation differential equation can be
easily solved by

n(t) = n0 exp
(

− t

TR

)
. (24)

As both pumping and relaxation processes are continuously happening at the same time,
we consider the sum of the differential equations in eqs. (21) and (23):(dn

dt

)
orientation

= N − n

TP
− n

TR
. (25)

In the case of a dynamical equilibrium, the difference in the occupation numbers doesn’t
change anymore and is at a maximum nmax. Solving dn

dt = 0 gives

nmax = N

1 + TP
TR

. (26)

Introducing a time constant τ by the relation

1
τ

= 1
TP

+ 1
TR

. (27)

allows to simplify eq. (25) considerably:(dn

dt

)
orientation

= N

TP
− n

τ
. (28)
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α

d

Mirrored reflective layers

Quarz

Figure 5: Schematic representation of the etalon used in the experiment.

Setting n(0) = n0, we can immediately solve the initial value problem with

n(t) = (n0 − nmax) exp
(

− t

τ

)
+ nmax. (29)

Under the assumption that the pumping starts when statistical equilibrium is in place,
i. e. n0 = 0, the solution becomes

n(t) = nmax

(
1 − exp

(
− t

τ

))
. (30)

2.4. Elements in the optical path

In the following we summarize some of the elements that are part of the optical path at
various points in the experiment.

Fabry-Perot Etalon The etalon consists of a piece of quarz glass which is coated with
mirrored reflective layers on its front- and backside. The basic principle of an etalon is
sketched in fig. 5. Light enters from the left side and gets partially reflected and partially
transmitted at the mirrored layer on the right side. A portion of the reflected light gets
reflected again at the reflective mirrored layer on the left and interferes with the light that
was originally transmitted through the right side. Whether light of a specific wavelength
interferes with itself constructively or destructively depends on the thickness d of the
material. The transmission of light is also very dependent on the incident angle α; the
wavelength of the m-th transmission maximum is at

λm = 2d

m

√
n2 − sin2 α, (31)

where n is the refractive index of the etalon material. The distance of two neighbouring
maxima is called the free spectral range and is given by

FSR = c

2nd
(32)

for the case α = 0. In our experiment, the free spectral range is FSR = (9924±30) MHz.

12



2. Theory

λ/4-plate A λ/4-plate is made out of a birefringent material; i. e. a material whose
index of refraction differs for perpendicular crystal axes. The two polarization axes of
linearly polarized light that enters a λ/4-plate will traverse the material at different
velocities which means that both polarizations will experience a shift in phase when
exiting the plate. If the plate’s thickness is chosen carefully (and with respect to the
wavelength of the incident light; hence the name λ/4), the phase shift is exactly π

4
such that the initially linearly polarized light is now circularly polarized. Of course, if
the wavelength and the thickness do not fit together, the resulting light is not always
circularly polarized but elliptically polarized in general.

Diode laser The source for the light used for the optical pumping process is given
by a a double-hetero-structure GaAlAs laser diode. The advantage of that choice of
laser lies in the linear polarizatino of the light and an extremely narrow frequency band;
however, the light emitted is extremely divergent which is why it is important to adjust
the beam path with lenses as precise as possible. The diode itself consists of a p-n-
junction where electrons and holes can recombine in the boundary region. The energy
difference can be released as light. Due to the recombination of electrons and holes in the
boundary region, the local charge density becomes negative in the p-zone and positive in
the n-zone. The resulting electric field inhibits the recombination process and bends the
valence- and conduction bands of the semiconductor such that the fermi energies of the
negative and the positive zones get shifted. Both electrons and holes can then coexist in
a narrow corridor which makes way for a region where population inversion is possible
after application of a forward current.

13
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3. Setup and Procedure

3.1. Setup

The core of the setup is the optical bench at which the diode lase is mounted. The laser
is immediately followed by a lens (focal length of ≈ 50 mm) to focus its divergent beam.
Afterwards, there is the possibility to mount different elements such as the λ/4-plate, a
linear polarizer, various neutral density filters or the chopper, depending on the part of
the experiment. This is followed by the mounting of the glass cell with the Rubidium
vapour. Four different Helmholtz coil pairs are fixed at the mounting of the glass cell
and a fifth coil pair as well as an radio-frequency transmitter is mounted directly at the
glass cell itself. A second lens (focal length of ≈ 150 mm) is mounted after the cell which
focusses the light at the photo diode which is mounted at the end of the optical path A
sketch of this setup can be seen in fig. 6.

The different components named above can be operated separately. The laser is cooled
by Peltier unit with which the temperature of the laser can be controlled to 0.1 K. The
diode current controller can be used to set different currents for the laser or, alternatively,
an additional function generator can be used to modulate the laser with a sawtooth signal
for example. To detect the photo diode’s signal the output of the laser diode is connected
over an amplifier with an oscilloscope. Coils 1, 2, 3, and 5 are positioned in such a way
that the magnetic fields they induce are parallel (or anti-parallel) to the laser beam
while coil 4 is positioned such that the magnetic field is in vertical direction, that is,
perpendicular to the ground. The coils themselves differ in their inductance: Coils 1
and 4 are used to create constant magnetic fields with adjustable field strength while
the other coils are operated with frequency generators creating sinusoidal or rectangular
pulses. The RF-transmitter is also operated with a frequency generator which can send
out sinusoidal pulses. The actual settings used differ from part to part during the
experiment.

3.2. Procedure

During the performance of the experiment the different subtasks which are explained
in the following were not performed in the same order as presented. On the contrary,
some of the subtasks were performed multiple times with varying degrees of success on
different days.

3.2.1. Characterisation of the laser diode

First, with just lenses and the etalon mounted between laser and PD, the laser was
operated with a sawtooth signal. To be able to see the transmission peaks of the etalon
it is important that it is set in such a way that the laser beam enters it perpendicular
to the surface. After the etalon is adjusted in this way the position and orientation of
the lenses can be adjusted so the transmission peaks become maximal. After the beam
path was optimized, the temperature was set to different values to study its influence;
measurements of the signal for such different temperatures can be found in the appendix
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(cf. fig. 23). As the influence of the temperature was studied, the temperature was set
to 34.6 ◦C for the whole experiment. Next, the laser current was studied for different
values with constant temperature which shows a similar but overall weaker influence on
the signal. The change of the current could be seen in a drift of the etalon peaks.

3.2.2. Spectroscopy of the hyperfine structure

The goal of this task is to measure the hyperfine structure of the Rubidium isotopes.
For this, the etalon was removed and the glass cell was mounted at the optical bench.
The laser was operated with a sawtooth signal again and at the oscilloscope one could
see the absorption spectrum of the hyperfine structure. The settings of the laser current
were adjusted to optimize the measured spectrum. Further, the glass cell was regularly
heated using a hair dryer to increase the pressure in the cell. As expected, we could only
see six of the theoretically eight distinct spectral lines: four of the six lines observed were
clearly recognizable and two of them were rather hard to find. To be able to analyze the
measured spectra afterwards and determine the hyperfine constants we also did calibra-
tion measurements: To this end, the glass cell was removed and the etalon was put back
on the optical bench. For the same laser settings used for the spectrum measurement
the transmission maxima of the etalon were measured to be able to recalculate the time
axis of the oscilloscope into a frequency axis.

3.2.3. Double resonance

In the next subtask double resonance is used to determine the nuclear spins of both
Rubidium isotopes. For that, the λ/4-plate the quarter wave plate is mounted behind
the first lens without the glass cell or etalon in the optical path. To be able to set the
λ/4-plate in such a way that it truly generates circularly polarized light from the laser a
linear polarizer is mounted behind the λ/4-plate. Then, the laser was operated with ramp
signal so a change of the intensity could be seen quite nicely on the oscilloscope, while
different setting of the quarter wave plate were tested by rotating the linear polarizer. If
the light after the λ/4-plate is truly circularly polarized, a rotation in the linear polarizer
should not result in a change of intensity. We were, however, not able to find a setting
of the λ/4-plate for which the intensity did not change at all but instead found a setting
for which variation in the intensity was minimized.

After the λ/4-plate was set, the linear polarizer was removed and the glass cell was
inserted into its mounting again. After that, coil 2 was operated with a sinusoidal
modulation and the RF transmitter was operated with a frequency of νRF = 500 kHz.
Using this settings, the laser current was used in a constant current mode. The current
was changed until optical pumping occurs. To increase the chance of success for this
search it proved useful to set the coil 2 two a high amplitude. Two values for the laser
current were found that maximized the absorption, each current belonging to one of the
isotopes. It is important to note that the laser currents for which optical pumping occurs
changed noticeably over the days. On the first day they were found to be 64.4 mA and
64.8 mA at the second day they shift slightly but at the third day they were found to
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be at 67.8 mA and 68.2 mA. Since the laser must be also set to these exact currents in
the following subtasks, this identification of the right currents for optical pumping was
redone a couple of times to adjust to the changed values.

With the right laser current settings found, coil 1 was supplied with a constant current
which was set to a value for which the absorption peaks are equidistantly spaced. To find
this value the amplitude of coil 2 was decreased as this led to less noisy signals and more
defined peaks rather than a detailed spectrum. Surprisingly the peaks were equidistant
without any current in coil 1, but this setting is not the one needed to calculate the
nuclear spin. While the current of coil 1 was increased, the peaks got less equidistant
at first but became equidistant again at some point, the exact current was noted. After
the right value was found an additional coil was turned on. Coil 4 was also operated
with a constant current. This current was set such that the absorption peaks became
maximal, which indicates that the magnetic field of coil 4 should compensate the vertical
stray field. After coil 4 was set, coil 1 was operated with reversed polarity and the now
changed setting for which the peaks are equidistant were determined. With the different
currents of coil 1 for each polarisation the horizontal stray field and the nuclear spin can
be calculated while the setting of coil 4 can be used to calculate the vertical magnetic
field. It should be noted that there was more of a range of currents in coil 1 for which
the peaks were more or less equidistant. Further, noise of the signal made it hard to
find the best spot. This measurement was done for both laser current settings found at
the beginning; the currents measured can be found in table 5 and the measured photo
diode signal for each setting can be found in fig. 22 in the appendix.

The first time this part of the experiment was done while the experimental setup was
not specially orientated but just aligned to the wall of the room, which was a more or less
in the north east direction. The experiment was redone while the longitudinal direction
of the experiment pointed to the north, so that the horizontal stray field measured can be
compared to the horizontal magnetic field of the earth. Surprisingly, this reorientation
did not change the settings of coil 1 which still yielded equidistant absorption peaks.

3.2.4. Spin precession

In principal the setup is similar to the one for the double resonance; however the RF
transmitter is not used and the coils used are coil 1 and coil 5. Coil 1 is set in such
a way that it compensates the horizontal stray field – the value for this is know from
the double resonance part – and coil 5 is turned on and off with periodically using a
rectangular pulse supplied by an external frequency generator. Coil 5 is used specifically
because of its low inductance since the magnetic field should be turned of quite rapidly
to obtain a good spin precession signal. Again, we attempted to get better signals by
heating the cell from time to time using the hair dryer.

For this part of the experiment we were not able to find a signal for the most time,
but with coil 1 turned off and coil 4 set to the value from the double resonance task the
spin precession could be observed. At the end of the experiment we finally were able to
also measure some spin precession signal while coil 4 was turned off and coil 1 was set
to different currents. Finally, to be able analyze data for this subtask we measured the
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spin precession for different currents for coil 1 and 4 and different orientations of the
experimental set up with respect to the magnetic field.

3.2.5. Relaxation time: Dehmelt’s method

This subtask has the goal to determine the relaxation time of the pumped cell using the
Dehmelt method. For this task, coil 3 is operated with a longitudinal oscillating signal
and coil 4 is set such that the vertical stray field is compensated. If the laser current is
set in such a way that optical pumping can occur, one should see a rapid loss of intensity
directly after the magnetic field of coil 3 changed and afterwards an exponential increase
of the intensity. This exponential increase is recorded at the oscilloscope while different
neutral density filter are mounted between the λ/4-plate and the glass cell. Again, the
cell was heated before the measurements.

In addition, the intensity filters were calibrated by measuring the intensity of the laser
modulated by a ramp signal, for the different filters and without any filter for the same
laser settings. For this measurements the cell was removed.

3.2.6. Relaxation time: Franzen’s method

Again the relaxation time will be determined, this time using Franzen’s method. For
this method, the chopper is mounted between the λ/4-plate and the cell. Without any
magnetic field induced by any of the coils the laser is set such that absorption can be
observed and is at its maximum. For different chopper speeds the signal of the photo
diode is measured. Again the cell was heated for the measurements to increase the
pressure.
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Figure 6: A schematic representation of the setup used in the experiment. The dashed
optical elements refer to elements that are placed in the optical path at various
points in the experiment. Adapted from the Staatsexamen [1].
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4. Analysis

4.1. Spectroscopy of the hyperfine structure of Rubidium

For the investigation of the hyperfine structure of Rubidium, we proceed in three steps:
First, we analyze the calibration of the triangle voltage (in the following referred to as
voltage ramp) using the etalon. Then, we use this calibration to calculate the frequency
shifts of the transition energies from the D1 line whose location we will approximate,
too. Lastly, we use the frequency shifts to calculate the hyperfine structure constants
of 85Rb and 87Rb.

4.1.1. Time-Frequency calibration using the Etalon

After setting up the spectroscopy-specific part of the experiment and connected a voltage
ramp to the laser as described in section 3.2.2, the etalon was inserted in the optical
path and the resulting spectrum was recorded; it can be seen in fig. 7 alongside the
ramp voltage which was used to trigger the oscilloscope. The known free spectral range
of the etalon can now be used to convert “distances” on the time axis into frequency
differences of the laser light. For that, we search for neighboring resonant interference
peaks on the etalon spectrum which are on the same ramp section. Figure 7 shows three
groups of peaks with two peaks in each group. The time of each peak alongside its error
was calculated via visual inspection. The absolute time of each peak can be seen in
table 2 along with the difference ∆t = tRight − tLeft of two adjacent peaks. The weighted
mean of these time differences can be calculated to be

∆t = (1.18 ± 0.03) ms, (33)

where the error was propagated using Gaussian error propagation.
Now, we know that the difference in the frequency of the laser light should correspond

to the free spectral range of the etalon, namely FSR = (9.924 ± 0.030) GHz. Multi-
plication of time differences with the conversion factor η = FSR/∆t thus results in a
difference in frequency of the laser light, under the condition that the points in time
whose difference is to be measured are on a connected section of the ramp and the ramp
is traversed with the same frequency and the same amplitude. Calculating the conver-
sion factor with the free spectral range and the weighted mean of the time differences of

Table 2: Location (on the time axis) of each pair of peaks in the etalon spectrum
(cf. fig. 7) with their difference.

Ramp section tLeft [ms] tRight [ms] ∆t [ms]

Descending 1 2.02± 0.03 3.13± 0.04 1.11± 0.05
Ascending 5.50± 0.05 7.04± 0.04 1.54± 0.06

Descending 2 8.64± 0.03 9.75± 0.02 1.11± 0.04
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Figure 7: Spectrum of the etalon used for the calibration of the time axis for the hyperfine
structure spectroscopy. The plot above shows the ramp voltage and the plot
below shows the inverted signal recorded by the photo diode.

the last paragraph gives

η = FSR
∆t

= (8.38 ± 0.19) × 103 GHz s−1. (34)

4.1.2. Frequency shifts

The recorded hyperfine spectrum of Rubidium can be seen in figs. 8 and 9. The voltage
of the ramp is decreasing in time for the first figure and increasing for the second figure.
The location of the absorption peaks and their errors was, again, determined visually and
marked in the plot shown in figs. 8 and 9 in green lines. The light green shading indicates
the uncertainty in the peak location. As one can see in the plot, peaks swallowed by
larger peaks (such as the second peak from the left in fig. 8) which are barely visible,
were assigned a location with a greater uncertainty than the more well-defined peaks.
Based on the theoretical transition frequencies depicted in fig. 2 the absorption peaks
were labeled which can also be seen in both plots (due to the limited space in the figure,
the transitions were abbreviated, i. e. 87Rb2→1 stands for 87Rb, F : 2 → 1). As expected,
we did not manage to capture all expected eight transitions, but only six of them. As
the theoretical value for the transition energies of the 85Rb-transitions 3 → 2 and 3 → 3
as well as 2 → 2 and 2 → 3 are closest to each other and their general position fits to
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the two largest peaks in the spectrum, we assigned them to these positions.

Table 3: Frequency shifts of the absorption spectrum taken with an descending ramp
(cf. fig. 8).

Line name Absolute peak time t [ms] ∆f [GHz] ∆f (lit.) [GHz]
87Rb, F : 1 → 2 1.004± 0.010 4.68± 0.14 4.58
87Rb, F : 1 → 1 0.915± 0.015 3.93± 0.16 3.76

85Rb, F : 2 → 2/3 0.669± 0.005 1.87± 0.07 1.74
85Rb, F : 3 → 2/3 0.260± 0.007 −1.55± 0.08 −1.30

87Rb, F : 2 → 2 0.171± 0.015 −2.30± 0.14 −2.25
87Rb, F : 2 → 1 0.082± 0.005 −3.04± 0.09 −3.07

Table 4: Frequency shifts of the absorption spectrum taken with an ascending ramp
(cf. fig. 9).

Line name Absolute peak time t [ms] ∆f [GHz] ∆f (lit.) [GHz]
87Rb, F : 1 → 2 0.659± 0.005 6.17± 0.15 4.58
87Rb, F : 1 → 1 0.76 ± 0.02 5.26± 0.20 3.76

85Rb, F : 2 → 2/3 1.138± 0.015 2.15± 0.14 1.74
85Rb, F : 3 → 2/3 1.648± 0.010 −2.11± 0.10 −1.30

87Rb, F : 2 → 2 1.73 ± 0.02 −2.83± 0.18 −2.25
87Rb, F : 2 → 1 1.861± 0.010 −3.90± 0.13 −3.07

Now, using the theoretical values for the shifts of the transition energy with respect to
the D1 line, we were able to reconstruct the position of the D1 line using the conversion
factor: For the time-location ti of each absorption peak i we subtracted the frequency
shift ∆fi known from theory divided by the conversion factor η to obtain the absolute
time-position (tD1)i of the D1-line:

(tD1)i = ti + ∆fi

η
, σ(tD1 )i

=
√

σ2
ti

+
(∆fi

η2 · ση

)2
. (35)

It should be noted that the literature values of the two peaks we couldn’t clearly resolve
and which are “merged” into one peak were averaged so that we can proceed with
six effective transitions. Taking the weighted mean of the set of (tD1)i’s gives us our
approximation of the D1 line as shown in figs. 8 and 91. This gives

(tD1)Desc. = (4.46 ± 0.04) × 10−4 s, (36)
(tD1)Asc. = (1.395 ± 0.006) × 10−3 s (37)

for the plots with descending and ascending ramp, respectively. Having obtained the
time-position of the D1-line, the frequency shifts of each transition can be calculated by

1Of course, the weighted mean was calculated for each of the two plots seperately
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Figure 8: Hyperfine spectrum of Rubidium as recorded with the photo diode. The de-
scending ramp used to modulate the laser light is shown above the main plot.
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determining the time-distance between each peak and the D1 line and multiplying that
time difference with the conversion factor η. For the ith peak at time ti this gives

∆fi = η · (ti − tD1), σ∆fi
=
√

(ση · (ti − tD1))2 + (η · σti)
2 +

(
η · σtD1

)2
. (38)

The results for the descending and the ascending ramps are shown in tables 3 and 4,
respectively, alongside the literature value of the frequency shift.

As one can see from table 3, the calculated frequency shift of each line fits the frequency
shift from the literature quite well, differing by 2-σ at most. By constrast, thee results
of the absorption spectrum with ascending ramp given in table 4 differ quite a lot from
their literature values, with deviations of about 8-σ. Because of this, we will restrict
ourselves to the results from table 3 for the following calculations. A discussion of this
great discrepancy between the two related measurements follows in section 5.4.

4.1.3. Hyperfine structure constants

Based on the results shown in table 3, we can proceed to calculate the hyperfine structure
constants. For each level (for us, the levels are given by the 2S1/2 and 2P1/2 states of
Rubidium), the hyperfine structure constant A can be calculated by

A = h∆ν

F + 1 (39)

where ∆ν is the frequency difference of two adjacent hyperfine structure states and F
refers to the minimum of the F -quantum number of both of these states. We can use the
frequency shifts determined in the last section to calculate the frequency difference ∆ν
of two adjacent states by considering the difference of two neighboring transitions, i. e. a
pair of transitions that either share initial states and the final states are neighboring or
vice-versa.

First, we focus on 87Rb. For the 2S1/2 level, we two pairs of neighboring transitions
at our disposal, namely the pair 87Rb, F : 1 → 2 and 87Rb, F : 2 → 2 as well as the
pair 87Rb, F : 1 → 1 and 87Rb, F : 2 → 1. Substituting ∆ν in eq. (39) for the difference
of the frequency shifts of each pair and letting F = 1 (this is the minimum F -quantum
number in the differing states for both pairs) gives us two hyperfine structure constants,

(3.5 ± 0.1) GHz, and (3.49 ± 0.09) GHz. (40)

The error on both values was constructed via Gaussian error propagation. Taking the
weighted mean and multiplying by h to obtain electronvolts we arrive at

A87Rb,2S1/2 = (3.49 ± 0.07) GHz = (1.44 ± 0.03) × 10−5 eV. (41)

Again, the error was propagated using Gaussian error propagation. For the 2P1/2 level,
we proceed in exactly the same way. Again, we have two pairs of neighboring transitions
at hand, namely the pair 87Rb, F : 1 → 1 and 87Rb, F : 1 → 2 and the pair 87Rb, F : 2 →
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Table 5: The results of the measurement with north orientation, no current in coil 1 and
different currents in coil 4.

Isotope I4 [mA] I1,1 [mA] I1,2 [mA]
85Rb 71± 1 139± 2 132± 2
87Rb 71± 1 93± 2 86± 2

1 and 87Rb, F : 2 → 2. Calculating the difference of the frequency shifts of the transitions
in each pair gives us a frequency shift ∆ν. Using eq. (39) with F = 1 then gives

(0.38 ± 0.10) GHz, and (0.37 ± 0.08) GHz. (42)

Again, taking the weighted mean then gives

A87Rb,2P1/2 = (0.37 ± 0.07) GHz = (1.54 ± 0.27) × 10−6 eV. (43)

Now, we focus on 85Rb. Unfortunately we weren’t able to clearly distinguish be-
tween the relevant peaks for the transitions of 85Rb. The energy difference can thus
only be approximated roughly and only one of the two relevant hyperfine structure con-
stants can be calculated. We will focus on the 2S1/2 structure constant in the following.
For that, we consider the pair of neighboring transitions consisting of 85Rb, F : 2 → 2
and 85Rb, F : 3 → 2. Here, F = 2 as it is the minimum of the F -quantum number of
both transitions. Substituting the difference of both transitions for ∆ν in eq. (39) gives

A85Rb,2S1/2 = (1.14 ± 0.08) GHz = (4.71 ± 0.15) × 10−6 eV. (44)

4.2. Double resonance

As described in section 3.2.3 we determined the currents in coil one to get equidistant
peaks for both polarities and both isotopes and also the current for coil four for maxi-
mized peaks. The values we measured are given in table 5. From the current set in coil 4
the magnetic field it created can be calculated, which should be equal to the vertical
stray field. Using table 1 in [3] the magnetic field induced by coil 4 was calculated and
the error was propagated with

σBi =
√((

B

I

)
i
· σI

)2
+ (I · (0.01 × 10−4 T A−1))2, (45)

where (B/I)i was extracted from the table. As result we have got

Bvert = (33.8 ± 0.5) µT. (46)

For the horizontal fields the same method can be used to calculate the magnetic fields
induced by coil 1 for the two different polarities, the horizontal stray field is half of the
difference of this two field, for which we got

Bhor = (5.6 ± 1.1) µT, (47)
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where the error was propagated using Gaussian error propagation.
To be able to calculate the nuclear spin I of both isotopes one has to calculate the

corrected magnetic field in horizontal direction with

Bcorr = (7.99 × 10−4 T A−1) · I1 + I2
2 . (48)

For the two isotopes we calculated

B
85Rb
corr = (108.3 ± 1.1) µT, B

87Rb
corr = (71.5 ± 1.1) µT. (49)

So finally using eq. (19) the nuclear spins can be calculated, which yields

I85Rb = 2.51 ± 0.03, I87Rb = 1.49 ± 0.03. (50)

The uncertainties for the corrected field were calculated as

σB,corr =

√(
I1 + I2

2 (0.01 × 10−4 T A−1)
)2

+
(7.99 × 10−4 T A−1

2

)2 (
σ2

I1
+ σ2

I2

)
(51)

and the uncertainties for the nuclear spins were calculated as

σI =

√(
I

νRF
σνRF

)2
+
(

I

Bcorr
σB,corr

)2
(52)

where for the radio frequency we measured νRF = (503 ± 3) kHz.

4.3. Spin precession

In this subtask the magnetic stray field was measured using spin precession: The external
horizontal field is compensated while a low-inductance coil is turned on and off again
periodically. If the time needed for the magnetic field induced by the coils is lower
than the precession time of the Rubidium ensemble, the polarization remains stationary
and obtains an angular momentum in the external magnetic field of the earth. For the
precession frequency it holds that

ν = gF µB
h

Bstray, (53)

where Bstray is the remainder of earth’s magnetic field. A calculation of Bstray is possible
by measuring the precession frequency ν (or equivalently, the precession period τ = 1/ν)
and rearranging the formula above to yield

Bstray = gF µB
h

ν = gF µB
h

1
τ

. (54)

The spin precession was measured as described in section 3.2.4. The measurements
of the oscilloscope for different currents in coil 1 and 4 and therefore different induced
magnetic field are of varying quality and tend to show a lot of noise; for example, the

25



4. Analysis

measurement with north orientation and a current of 4 mA set to coil 1, which should
compensate the horizontal magnetic stray field according to the double resonance mea-
surement, is too noisy to determine the periods of the spin precession. The measurements
with the experimental setup being orientated to the north and no current in coil four
are shown in fig. 10. Plots of the other measurements can be found in the appendix
(cf. figs. 19 to 21).
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Figure 10: In this plots the measurements of the spin precession are shown with the
current in coil four set to zero while the longitudinal axis of the experimental
set up is directed to the north. The current in coil one differs from plot to
plot with upper left 0 mA, upper right 4 mA, lower left 10 mA and lower right
25 mA.

As one can see in fig. 10, determining the period using fits does not seem suitable
due to the noise in the data. Therefore the period was determined by identifying the
maxima of the oscillation visually and calculating the period as the mean of the distance
between two neighbouring maxima:

τ = 1
n − 1

n−1∑
i=1

(
tmax
i+1 − tmax

i

)
, (55)

with n being the number of maxima identified and tmax
i being the position of the ith

maximum. The uncertainty for the positions of the maxima was estimated to be σtmax =
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Figure 11: The calculated magnetic stray fields plotted over the horizontal magnetic
field induced by coil one. In red the measurements with a north orientation
are shown and in blue the ones with north east orientation. For all of the
measurements the current in coil four was set to zero.

5 × 10−8 s which are also in the plots as dashed lines. With this the uncertainty of the
period can be propagated to be

στ =
√

2
n − 1 · σtmax . (56)

It was also considered to use the variance of the mean for the uncertainty of the period,
but this led mostly to uncertainties to small that the propagation of the uncertainties
was assumed to be more appropriate. Using the period the vertical magnetic field can
be calculated with eq. (54) and the error can be propagated with

σBstray = gF µB
h

στ

τ2 . (57)

The calculated values for the magnetic field and the period for the different measurements
can be seen in table 6,

In fig. 11 the magnetic stray fields measured for different horizontal magnetic fields
induced by coil 1 are plotted. It can be seen that the magnetic stray field grows in the
horizontal field induced by coil 1. Also the trend of the field seems to be similar for the
north and north east orientations, but one could assume that the north east orientated
data has an negative offset compared to the north orientated data. The stray field
measured should be the vertical stray field when coil 1 just compensates the horizontal
stray field. According to the double resonance experiment this should be at about 4 mA.
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Table 6: The results of the spin precession measurement for various orientations of the
setup.

Orientation I1 [mA] I2 [mA] Bstray [µT] τ [µs]

North 0± 1 0 33.7 ± 1.4 6.4± 0.3
10± 1 0 35.3 ± 1.6 6.1± 0.2
25± 1 0 40 ± 2 5.4± 0.3

East 0 71± 1 3.8 ± 0.2 56 ± 3
0 71± 1 3.8 ± 0.2 56 ± 3
0 71± 1 5.2 ± 0.5 36 ± 3
0 71± 1 5.2 ± 0.5 36 ± 3

North-East 0± 1 0 31.4 ± 1.3 6.8± 0.3
4± 1 0 32.6 ± 1.4 6.6± 0.3

15± 1 0 34.5 ± 1.5 6.2± 0.3
25± 1 0 38.1 ± 1.7 5.6± 0.3
35± 1 0 42.4 ± 2.0 5.1± 0.2
0 71± 1 4.1 ± 0.2 52 ± 3
0 71± 1 5.4 ± 0.4 40 ± 3
0 71± 1 3.3 ± 0.3 65 ± 5
0 71± 1 5.9 ± 0.4 36 ± 3

As said before, the measurement with north orientation for this value is not usable but
the one for the north east orientation is and gives us

Bstray(4 mA) = (32.6 ± 1.4) µT, (58)

which is compatible with the result for the vertical stray field in section 4.2.
Also measurements with coil 1 turned off and the current of coil 4 set to 71 mA, such

that its magnetic field compensates the vertical stray field, were done for north east and
east orientation. The results of this measurements are to be found in table 6. For this
measurements the uncertainty of the maxima is set to 5 × 10−7 s. Since the vertical
stray field should be compensated the measured magnetic fields should represent the
horizontal stray field. Thus, to be able to compare the spin precession measurements
further with the double resonance measurements, the mean of the measured field was
calculated for each orientation:

Bnorth-east = (4.7 ± 0.3) µT, Beast = (4.9 ± 0.4) µT, (59)

the uncertainty was calculated with gaussian error propagation.

4.4. Relaxation time with Dehmelt’s method

After the magnetic field is inverted, the difference in occupation numbers should obey
the trend predicted in eq. (30). Further, it is reasonable to assume that the occupation
number difference is proportional to the transmitted intensity I, i. e. I(t) = Imin +αn(t).
This ultimately gives

I(t) = Imax − ∆I exp
(

− t

τ

)
. (60)

28



4. Analysis

where Imax is the intensity corresponding to a maximal difference in occupation num-
bers and ∆I is the difference between Imax and the intensity that is attained when the
magnetic field reverses polarization. As the orientation time τ is related to the pumping
time TP and the relaxation time TR via eq. (27) and the pumping time obeys TP ∝ I−1,
we have

1
τ

= 1
TR

+ 1
TP

I→0−−−→ 1
TR

. (61)

Thus, in order to determine the true relaxation time TR using Dehmelt’s method,
inverse orientation times 1

τ are plotted against the intensity of the filters used to obtain
that specific orientation time. For that, the intensity of the filters has to be obtained
somehow. The calculation of the absorption of each filter is described in section 4.4.1.
The section after that (section 4.4.2) then deals with the determination of the orientation
time for each measurement and the extrapolation of the relaxation time TR.

4.4.1. Calibration of the intensity filters

As described in section 3.2.5, a ramp voltage was applied to the laser diode and the
Rubidium cell was removed from the optical path. Then, each filter was seperately
placed inside the setup and the spectrum of the photo diode – which should follow the
ramp voltage applied to the laser – was recorded. Our main idea is to compare the
maximum intensity difference of each filter spectrum to that of the spectrum where no
filter is in the optical path. Figure 12 shows the spectrum of the photodiode when no
filter is in the optical path. The horizontal purple lines are positioned at the mean of the
ten highest and ten lowest values, respectively. The error on the vertical position was
determined by taking the standard deviation of those ten highest and lowest values and
is shown shaded behind the purple lines. By taking the difference of these horizontal
positions we obtain a quantity proportional to the intensity of the laser light. This
quantity will be referred to as “absolute intensity” Uabs in the following paragraph.

The same measurements can be repeated for the other filters if the amplitude and
frequency of the ramp is not altered in any way. By dividing the absolute intensity
of each filter by the absolute intensity of the setup with no filter (which can be seen
in fig. 12), we obtain the relative intensity I of each filter. For a filter i, the relative
intensity Ii can thus be calculated as

Ii = Uabs
i

Uabs
0

, σIi =

√√√√(σUabs
i

Uabs
0

)2

+
(

σUabs
0

· Uabs
i

(Uabs
0 )2

)2

. (62)

Here, Uabs
0 refers to the absolute intensity measured when there is no filter in the op-

tical path. The absolute and relative intensities of each filter are displayed in table 10
alongside the label on each filter.

4.4.2. Orientation times

Now that the relative intensity of each filter is known, the orientation times τ of the
orientation process of each filter has to be determined. We achieved that by fitting the
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Figure 12: Signal recorded by the photo diode (CH2) when a ramp is applied to the laser
and the optical path is clear. In purple: Mean of the largest and smallest 10
values, respectively.
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Table 7: Orientation times τ with inverse τ−1 given for each filter for both isotopes 87Rb
and 85Rb.

85Rb 87Rb

Filter I τ [ms] τ−1 [MHz] τ [ms] τ−1 [MHz]

None 1 0.446± 0.005 2.240 ± 0.023 0.2406± 0.0019 4.16 ± 0.03
d0_3 0.506± 0.011 1.835± 0.012 0.545 ± 0.004 0.624 ± 0.010 1.602± 0.025
d0_6 0.431± 0.008 2.205± 0.008 0.4535± 0.0017 0.913 ± 0.015 1.094± 0.018
d1_0 0.210± 0.008 2.143± 0.013 0.4665± 0.0029 1.548 ± 0.008 0.646± 0.003
d1_3 0.134± 0.004 3.45 ± 0.09 0.290 ± 0.007 2.71 ± 0.14 0.370± 0.019
d1_6 0.159± 0.006 4.43 ± 0.14 0.226 ± 0.007 2.92 ± 0.12 0.342± 0.014

d-0_37 0.501± 0.011 1.565± 0.014 0.639 ± 0.006 0.536 ± 0.010 1.86 ± 0.03
d-0_8 0.215± 0.010 3.39 ± 0.08 0.295 ± 0.007 1.58 ± 0.04 0.632± 0.017

model
U(t) = Umax − ∆U exp

(
t − toff

τ

)
(63)

to the signal from the photo diode. In the formula above, Umax, ∆U, toff as well as the
orientation time τ are fit parameters. For the fit itself we used the method curve_fit
from the python package scipy.optimize [2]. The method was also supplied with the
uncertainties on the voltage measurements, which was calculated by quadratically adding
the error on the DC Gain and the vertical resolution of the oscilloscope as given in the
manual of the oscilloscope [5]. The orientation times from the fit and their inverses are
given in table 7 for each filter and for both isotopes. A visualization of the exponential
saturation fits are shown collectively in the appendix in figs. 15 and 16 for both isotopes.

Now that the inverse orientation time τ−1 was calculated for various intensities, the
inverse relaxation time T −1

R can be extrapolated from the inverse orientation time as the
intensity goes to zero. For that, we plot the inverse orientation time with respect to
the relative filter intensity for both isotopes and perform a linear regression. Although
we initially wanted to incorporate the uncertainty in I, we decided to neglect it as the
uncertainty of the relative intensity σI takes the value 0 for the measurement without
filter, making it difficult to weigh the results (assuming a quadratic loss function, one
would have to divide by zero). Thus, the regression which was performed using R’s
linear model lm [4] was only supplied with the error on the τ−1’s. The plot of the
inverse orientation times can be seen in fig. 13 while the fit results themselves are given
in table 8. That table also shows the t-statistic of each fit parameter and its quantile.
Further, the residual standard error is given for both linear models. As the relaxation
time’s inverse T −1

R can be extrapolated from τ−1 as the intensity goes to 0, the T −1
R is
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Figure 13: Inverse orientation times with respect to the relative intensity of each filter
along with a linear regression.

Table 8: Fit results from the linear regression shown in fig. 13.

Isotope Coefficient Value [MHz] t-value p-value χ2/df
85Rb Intercept 0.23± 0.13 1.724 0.136 32.76Slope 0.6 ± 0.3 1.802 0.122
87Rb Intercept −0.19± 0.09 −2.101 0.08 11.69Slope 3.9 ± 0.4 10.479 4.43 × 10−5

given by the intercept of each linear model, giving

1
T

85Rb
R

= (0.23 ± 0.13) MHz. (64)

1
T

87Rb
R

= (−0.19 ± 0.09) MHz, (65)

Thus, the relaxation times of 85Rb and 87Rb are given by

T
85Rb
R = (4.3 ± 2.5) ms, (66)

T
87Rb
R = (−5.1 ± 2.4) ms, (67)

where the error was propagated via Gaussian error propagation.
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4.5. Relaxation time with Franzen’s method

In order to determine the true relaxation time TR using Franzen’s method, the Rubidium
system is allowed to relax in the dark. The difference in occupation numbers then obeys
eq. (24) as the only processes happening are relaxation processes. After a specific amount
of dark time ∆t that we have yet to determine, the system is exposed to the laser light
again and the pumping begins again. For the intensity just at the dark time I(∆t) it
holds that

I(∆t) = Imax + ∆I exp
(

−∆t

TR

)
. (68)

By determining the intensity just at the point where the light is switched on again and
plotting it against the total time the system was in darkness, the relaxation time can be
determined via an exponential fit.

Both the dark time and the position of the intensity was manually determined by a
visual examination of the absorption spectrum. The exact intensity point was placed
where the signal of the photo diode was transitioning in an exponential saturation. For
each spectrum, this gives us a value for the intensity Uabs and a value for the time that
intensity is attained, tRight. Now, in order to determine the dark time of each spectrum,
we extrapolated the other point in time with that same intensity tLeft in the region
where the chopper starts blocking out the laser signal. The constructed intensities and
time interval can be seen in the appendix in figs. 17 and 18 for various chopper speeds.
While the error for the intensity can be calculated using the oscilloscope’s specification
as described in section 4.4.2, we estimated the uncertainty on both points in time to be
about 10 time increments. The error on the dark time which is the difference between
both points in time,

∆t = tRight − tLeft, (69)
can then be propagated via Gaussian error propagation. Lastly, the intensity value UAbs

is divided by the difference of the maximum and the minimum value of the spectrum so
that the resulting intensity I is properly normalized. The results of the visual examina-
tion can be seen in table 9.

The next step is to plot the intensities against the dark times to find the relaxation
time via an exponential fit. The visualization can be seen in fig. 14 which also shows a
regression line where a model of the form

I(∆t) = A · exp
(

−∆t

TR

)
(70)

is fitted against the data. In the formula above, A and TR are fit parameters. The fit itself
was performed using the curve_fit method of the python module scipy.optimize. We
actively decided against an intensity offset as we had difficulties finding initial conditions
so that the fit converges. The results are

A = 0.44 ± 0.06, (71)
TR = (8.5 ± 2.5) ms. (72)

Additionally, to measure the goodness-of-fit, a residual standard error was calculated to
be χ2/df = 2.08.
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Table 9: Dark times and relative intensities of the Franzen method to determine the
relaxation time.

Measurement Dark time ∆t [ms] Relative intensity I

1 12.50± 0.28 0.13 ± 0.07
2 9.07± 0.28 0.14 ± 0.04
3 6.65± 0.14 0.23 ± 0.03
4 5.34± 0.14 0.249± 0.028
5 4.47± 0.07 0.266± 0.026
6 3.76± 0.07 0.12 ± 0.05
7 3.31± 0.07 0.31 ± 0.03
8 2.96± 0.07 0.29 ± 0.03
9 2.67± 0.07 0.320± 0.027
10 2.49± 0.07 0.366± 0.022

2 3 4 5 6 7 8 9 10 11 12 13

0.1

0.2

0.3

0.4
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I
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Figure 14: Exponential fit of the relative intensities with respect to the dark times in
Franzen’s method. The data can be found in table 9.
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5. Discussion

5.1. Hyperfine spectrum spectroscopy

In the first part of the experiment, a triangle voltage was applied to the laser and
the Rubidium cell was exposed to the laser light. The voltage was chosen in such a
way that the hyperfine structure is visible on the signal of the photo diode recorded
by the oscilloscope. Using a Fabry-Perot etalon, measurements were taken to calculate
frequency differences from time differences given by the oscilloscope. Although we could
only resolve six out of the expected eight spectral lines, the spectrum matches our
expectation quite well for the case of the decreasing triangle voltage (see fig. 8 and table 3)
with the theoretical frequency shifts deviating from the literature with 2-σ at most. In
the case of the increasing triangle voltage, however, the results obtained do not look as
great: table 4 shows a deviation as high as 8-σ from the literature values. Looking at the
spectrum of the increasing triangle voltage (cf. fig. 9 also reveals that the spectrum itself
is not only reversed to the one shown in fig. 8 (which is an effect we expect) but the peak
location seems shifted and/or scaled. Our initial thought was that the triangle voltage
was traversed with different speeds depending on whether the voltage is increasing or
decreasing. However, by attempting to scale the conversion factor η we did not manage
to obtain more consistent results. This can also be seen in the spectrum itself: By
comparing the rightmost two green lines of fig. 8 with the leftmost two lines of fig. 9,
one can see that they are roughly the same. The three green lines in the left of fig. 9,
on the other hand, are more tightly bunched together than their counterpart in the case
of the decreasing triangle voltage. This means that the issue lies deeper than a botched
calculation of the conversion coefficient. As the effect is dependent on the direction of
the triangle voltage we can rule out the possibility of mode jumps. A more promising
explanation lies in a hysteresis-like effect in the laser diode. One possibility to investigate
this issue further may be to traverse the triangle voltage at lower and lower speeds and
examine the difference between the spectrum on the decreasing and increasing voltage
at various speeds.

For the calculation of the hyperfine-structure constants we proceeded only with the
data of the spectrum taken with the decreasing voltage ramp. As we managed to resolve
only six out of the eight spectral lines, we managed to only calculate three out of the
four relevant constants. Our results are

A87Rb,2S1/2 = (1.44 ± 0.03) × 10−5 eV, (73)
A87Rb,2P1/2 = (1.54 ± 0.27) × 10−6 eV, (74)
A85Rb,2S1/2 = (4.71 ± 0.15) × 10−6 eV, (75)
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while the literature values [3] read(
A87Rb,2S1/2

)
lit

= 1.413 × 10−5 eV, (76)(
A87Rb,2P1/2

)
lit

= 1.692 × 10−6 eV, (77)(
A85Rb,2S1/2

)
lit

= 4.185 × 10−6 eV. (78)

For the case of 87Rb, our results lie comfortably in a 1-σ environment of the literature
value. The result for the 2S1/2 constant of 85Rb, however, only lies inside a 4-σ environ-
ment. This is partly expected and has to do with our resolution of only six of the eight
spectral lines: When considering the term schema of Rubidium (cf. fig. 1), the structure
constant was calculated out of a frequency difference between the F = 2 to F = (2 or 3)
and the F = 3 to F = (2 or 3) transition, mixing up the Zeeman levels of the final states.
This mixing up was not accounted for in the error propagation; where the main error
stems from the visual inspection of the peaks (cf. fig. 8): The error there only refers to
the location of the center of the peak that one can see and does not include the fact that
the peak actually consists of two peaks that are close together. Thus, while a better opti-
cal resolution of the spectral lines would increase the analysis of the hyperfine-structure
constants tremendously, a more mature uncertainty on the 85Rb-peaks would also help
to obtain results with uncertainties that are more appropriate.

5.2. Double resonance

In this part the simultaneous radiation of the laser light and the RF transmitter to the
glass cell was used to, on the one hand, determine the vertical and horizontal magnetic
stray fields and, on the other hand, use this informations to determine the nuclear spins
of both isotopes.

For the nuclear spin we obtained the results

I85Rb = 2.51 ± 0.03, I87Rb = 1.49 ± 0.03. (79)

For 85Rb the expected value is 5
2 = 2.5 and for 87Rb it is 3

2 = 1.5 according to table 1,
so the expectations are in a 1-σ environment of our results for both isotopes while the
relative uncertainty for both results is about 2 %. So the results for this part are quiet
good.

As for the magnetic stray fields we observed

Bvert = (33.9 ± 0.5) µT, Bhor = (5.6 ± 1.1) µT. (80)

In comparison the magnetic fields of the earth given for Freiburg are [3]

Bearth
vert = 42.9 µT, Bearth

hor = 20.9 µT. (81)

One can see that the magnetic stray fields measured are quite smaller than the magnetic
field of the earth. One reason for this could be the influence of other stray fields overlap-
ping with the magnetic field of the earth. Such fields could be generated by neighbouring
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experiments or in general all electronics surrounding the experiment. Whether these de-
viations are completely explained by interfering stray fields or if the measurements done
also are imprecise is hard to tell since it is not to easy to estimate all surrounding stray
fields.

It is still disconcerting that the orientation of the table did not change the currents for
coil 1 needed to gain equidistant absorption peaks since, if the stray field is mostly given
by the magnetic field of the earth, the stray field longitudinal to the set up should have
changed. However, our results are supported by the fact that the results for the nuclear
spins are quite nice. So even if the currents could have been set to a value for which
the peaks would have a more precise equidistant distance, the value in between the two
settings of both polarities seems to be reasonable if one looks at the nuclear spin results.
Additionally, while setting the currents of coil 1 it was hard to find the point of most
precise equidistant distances but it was easily seen that if one setting distances as great
as needed to come up with a magnetic stray field, similar to the horizontal component
of the earth field given, the peaks were obviously not equidistant anymore.

5.3. Spin precession

The measurement of the spin precession turned out to be more difficult experimentally
than the other parts of the experiment. However, at last we were able to get one
evaluable measurement done with a compensated horizontal magnetic field from which
we obtained

Bstray, vert = (32.6 ± 1.4) µT, (82)

which is in good agreement with the value obtained by the double resonance.
For the horizontal magnetic field we obtained two results one with a north east and

one with a east orientation:

Bnorth-east = (4.7 ± 0.3) µT, Beast = (4.9 ± 0.4) µT. (83)

These are not as compatible with the double resonance as the result for the vertical
stray field, but are still in the same order of magnitude. The deviation of the different
spin precession measurements could again be reasoned by changing stray field in the
surrounding, especially since the deviations are not too big. In any case, the rough
compatibility does support the significance of the results of both subtasks and the weak
influence of the orientation of the experimental set up for the measurements is coherent
with the observation in the double resonance that the horizontal magnetic stray field did
not change much when the orientation is changed.

5.4. Relaxation time with Dehmelt’s method

In order to determine the relaxation time with Dehmelt’s method, the relaxation process
that the ensemble undergoes after rapidly switching off the magnetic field was measured
directly for various neutral filters. The neutral filters themselves were calibrated to
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obtain a relative intensity I for each filter. Then, the inverse orientation time τ−1

obtained by an exponential fit to the relaxation process was plotted against the relative
intensity and the relaxation time could be linearly extrapolated to the intercept of the
linear model with the result:

T
85Rb
R = (4.3 ± 2.5) ms, (84)

T
87Rb
R = (−5.1 ± 2.4) ms. (85)

The value given in the Staatsexamen for the relaxation process of the example is 5.7 ms.
While our value for T

85Rb
R lies well within a 1-σ-environment of that value, the relative

error we obtained is 58 % which seems extremely high. The value we obtained for 87Rb
on the other hand is not only negative, but is also within a 5-σ-environment of the value
from the Staatsexamen. Clearly, the values we obtained are not convincing. As the
main method of obtaining the relaxation times are the linear fit depicted in fig. 13, we
investigated the linear relationship more in-depth. While one can make out some linear
relationship of the data by hand, there are several data points which have an extremely
similar relative intensity, but differ greatly in the inverse orientation time, even when
considering the error in both variables. When calculating the p-values of both intercept
and slope of each fit (cf. table 8), we find that three out of the four values are above 5 %,
which implies that those fit parameters are not as significant to reject the hypothesis
that no linear relation exists there. This is in agreement with the visual observation that
data points close in I differ greatly in τ−1. Further, the residual standard error given
in table 8 is suspiciously high, implying that the linear model does not fit the data very
well.

Also interesting is the fact that the values that seem off the most are the values where
the relative intensity I is at its maximum, I = 1. Unfortunately, there is a gap in relative
intensities between 0.5 and 1, meaning that we can only speculate why the difference
between the linear model and the data is worst at I = 1.

Another peculiarity we did not expect is the grave dependence of the result on the
pumping light: As one can clearly see in fig. 13 and table 8, the slopes of both linear
models differ drastically for the two different currents set at the laser diode. While
it is reasonable to assume that the orientation time depends on the percentage of the
ensemble undergoing optical pumping/relaxation (i. e. the percentage of one Rubidium
isotope in the whole glass cell), we did not expect that relation to affect the slope of the
linear model this drastically.

One possible explanation for the divergence from a linear relationship might lie in
our calibration of the filters: As the photo diode’s amplifier suddenly overloaded on
the recommended DC setting on the day we calibrated the filters, the diode had to be
switched to AC mode. Thus, if the measurement of the signal intensity at the oscilloscope
is systematically worse for AC mode than it is for the DC mode (which is plausible in
our opinion), the calibration of the filters might not be as accurate as we thought.
This agrees with the observation that the absorption of some filters is extremely similar
although the filters are labelled differently. A calibration of the filters in the DC mode
(if even possible) – or, more general: a more thought-out calibration with a different
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method altogether – would certainly be interesting.
Another difficulty that we encountered that might be correlated with the deviation

from the linear relationship is the measurement of the relaxation processes. As one can
see in figs. 15 and 16 in the appendix, the fits are especially askew for filters with high
absorption. As one can easily see, the errors on those measurement values is especially
high. Originally, we attempted to record the relaxation at a higher voltage scale, how-
ever, when inspecting the data given by the oscilloscope, we found an unanticipated
“doubling”-effect: While the exponential behaviour of the relaxation was clearly visible,
the measurement values also looked “doubled” and shifted upwards. An illustration of
this effect is given in fig. 24. Of course, this makes it extremely impractical to fit any
model onto the data which is why we chose a much smaller voltage scale. This choice,
however, came with the caveat that we had to restrict our measurements to a very slim
range, where the exponential behaviour was barely visible, especially for the filters with
a high absorption.

What also may have contributed to the bad performance of the linear model is a
wrong determination of the errors in τ−1 which are propagated from errors in τ which in
turn were obtained from the fit to the relaxation processes already discussed in the last
paragraph. While the error on each value for τ (cf. table 7) seems low, we encountered
problems in obtaining the fit results as the fit’s success was extremely dependent on the
initial conditions, requiring a lot of trial-and-error. A more mature error estimation on
the values of τ might be to take the standard deviation of the set of τ one obtains when
varying the initial fit conditions for each filter separately.

All in all, we were roughly able to follow all the tasks of this part of experiment
but did not manage to obtain satisfying results. While we came up with some possible
explanations, we did not manage to single out an exact underlying problem.

5.5. Relaxation time with Franzen’s method

An alternative method to determine the relaxation time is given by Franzen’s method:
Here, the relaxation process was not initiated by a change in the magnetic field but
rather by interrupting the pumping light to the system.

After determining the relative intensity of the system for varying dark times, we were
able to fit an exponential model to the intensity with respect to the dark times. Our fit
directly supplied us with the relaxation time of

TR = (8.5 ± 2.5) ms. (86)

Compared to the value given in the Staatsexamen of 5.7 ms, our value lies comfortably
in a 2-σ-environment, but the relative error of our result (34 %) is quite high. While our
obtained result is definitely compatible with the literature value, we want to comment
on some of the techniques of Franzen’s method.

For one, it is extremely hard to determine the exact time the system starts pumping
again (these times are marked with a red cross in figs. 17 and 18) as the signal of the photo
diode does not increase sharply at all, but is rather unhasting. In the oscilloscope signal
this can be seen as a linear process turning into an exponential saturation which is not
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easy to pin-point. That the method is not highly reliable can also be seen in the outlier
in fig. 14 at about ∆t = 3.76 ms which can be reasonably explained by a misjudgment
on our part when determining the point where pumping occurs again (compare with the
plot on the bottom right in fig. 17). Outliers like these may also explain the high error
of the fit and with that the high uncertainty of our result. Also, note that for dark times
shorter than ∆t = 2 ms we were not able to determine the point at which the signal
turns into exponential saturation at all.

Enhancing the reliability of this method may go well with the use of a less inert photo
diode or in focussing the laser beam better on the Rubidium cell such that the transition
time of the chopper from shut to open is reduced.

To summarize, we were able to carry out this part of the experiment and obtain a
value that, although compatible with the literature, has a high uncertainty. Our main
issue we encountered when using this method is the reliance on determining the location
of the intensity after the dark time which comes close to effectively guessing for some
spectra.

As our determination of the relaxation time using Dehmelt’s method seems inconsis-
tent in itself – having obtained clearly conflicting results in eqs. (84) and (85) with one
of them physically impossible –, it is difficult to compare it to Franzen’s method. As our
relative errors for all results regarding the relaxation times lie above 30 %, it is intricate
to attribute a high significance to our result. Nevertheless, we want to briefly compare
the fundamental systematic differences between both methods. Dehmelt’s method re-
lies on extrapolating the orientation time of orientation process for different pumping
light intensities. Therefore, it is critical to obtain measurements for each pumping light
intensity where the orientation time can be extracted cleanly (which we were not able
to do especially for low-intensity filters as described in section 5.4). Further, a knowl-
edge of the filter’s absorption is necessary, which we attained by further measurements
(cf. section 4.4.1).

While Franzen’s method, on the other hand, also relies on taking measurements where
the intensity and dark time can be extracted as cleanly as possible, the extraction was
done visually in our case (in contrast to, say, curve fits) which brings even more incon-
sistencies in the analysis with itself. This can be clearly seen by the outliers in fig. 14,
for example. Experimentally, Dehmelt’s method seems to be more robust: Switching off
the magnetic field happens quite quickly and abrupt as one can see in the measurements
displayed in figs. 15 and 16. The chopper used for Franzen’s method, on the other hand,
doesn’t show the same abruptness as one can see in figs. 17 and 18, with the intensity
behaviour even showing a non-linear behaviour which makes it even more difficult to
extrapolate the points critical for the analysis.

40



List of Figures

List of Figures
1. Term schema of both Rubidium isotopes. The energy shifts are not up to

scale. Adapted from the Staatsexamen [1]. . . . . . . . . . . . . . . . . . . 7
2. Transition frequencies of the hyperfine transition between the 2S1/2 and

the 2P1/2 terms for both Rubidium isotopes. . . . . . . . . . . . . . . . . . 8
3. Simplified terms of Rubidium without hyperfine structure (left: verti-

cally ordered by energy, right: rearranged by magnetic quantum number).
Adapted from the Staatsexamen [1]. . . . . . . . . . . . . . . . . . . . . . 9

4. Polarisation schema of 87Rb under irradiation with σ+-light. Dashed lines
signify decays in lower states while lines that are drawn through refer to
transitions caused by σ+-light. . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Schematic representation of the etalon used in the experiment. . . . . . . 12
6. A schematic representation of the setup used in the experiment. The

dashed optical elements refer to elements that are placed in the optical
path at various points in the experiment. Adapted from the Staatsexa-
men [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7. Spectrum of the etalon used for the calibration of the time axis for the
hyperfine structure spectroscopy. The plot above shows the ramp voltage
and the plot below shows the inverted signal recorded by the photo diode. 20

8. Hyperfine spectrum of Rubidium as recorded with the photo diode. The
descending ramp used to modulate the laser light is shown above the main
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9. Hyperfine spectrum of Rubidium as recorded with the photo diode. The
ascending ramp used to modulate the laser light is shown above the main
plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10. In this plots the measurements of the spin precession are shown with the
current in coil four set to zero while the longitudinal axis of the experi-
mental set up is directed to the north. The current in coil one differs from
plot to plot with upper left 0 mA, upper right 4 mA, lower left 10 mA and
lower right 25 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11. The calculated magnetic stray fields plotted over the horizontal magnetic
field induced by coil one. In red the measurements with a north orientation
are shown and in blue the ones with north east orientation. For all of the
measurements the current in coil four was set to zero. . . . . . . . . . . . 27

12. Signal recorded by the photo diode (CH2) when a ramp is applied to the
laser and the optical path is clear. In purple: Mean of the largest and
smallest 10 values, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 30

13. Inverse orientation times with respect to the relative intensity of each
filter along with a linear regression. . . . . . . . . . . . . . . . . . . . . . . 32

14. Exponential fit of the relative intensities with respect to the dark times
in Franzen’s method. The data can be found in table 9. . . . . . . . . . . 34

15. Exponential saturation fits on various filters for the 85Rb isotope. . . . . . 45
16. Exponential saturation fits on various filters for the 87Rb isotope. . . . . . 46

41



List of Tables

17. Visual examination of the dark time ∆t and the corresponding inten-
sity Uabs(∆t) for various chopper speeds. . . . . . . . . . . . . . . . . . . 47

18. Visual examination of the dark time ∆t and the corresponding inten-
sity Uabs(∆t) for various chopper speeds (cont. of fig. 17). . . . . . . . . . 48

19. In this plots the measurements of the spin precession are shown with the
current in coil four set to zero while the longitudinal axis of the experi-
mental set up is directed to the north east. The current in coil one differs
from plot to plot with upper left 0 mA, upper right 4 mA, middle left 15 A,
middle right 25 mA and bottom 35 mA. . . . . . . . . . . . . . . . . . . . 49

20. In this plots the measurements of the spin precession are shown with the
current in coil one set to zero while the longitudinal axis of the experi-
mental set up is directed to the northeast and the current of coil 4 is set
to 71 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21. In this plots the measurements of the spin precession are shown with the
current in coil one set to zero while the longitudinal axis of the experi-
mental set up is directed to the east and the current of coil 4 is set to
71 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

22. The setting for the equidistant peaks in the double resonance task. For
each plot the upper red plot shows the sinusoidal signal of coil 2, while
the lower blue plots show the signal of the PD. The two upper plots are
with the laser setting for 85Rb, on the left side with I1 = 132 mA and on
the right side with I1 = 139 mA. The two bottom plots are with the laser
settings for 87Rb, on the left side with I1 = 86 mA and on the right side
with I1 = 93 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

23. The PD signal with the etalon mounted to the bench for different tem-
peratures. Upper left T = 34.6 ◦C, upper right T = 34.8 ◦C, bottom left
T = 36.0 ◦C and bottom right T = 36.9 ◦C. For each plot the ramp signal
of the laser is shown in red above. . . . . . . . . . . . . . . . . . . . . . . 53

24. Unanticipated effect in the oscilloscope data of the relaxation process with
a large voltage range (unused for the analysis). . . . . . . . . . . . . . . . 54

List of Tables
1. Overview over the quantum numbers of the Isotopes of Rubidium that we

consider for our experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Location (on the time axis) of each pair of peaks in the etalon spectrum

(cf. fig. 7) with their difference. . . . . . . . . . . . . . . . . . . . . . . . . 19
3. Frequency shifts of the absorption spectrum taken with an descending

ramp (cf. fig. 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4. Frequency shifts of the absorption spectrum taken with an ascending ramp

(cf. fig. 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5. The results of the measurement with north orientation, no current in coil 1

and different currents in coil 4. . . . . . . . . . . . . . . . . . . . . . . . . 24

42



References

6. The results of the spin precession measurement for various orientations of
the setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7. Orientation times τ with inverse τ−1 given for each filter for both iso-
topes 87Rb and 85Rb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8. Fit results from the linear regression shown in fig. 13. . . . . . . . . . . . 32
9. Dark times and relative intensities of the Franzen method to determine

the relaxation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10. Absolute and relative intensities of each filter used for determining the

relaxation time using Dehmelt’s method. . . . . . . . . . . . . . . . . . . . 44

References
[1] Clemens Baur. Einrichtung des Versuches “Optisches Pumpen mit Laserdioden”.

Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, 1997.
[2] Jones; Eric, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific

tools for Python. Online; Accessed on Aril 2nd, 2021. 2001–. url: https://www.
scipy.org/.

[3] M. Köhli. Optisches Pumpen. Fortgeschrittenen Praktikum II. 2012.
[4] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing. Vienna, Austria, 2021.
[5] S. A. Digital Oscilloscope Series DS1000Z. Online; Accessed on Aril 14nd, 2021.

2020-05. url: https://www.rigol-uk.co.uk/jg/wp-content/uploads/2020/
09/Rigol-DS1000Z-Datasheet.pdf.

43

https://www.scipy.org/
https://www.scipy.org/
https://www.rigol-uk.co.uk/jg/wp-content/uploads/2020/09/Rigol-DS1000Z-Datasheet.pdf
https://www.rigol-uk.co.uk/jg/wp-content/uploads/2020/09/Rigol-DS1000Z-Datasheet.pdf


A. Appendix

A. Appendix

Table 10: Absolute and relative intensities of each filter used for determining the relax-
ation time using Dehmelt’s method.

Filter UAbs [V] I

None 0.251 ± 0.004 1
d0_3 0.1272± 0.0022 0.506± 0.011
d0_6 0.1084± 0.0012 0.431± 0.008
d1_0 0.0528± 0.0019 0.210± 0.008
d1_3 0.0338± 0.0010 0.134± 0.004
d1_6 0.0400± 0.0013 0.159± 0.006
d2_0 0.0258± 0.0014 0.103± 0.006
d2_6 0.0216± 0.0013 0.086± 0.005

d-0_37 0.0816± 0.0014 0.501± 0.011
d-0_8 0.0350± 0.0015 0.214± 0.009
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Figure 15: Exponential saturation fits on various filters for the 85Rb isotope.
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Figure 16: Exponential saturation fits on various filters for the 87Rb isotope.
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Figure 17: Visual examination of the dark time ∆t and the corresponding inten-
sity Uabs(∆t) for various chopper speeds.
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Figure 18: Visual examination of the dark time ∆t and the corresponding inten-
sity Uabs(∆t) for various chopper speeds (cont. of fig. 17).
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Figure 19: In this plots the measurements of the spin precession are shown with the
current in coil four set to zero while the longitudinal axis of the experimental
set up is directed to the north east. The current in coil one differs from plot
to plot with upper left 0 mA, upper right 4 mA, middle left 15 A, middle right
25 mA and bottom 35 mA.
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Figure 20: In this plots the measurements of the spin precession are shown with the
current in coil one set to zero while the longitudinal axis of the experimental
set up is directed to the northeast and the current of coil 4 is set to 71 mA.
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Figure 21: In this plots the measurements of the spin precession are shown with the
current in coil one set to zero while the longitudinal axis of the experimental
set up is directed to the east and the current of coil 4 is set to 71 mA.
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Figure 22: The setting for the equidistant peaks in the double resonance task. For each
plot the upper red plot shows the sinusoidal signal of coil 2, while the lower
blue plots show the signal of the PD. The two upper plots are with the laser
setting for 85Rb, on the left side with I1 = 132 mA and on the right side with
I1 = 139 mA. The two bottom plots are with the laser settings for 87Rb, on
the left side with I1 = 86 mA and on the right side with I1 = 93 mA.
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Figure 23: The PD signal with the etalon mounted to the bench for different tem-
peratures. Upper left T = 34.6 ◦C, upper right T = 34.8 ◦C, bottom left
T = 36.0 ◦C and bottom right T = 36.9 ◦C. For each plot the ramp signal of
the laser is shown in red above.
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Figure 24: Unanticipated effect in the oscilloscope data of the relaxation process with a
large voltage range (unused for the analysis).
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