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1. Introduction
Positronium is the bound state of an electron and a positron [1]. After its existence
had been proposed in 1932 by C. Anderson and S. Mohorovičić [3], the first experimen-
tal evidence of positronium was found in 1951 by M. Deutsch [4]. Since electrons and
positrons annihilate each other, such a system is not stable and decays after a short time
into γ-rays. This radiation can be detected and allows to draw conclusions about which
state the positronium was in. Positronium is especially useful for the proof of certain
predictions and as an illustration of phenomena in quantum electrodynamics (see for
example [5], [6] or [7]).
In this experiment the fine structure splitting of the ground state of positronium will be
analyzed. For this an increasing magnetic field is applied, which leads to a reduction
of the formation of the positronium state, which decays with an emission of 3 photons.
This method is called quenching [8].
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2. Theoretical Considerations
In this chapter the theoretical background of the experiment is depicted. The first section
discusses what positronium is. The section after that describes the Zeeman effect and
the final section in this chapter explains the method with which the random coincidence
rates are determined.

2.1. Positronium
The quasi stable state called positronium consists of a bound electron e− and positron
e+ [9]. In this experiment the positron is obtained from the β+ decay of 22Na to 22Ne

22Na 22Ne + e+ + νe.

When a positron is in close range to an electron they annihilate most of the time. If the
energy of the positron lies in the Ore gap [10]

EIon − Eb < Ee+ < Eex,

together with an electron a positronium can be formed, a system similar to a hydrogen
atom. Here the difference of the ionisation energy EIon of the electron and the binding
energy of the positronium Eb is smaller than the energy of the positron Ee+ and the
excitation energy of the electron source Eex is larger. In this experiment the electron is
taken from sulfur hexafluoride (SF6) gas. Because of this the creation of more positro-
nium is expected for a higher gas pressure. If the pressure is increased further, other
effects, like Bremsstrahlung, shift the energy of the positron out of the Ore gap, reducing
the formation of positronium.

Positronium can decay in different ways [1]. Which decay channel is taken depends on the
total spin of the system in the ground state L = 0. If it is a triplet-state (S=1), where
all spins are parallel, the system is called orthopositronium. The singlet-state (S=0)
with anti-parallel spins is called parapositronium. A decay with only one γ-quant is not
possible due to energy and momentum conservation. For para- and orthopositronium
it is handy to look at the C-parity which describes the charge conjugation. n photons
have a C-parity of (−1)n which has to be conserved. The C-parity of parapositronium
is C = +1 as is shown in [11]. Thus parapositronium decays into an even number of
photons. Orthopositronium on the other hand has C = −1, resulting in an odd number
of photons. Figure 1 shows the two decays in their first order Feynmann graph. For
parapositronium this is the decay channel with two and for orthopositronium with tree
photons. Higher order decays have more vertices, which results in a reduced probability
that this decay channel is taken and thus in a longer lifetime.
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Fig. 1: First order Feynman diagrams of the decay of positronium into 2 (left) and 3 γ’s (right).

The total energy of positronium, which can be distributed between the photons, is two
times the mass of an electron (1022 keV). In the 2γ-decay channel this energy is split
evenly among the two photons with a lifetime of τ2γ = 1.25 · 10−10 s [10], which are
emitted at an angle of 180◦ between each other. This is the result of momentum con-
servation in the rest frame of the positronium. The 3γ-decay channel has a lifetime of
τ3γ = 1.38 · 10−7 s [10]. Here the energy is only split evenly between the three photons if
they are emitted at an angle of 120◦ between each other. One photon can have a maximal
possible energy of the mass of one electron (511 keV). In this case the other two photons
have to move in the opposite direction to balance the momentum.

2.2. Zeeman effect
The Zeeman effect describes the splitting of spectral lines/energy levels by magnetic
fields. Due to historical reasons one distinguishes between the normal and anomalous
Zeeman effect. The normal effect describes systems, in which the electronic states have
a net spin of zero. It describes the coupling of the orbit (l with magnetic number ml)
with a magnetic field. The anomalous effect describes systems for which the net spin
is not equal to zero and is called that way, because at the time of the discovery the
electron spin was not yet known. It describes the coupling of the spin and orbit to a
magnetic field, where the coupling of l and s is weaker than the coupling to the magnetic
field. If the field coupling is stronger, it is called Paschen-Back-effect [12]. Also in closed
atomic shells, where no permanent magnetic moment is present, an external magnetic
field induces a magnetic moment, which causes an extra splitting of the energy levels. In
most atoms this so called quadratic Zeeman effect is substantially smaller compared to
the linear effect.
However in the case of the positronium no linear effect is present and the quadratic effect
is of leading order. This can easily be seen in the framework of perturbation theory. A
derivation of this can be found in [1], where the time-independent Schrödinger equation is
used. Using again the time-dependent Schrödinger equation, a magnetic field dependency
of the formation of orthopositronium is found. The derivation is also shown in [1]. The
ratio of para- and orthopositronium, also called quenching, which is dependent on the
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magnetic field is

Q(B) = 1− f + f

1 + τ3γ

τ2γ

(
e~B

me∆W

)2
−1

. (1)

The factor f depends on the geometry of the setup. Since in this experiment the scin-
tillators are set 120◦ apart, ftheo = 0.5 is expected, as stated in [8]. τ3γ = 1.39 · 10−7 s
and τ2γ = 1.25 · 10−10 s are the lifetimes of ortho- and parapositronium [1]. e is the ele-
mentary charge, ~ the reduced Planck constant, me the mass of an electron and ∆W the
hyper fine splitting of the positronium ground state for a total spin of 0 and 1, with an
expected value of ∆Wtheo = 2.044 · 105 MHz [1].

2.3. Interaction of electromagnetic radiation with matter
There are three main processes, which are responsible for the interaction between elec-
tromagnetic radiation and matter [13]: the photoelectric effect, the Compton effect and
pair production. The energy ranges in which they occur are shown in Figure 2.

Fig. 2: Energy ranges of interaction processes of photons with matter taken from [14]. At low
energies the photoelectric effect is dominant in the absorption process of photons. At larger
energies the Compton effect gets more prominent until the pair production takes over.
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Due to these interactions the intensity of the radiation decreases exponentially with a
linearly increasing shielding thickness according to the Lambert-Beer law

I(d) = I(0) exp (−µd).

d is the distance the radiation has traveled inside the matter, µ the absorption coefficient
and I(0) is the intensity of the incoming radiation.

Photoelectric Effect

In the photoelectric effect, which was first explained by Albert Einstein in 1905 [15], a
photon transfers its total energy Eγ = ~ω to a shell electron. The energy of the excited
electron is

Ee = Eγ − EB,

with the binding energy EB. If the energy of the photon is larger than the binding energy,
the electron is expelled from its orbit. The resulting hole is filled by an electron from an
outer shell under emission of a characteristic radiation or an Auger-Meitner electron.

Compton effect

The Compton effect describes the inelastic scattering of a photon with a free or weak
bound electron [16]. The photon transfers a part of its energy to the electron which
changes the movement directions of both photon and electron and thus also their energy.

Pair Production

Photons with at least two times the resting energy of an electron can lead to pair produc-
tion, the creation of electron-positron pairs, in the field of a nucleus. This process only
occurs for photons with energies larger than 1022 MeV, which is two times the resting
mass of an electron or a positron (511 keV). Since positrons are meta-stable particles
they annihilate again with an electron under the emission of at least two photons.

2.4. Scintillators and photomultiplier tubes
In this section the two core components of the setup used for detection of photons, the
scintillator and the photomultiplier, are described in more detail.

A scintillator is a material, which exhibits scintillating properties, when irradiated with
ionizing radiation. Incident photons excite the atoms of the scintillator which decay with
the emission of lower energy photons. Those photons are then detected with a photomul-
tiplier tube PMT (or a photodiode, or a silicon based photomultiplier SiPM) optically
coupled to the scintillator. Since often the scintillator and the PMT have a different
geometry (i.e., cross section area, circle or square) a light guide is needed to guide the
photons onto the detection surface of the PMT. Once a photon hits the photocathode
of the PMT electrons are emitted due to the photoeffect. The electrons are accelerated
by a bias voltage towards the first dynode. When they hit the first dynode secondary
electrons are emitted which again are accelerated towards the next dynode by an higher
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bias voltage. This leads to an avalanche of electrons until the current is strong enough
to be measured. This signal can then be related to the number of incident photons and
their energy.

Scintillators are available in a variety of different shapes, materials and states of aggre-
gation. They can be divided into organic or inorganic materials and gasses, liquids or
solids. All show different characteristic behaviours in regard to their energy dependent
resolution, linearity, time dependency, light yield, etc. The most common scintillators
are NaI-crystals, which are also used in this experiment.
Obviously scintillators must be transparent to their own resonant photon-energies, which
poses a technical difficulty. This problem can be solved by doping a different material
into the crystals. In the case of NaI-crystals mostly thallium (TI) is used to activate
the crystals. It introduces energy levels, which lie closely below the conduction band of
the NaI-crystal and above the valence band. Excited atoms can decay onto those levels
non-radiatively and then decay via emission of photons with an energy lower than the
resonance energy of the NaI atoms. This doping can also be used to shift the energy
of the scintillation photons into a frequency range, which coincides with the maximum
sensitivity of the photomultiplier tubes. For most PMTs this is in the range of visible
light, with a tendency to blue and ultraviolet.

There are many factors which have an influence on the statistics and resolutions. The
energy resolution is directly proportional to the number of photons produced in the
scintillator. The so called light yield L is defined as the number of photons emitted,
when an incident particle looses a specific energy E in a certain length x of the crystal

dE

dx
∝ dL

dx
.

One would assume a Poisson distribution for this behaviour, which is mostly true. With
this assumption it is easy to see, that materials that have a high light yield must have a
high energy resolution. To reconstruct the energy of the incident particle correctly, the
particle must loose all of its energy in the detection crystal. If that is the case, “the naive
assumption of Poisson statistics is incorrect”†, but it can be corrected for by introducing
the Fano factor F . When the incident particle looses all of its energy in the crystal,
the scintillation events are not independently of one another, since a definite amount of
energy is deposited and not a fluctuating one, like in the case of a particle only passing
through the detector. The Fano factor describes this behaviour. It is material dependent
and can be experimentally determined. For NaI it is approximately 1. In general the
energy dependent resolution R of a scintillator is calculated with

R = ∆E
E

,

where ∆E, identified as the full width at half maximum of a peak is divided by its energy.
With the relation between the FWHM of a Gaussian and its standard deviation σ and
J = E/w, the number of ionizations, with E the deposited energy in the detector and w
the mean energy required to ionize the material, the resolution results in

R = 2.35
√
FJ

J
= 2.35

√
Fw

E
,

†Quote from William R. Leo in [17].
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with the Fano factor F . In general a high light yield is wanted, since it increases the
energy resolution of the detector. As described, the scintillator is optically coupled to a
light guide, which has a collection and transmission efficiency, which feeds the photons
into the PMT, which has a quantum efficiency. All this attributes to a loss in photons
and therefore resolution.

2.5. Background coincidences
The background present in the 2 and 3γ-coincidence measurements have numerous ori-
gins, but can be expressed as the random coincidences Nrandom. In the following, the
derivation to obtain Nrandom for a 2γ-coincidence is described. Nrandom, 3γ is analogously
derived.

In a coincidence measurement two or more signals have to coincide within a certain time
window τ to be counted as a coincidence. While detector one (D1) opens a coincidence
window of length τ , D2 will measure Ṅ2 τ events in average, where Ṅ2 is the average
counting rate of D2 in the measurement time T . Together one already gets

Nrandom, 2γ, 1 = N1Ṅ2τ = N1N2
τ

T

random coincidences. Of course this same process also happens if D2 opens a window,
which results in an overall factor of 2 (for a 3γ-coincidence a factor of 3)

Nrandom, 2γ = 2N1N2
τ

T
, Ṅrandom, 2γ = 2Ṅ1Ṅ2τ, (2)

Nrandom, 3γ = 3N1N2N3
τ 2

T 2 , Ṅrandom, 3γ = 3Ṅ1Ṅ2Ṅ3τ
2. (3)

With these formulas and the known value of τ , random coincidence rates can be calcu-
lated.
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3. Setup and Conduction of the Experiment

3.1. Setup
The main part of the used setup is shown in Figure 3. Figure 4 is another schematic
picture of the setup, which focuses on the electronics and the signals pathways.

Fig. 3: Schematic picture of the core part of the setup, modified from [1]. Three NaI scintillators,
labeled as NaJ, are shown in a 120◦ configuration. The scintillators 1 and 3 can be moved by
approximately 180◦. Scintillator 2 is fixed.

As positron source, 22Na is used. It has a lifetime of 2.6 a [1]. Since the source was
build into the setup in 2004 it has to be hoped that enough radioactive material is still
left for sufficiently high counting rates. The source is mounted on a plastic film which
is positioned inside a box. This box is connected to a gas bottle of sulfur hexafluoride
(SF6), which acts as source for the electrons. The gas pressure provided by a gas bottle
can be varied up to 7 bar with a pressure regulator valve (see Section 4.3.2).
The photons of the positronium decay are detected by three scintillator and photomul-
tiplier units which are arranged in a circle, with adjustable polar positions around the
source. Their working principle is explained in Section 2.4.
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The angular position of scintillator 1 and 3 can be changed in a range of 90◦ to 270◦
compared to the fixed scintillator 2. The angles are read off of a scale which is fixed to
the setup and might be inaccurately positioned. The electronic setup which is used for
the detection and data acquisition is shown in Figure 4.

Fig. 4: Setup of the electronic components of the experiment. The photons are detected with the
three scintillators (SZ1, SZ2, SZ3). PM are the photomultipliers and HV are the high voltage
supplies, V the main amplifiers, SCA the single channel analyzers and HS the hex-scaler. HZ is
the coincidence counter, PCA the multi channel analyzer (MCA) and the “x-y Schreiber” the
PC, where software is used to read out the MCA. The figure is taken from [8].

The signals of the photomultipliers are amplified by the preamplifiers. The main amplifier
shape and further amplify the signals. The single channel analyzers (SCA) are used to
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discriminate signals by their corresponding incident photon energy. If such a signal is
measured in a SCA, it sends out an logical yes, which is counted with the hex-scaler
and also sent into a coincidence unit. The original signal is sent into a linear gate via
a delay unit. This gate is opened by the coincidence unit. Up to three of the SCAs
signals have to contribute, depending on the settings, in order for the coincidence unit
to send a logical yes to the linear gate. The number of coincidences is also counted in
the hex-scaler, while the signal which passes the linear gate is sent to a computer via a
multi channel analyzer.
For measurements concerning the Zeeman effect a magnetic field is applied. For this an
electromagnet surrounds the central box perpendicular. Its current is controlled with a
power supply.

3.2. Conduction
This experiment is divided into two main parts: In the first part the setup is analyzed
and in the second the quenching of the 3γ decay is studied.
The first measurement takes a closer look at the used electronics and how they influence
the incoming signals. For this the outputs of the SCAs are connected to an oscilloscope.
Then the source is analyzed by taking the 22Na spectrum with all three scintillators indi-
vidually. These measurements allow energy calibrations of the MCA for all scintillators.
The angle correlation of the 2γ coincidences is studied by moving scintillator 1 between
the 160◦ and 230◦ marks and measuring the coincidences with scintillator 2. Scintillator
3 is randomly set to 260◦. In order to determine the random coincidences the signal of
scintillator 2 is delayed heavily, such that a coincidence with scintillator 1 cannot result
from the same 2γ decay. In the last measurement with the 2γ dependence the pressure
of the SF6 is changed in order to find the pressure, which yields the highest coincidence
rate.
For the 3γ measurements the scintillators are positioned 120◦ apart from each other.
With this setup the random coincidences are determined, as now the boundary condition
has changed to a 3γ coincidence. The energy spectrum is also measured again. This time
the main peak of the 2γ spectrum is cut off. Finally the hyper fine splitting and quench-
ing is studied. For this the coincidence rate is measured for different applied magnetic
field strengths.
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4. Analysis

4.1. Delay setup
As has been explained in Section 3 the signals of the three single channel analyzers
resulting from the same decay have to arrive at the coincidence unit at the same time in
order for the unit to send out a logical yes to the linear gate to open it. To test this, the
output signals of the SCAs are displayed with an oscilloscope. The signal of scintillator 2
is always used as trigger signal. The two compared scintillators are moved into the 180◦
configuration and the signals are averaged on the oscilloscope to obtain sharp signals. By
comparing scintillator 2 with the two other signals and adjusting the delays at scintillator
1 and 3 the signals in Figure 5 are gained.
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Fig. 5: Comparison of the signals of the single channel analyzers after the delays of scintillator 1
and 3 are set. Shown are signals from scintillator 1 (blue), scintillator 2 (orange) and scintillator
3 (black). The intensities are individually normalized. The input from scintillator 2 is used as
trigger signal.

The delays are set so that always the rising flank of the signals are at the same time. As
can be seen in Figure 5, the signals overlap nicely and therefore the chosen delay settings
can be used in the following for the coincidence measurements.

4.2. 22Na spectrum
The spectrum of the 22Na source is measured with all three scintillators independently.
Figure 6 shows the spectrum of scintillator 1. The other two are displayed in the appendix
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in Figure 16 and 17.
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Fig. 6: Spectrum of 22Na, measured with scintillator 1. Gaussian functions are fitted to the
1270 keV (lime) and 511 keV (red) peaks to acquire their channel positions. The small edges,
which can be made out in front of the main peaks are the corresponding Compton edges. The
lower picture shows the residuals of the fit functions with the data used for the fit.

To be able to identify channels with energies in all three scintillators, all three spectra
are analyzed in the same way: The position of the peaks in the spectra, which originate
from the decay of the 22Na source at 1270 keV [1] and the 2γ decay of the positronium
at 511 keV are determined. To determine the positions, Gaussian functions of the form

f(x) = A√
2π σ

exp
{
−0.5

(
x− µ
σ

)2
}

+B (4)

are fitted onto the data, where A is the reduced amplitude, B the offset, µ the expecta-
tion value and σ the standard deviation. Table 9 in the appendix lists the fit parameters
for the three spectra.

Of these parameters the expectation values are used for the energy-channel calibration.
Since the channels are discrete and the uncertainties on the expectation values are sµ � 1,
the uncertainty on the channel number n is taken as sn = 1.
In each spectra two channel numbers n1 and n2 and two corresponding energies E1 =
511 keV and E2 = 1270 keV are found. Equation 5, which is essentially a linear regression
algorithm for two data points, is used to obtain the linear relation between energy and
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channel number for each scintillator

E(n) = a · n+ b, (5)

a = E2 − E1

n2 − n1
, (6)

b = E1 − a · n1. (7)

The parameters obtained for the three scintillators are listed in Table 1.

scintillator 1 scintillator 2 scintillator 3
a [keV] 1.106± 0.002 0.912± 0.002 0.951± 0.002
b [keV] 8± 2 6.5± 1.3 6.4± 1.3

Tab. 1: Linear calibration parameters for Equation 5.

In the following Equation 5 will be used together with Table 1 to calculate energies from
channels or to find appropriate channel windows for energies.

4.3. 2γ-coincidences
The measurements with 2γ-coincidences are used to characterize the setup. In the first
section the random coincidences are analyzed. Then the angular dependence of the
coincidences is studied. Finally the pressure dependence of the positronium production
is observed.

4.3.1. Random coincidences

Using Equation 2 it is possible to calculate the random coincidence rate. Table 2 shows
the measured counting rates of scintillator 1 and 2 obtained from a night measure-
ment. For this, the two used scintillators are arranged, as described in the following
Section 4.3.2.

scintillator 1 scintillator 2
Ṅ [s−1] 6064.4± 0.3 5815.5± 0.3

Tab. 2: Counting rates obtained in a night measurement with T = 62 454.22 s (≈ 17.4 h).

Using these rates and the time window τlit = 70 ns given in the instructions [8], one gets

Ṅ τlit
random, 2γ = (4.9375± 0.0003) s−1.

Additionally, by delaying one of the two signals it is possible to measure the random
coincidence directly. For this a delay was put on scintillator 2. Table 3 shows the
measured rates obtained after T = 1000 s.

scintillator 1 scintillator 2 random coincidence
Ṅ [s−1] 6080± 3 5835± 2 5.53± 0.07

Tab. 3: Random 2γ-coincidence rates obtained for T = 1000 s.
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The big discrepancy of 8.5σ between the two random coincidence values could be ex-
plained with the given time window τlit from the instruction manual, for which no uncer-
tainty is stated. From the measured data shown in Table 3 and Equation 2 rearranged,
one can calculate

τmeas = (77.9± 1.1) ns.

This value deviates by 7.2σ from τlit. The uncertainty on τmeas could be easily improved
by means of a longer measurement time, but with a relative uncertainty of 1.4 % its
precision already suffices to discard the instructions value for τ .
Using τmeas as the real value one can calculate the new value for the random 2γ-coincidences
from the data obtained in the night measurement shown in Table 2

Ṅ τmeas
random, 2γ = (5.50± 0.08) s−1.

To no surprise this coincides within less than 1σ with the directly measured value in
Table 3. The uncertainty is dominated by the uncertainty from τmeas.
However, the correctness of these considerations will be questioned and revoked in the
context of the data from the random 3γ-coincidence measurement in Section 4.4.2.

In the following measurements, the rates are always corrected for with the directly mea-
sured random coincidence rate in Table 3, as it is the true value measured by the setup
and does not depend on any calculations with assumed parameters.

4.3.2. Angular dependence

In order to find the best measurement position for 2γ-coincidences, scintillator 1 is moved
in a range from 160◦ to 230◦, while scintillator 3 is fixed at 260◦. Figure 7 shows the
resulting coincidences of scintillator 1 and 2, corrected by the random coincidence rate,
as described in the previous section.
In order to determine the maximum counting rate, Equation 4 is fitted with the least
square method onto the data, which is valid since the uncertainties on the angle have the
same size. The corresponding fit parameters are listed in Table 4.

σ µ A B χ2
ν

(6.29± 0.08)◦ (181.89± 0.09)◦ (10 914± 162) ◦ s−1 (14± 2) s−1 7.5

Tab. 4: Fit parameters to the angular dependence of the counting rate. The function which is
used to describe the data is Equation 4.
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Fig. 7: Angle dependency of the coincidence rate between scintillator 1 and 2 (blue). The
green data point is the result of an additional night measurement, which was performed over
approximately 17 h. The orange function is a Gaussian fit to the data, not including the
night measurement data, and the black line indicates the angle which is chosen for other 2γ
coincidence measurements.

With this a maximum counting rate is found at θ = (181.89± 0.09)◦. Therefore the
scintillator is set to the position marker closest to this angle, which is at 182.5◦, indi-
cated in Figure 7 as the black line. This is acceptable, since no significant difference
in the rate is caused by this deviation. Furthermore, this setting allows to reproduce
the results more easily. A smaller step width on the attached scale would allow a more
precise positioning and also a more accurate determination of the maximum. The origin
of the shift of around 2◦ away from the expected 180◦ is assumed to be the scale, which
is glued to the setup and might be shifted from the exact position. Another possibility
is that scintillator 2 is shifted relative to the setup. However, this seems unlikely, since
the scintillator is screwed to the rest of the setup.
Since the maximum position is also used for further 2γ-coincidence measurements, the
182.5◦ position is measured more precise with an additional night measurement. The
resulting counting rate coincides with the values expected from the fit function.

In Figure 8, the measured rates from the single scintillators in dependence of the relative
angles are displayed.
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Fig. 8: Single counting rates of the angle measurement. The blue data is the signal of scintillator
1 the orange the one of scintillator 2 and the green one of scintillator 3. The angle at which the
maximum coincidence counting rate is measured (see Figure 7), is indicated by the black line.
Only the position of scintillator 1 is changed.

The rates of scintillator 2 and 3 show mostly a constant behaviour, which is also expected.
Scintillator 1 on the other hand seems to have an increasing counting rate for bigger
angles. The reason for this might be in the mounting of the radioactive source. It is,
according to [8], fixed on a plastic film. The orientation and dimension of this film is not
known. This might give some angle dependence to the single channel counting rate.
The origin of the jumps in the counting rate of scintillator 1 and 3 at about 220◦ can not
be analyzed here due to the few data points. For this some additional measurements in
this range would be needed.

4.3.3. Pressure dependence

The amount of positronium depends on the pressure of the sulfur hexaflouride: With a
higher pressure there are more electrons, which can be bound by the positron and thus
form positronium, resulting in a higher counting rate. But also with a higher pressure the
positron is slowed down faster, its probability to bind with an electron decreases. Because
of this a maximum coincidence counting rate is expected at some pressure. Figure 9
shows the counting rates for pressures in the range of 0 bar to 7 bar of SF6, corrected
by the random coincidences from Section 4.3.1. It can be seen that the counting rate
increases up to 5.5 bar. Then a plateau is reached. The pressure chosen for the following
measurements is 7 bar, to achieve maximal counting rates and therefore better statistics.
The point at which the counting rate reduces again, could not be determined in this
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experiment, since it was not possible to set pressures higher than 7 bar.
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Fig. 9: Pressure dependence of the coincidence counting rate. The gas, of which the pressure is
changed, is SF6. The coincidences are measured with the scintillators 1 and 2.

Figure 10 displays the individual counting rates of the two scintillators used for the
coincidence measurement. Here the different behaviours of the counting rates attract
attention. The counting rates measured by scintillator 1 rise with growing pressure, but
the rates from scintillator 2 fall. Unfortunately, no explanation for this behavior has been
found so far and further systematic investigations would have to be conducted. However,
the expected behaviour of the coincidences in dependence of the pressure as shown in
Figure 9, gives confidence in the correctness of the setup and the strange behaviour is
ignored in the following measurements.
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Fig. 10: Single counting rates of the scintillators 1 (blue) and 2 (orange), which are used to
detect the coincidences at different pressures of SF6 gas.

4.4. 3γ-coincidences
The setup is changed into a configuration where 3γ coincidences are measured with 180◦
between the three scintillators. This allows, after some preliminary measurements, the
investigation of the quenching and the calculation of the hyper fine splitting. For this,
also new background measurements are performed.

4.4.1. Energy spectrum

In order to measure the 3γ-energy spectrum the windows of the SCAs of scintillator 2 and
3 are set, so that they exclude the peak at 511 keV and all higher energies. The window
of scintillator 1, which is connected to the computer, is fully open. The measurement
time is approximately 25 h. This spectrum is shown in the appendix in Figure 13. The
background, which is shown in Figure 14, is subtracted from the recorded spectrum and
the corrected spectrum is displayed in Figure 15. In order to transform the channels into
energy values the calibration from Table 1 for scintillator 1 is used. Figure 11 shows the
resulting energy spectrum.
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Fig. 11: Background reduced energy spectrum taken with scintillator 1 for the 3γ coincidences.
The peak of the 511 keV is cut off by the SCAs of scintillator 2 and 3 so that the peak which
is expected at around 340.7 keV is better seen. Onto this peak a Gaussian function is fitted. In
the lower picture the residual of the Gaussian fit function is shown with the data used for the
fit.

The main peak of the spectrum is fitted under the assumption of a normal distribution
with Equation 4, in order to determine its position. Since the uncertainties on the energy
are of similar size and small compared to the uncertainties of the rates, a least square
fit including only the rate uncertainties is performed. The resulting fit parameters are
listed in Table 5.

σ µ A B χ2
ν

(41.8± 1.1) keV (336.9± 0.6) keV (185± 7) keV s−1 (0.22± 0.03) s−1 0.04

Tab. 5: Fit parameters of the Gaussian least square fit shown in Figure 11.

By taking again one channel as the uncertainty for the position of the peak, one gets

E3γ = (337± 9) keV.

The theoretically expected value is one third of 1022 keV, the total energy of the positro-
nium

Etheo, 3γ = 340.7 keV.

Thus the experimentally measured energy is in good agreement with the theory, as it
coincides within a 1σ interval with a relative uncertainty of 2.7 %.



Positronium 22

4.4.2. Random coincidences

As described in Section 4.3.1, the random 3γ-coincidence rate is calculated. The rates
obtained from two night measurements (∼ 30 h) are shown in Table 6.

scintillator 1 scintillator 2 scintillator 3 random coincidence
Ṅ [s−1] 3663.4± 0.2 5901.0± 0.2 4606.2± 0.2 0.0098± 0.0003

Tab. 6: Counting rates obtained in two night measurements with T = 107 159.75 s (≈ 30 h).

Using the measured scintillator rates displayed in Table 6, τmeas from Section 4.3.1 and
Equation 3 yields

Ṅ τmeas
random, 3γ = (1.81± 0.05) ms−1.

This deviates strongly from the directly measured random coincidence rate, obtained
with a delayed signal from one of the scintillators

Ṅmeas
random, 3γ = (9.8± 0.3) ms−1.

Using τlit = 70 ns from the instructions yields

Ṅ τlit
random, 3γ = (1.463 75± 0.000 11) ms−1.

Using the measured random coincidence rate and Equation 3 rearranged results in

τmeas, 3γ = (181± 3) ns.

This value deviates 34σ from the τ obtained from the random 2γ-coincidence measure-
ment. This falsifies the considerations made earlier in Section 4.3.1. At this point a
statement about the true value of τ cannot be made and the directly measured random
coincidence counting rate is used for correcting the measured rates in the following.
Since the theory of Equation 2 and 3 is thoroughly tried and tested the cause of the
deviations must lie in the used electronics or the used method to obtain the data. An
uncertainty in the used method seems unlikely, since it is a standard method to utilize a
delay to fully de-phase coincidences to obtain only random coincidences [18]. The used
electronics are very old and have been used extensively over at least two decades and
are therefore with high certainty the cause for the measured irregularities. However, this
is not a problem, since the directly measured values accurately describe the behaviour
of the used electronics. Only a time or temperature dependency of τ could cause devi-
ations. In the following chapter the rates lie in the order of 0.10 s−1. Since a variation
of τ between 70 ns and 180 ns causes a difference of roughly 0.008 s−1 the effect would
be small but not negligible. Two separate night measurements were performed for the
random 3γ-coincidence rate. Evaluating both measurements individually yields

τ1 = (183± 4) ns, τ2 = (179± 4) ns.

No significant deviation between the two values is found. For a definite statement about
the time dependence of τ more measurements are required, but the collected data so far
does not imply one.
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4.4.3. Hyper fine splitting

In order to determine the splitting of the fine structure with 3γ decays, magnetic fields are
applied. The fields are chosen in the range from 424 G to 6000 G. In order to determine
the ratio between the counting rates with (N(B)) and without (N(0)) magnetic field.
After three measurements with a magnetic field, N(0) is determined again to compensate
for any instabilities of the setup.
The ratio is expected to decrease for higher magnetic fields according to Equation 1,
the theoretically derived formula for the quenching. There the factor f depends on the
geometry of the setup. Since in this experiment the scintillators are set 120◦ apart,
ftheo = 0.5 is expected [8]. The green line in Figure 12 shows the expected quenching
function obtained from theoretical values which are listed in Section 2.2.
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Fig. 12: The ratio between the counting number with and without magnetic field in dependence
of the magnetic field is shown. The green line is the theoretically expected behaviour. The blue
crosses are the measured data and the red line is the quenching function fitted to the data. The
lower plot shows the residual of the fitted function. The black data point is not used for the
fit, as it is an outlier.

Figure 12 also shows the experimentally measured data, corrected by the random coinci-
dences from Section 4.4.2. Since N(B) and N(0) are measured for equal periods of time,
in this part of the experiment N and not Ṅ is considered. The same results would be
obtained if Ṅ would be used since the times cancel out. The uncertainties of N(B)/N(0)
are calculated with the assumption of Poisson distributed counts. The uncertainty on
the magnetic field is 2 %, according to [8].
The black data point at approximately 0.1 T is not used in the fit. It has to be an outlier,
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since it is physically not reasonable to have a N(B)/N(0) > 1 under allowance of the
uncertainty.
In order to determine the hyper fine splitting, Equation 1 is fitted to the data with the
fit parameters f and ∆W . Since a least square fit is used, the uncertainties from the
magnetic field are projected onto the y-axis with Equation 1, where the theoretical values
for ∆W and f are inserted. These resulting uncertainties are then quadratically added to
the count uncertainties. The resulting fit function, together with its residual, are shown
in Figure 12. The fit parameters and the reduced χ2 are listed in Table 7.

f ∆W χ2
ν

0.49± 0.04 (215± 29) GHz 0.73

Tab. 7: Fit parameters for the quenching function in Figure 12.

The f -value indicates that three γ-quanta are detected since it is in a 1σ range to
ftheo, 1 = 0.5, with a relative uncertainty of 8.2 %. Due to this, the fit is also performed
with the f -factor fixed to 0.5 and results in a χ2

ν of 0.74. This is shown in Figure 18
in the appendix. Here the resulting hyperfine splitting is ∆Wftheo, 1 = (225± 13) GHz,
which also is in a 1σ range to the fit with a free f .
An alternative value given by [8] is ftheo, 2 = 0.404. This would indicate that only one γ
is detected and the energies and angles of the other two are integrated over [8]. This is
again used for an extra fit, which yields χ2

ν = 0.80. The f -value measured with no preset
f is in a 3σ range to ftheo, 2. Thus this interpretation of the setup does not fit very well
to the result. The resulting hyperfine splitting is with ∆Wftheo, 2 = (164± 13) GHz in a
2σ range to the result with a free f .
The hyper fine splitting of Table 7, holds a relative uncertainty of 13.5 %. The experi-
mentally measured value is in good agreement with the hyper fine splitting indicated in
the literature ∆Wftheo, 1 = 204.4 GHz [1].
The large uncertainty of ∆W might be a result of the deviations of the measured data
from the function, especially in the range from 0.1 T to 0.2 T. In this area measurements
were performed without turning off the power supply of the magnetic field after three
measurements, which would have allowed the system to cool down. It is assumed that
this has led to heating of the electronics and thus stronger deviating coincidence rates.
It also might have resulted in differences between the current shown by the power supply
and the one it actually provided, which causes a change in the applied magnetic field
strength.
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5. Summary and Discussion
The formation of different positronium states under the influence of a magnetic field was
studied. For this preliminary characterizations and measurements were performed.

The spectrum of 22Na is determined with all three scintillators. As expected, in each
spectrum two main peaks are found, which correspond to the photon energy of 1270 keV
of the 22Na decay and 511 keV, which is the result of the 2γ decay of the positronium [1].

The random 2γ-coincidence background rate was experimentally determined, by delay-
ing one scintillator signal, so that it can not coincide with the signal from the second
scintillator caused by the same decay

Ṅrandom, 2γ = (5.53± 0.07) s−1.

This rate is used to correct the measured rates for 2γ-coincidence measurements.

In order to determine the angle correlation of the 2γ coincidence counting rate, the
window of the SCA is set around the 511 keV peak. The angle between scintillator 1 and
2 is varied between 160◦ and 230◦. It is found that the maximum counting rate is gained
at

θ = (181.89± 0.09)◦.

Since this angle cannot be set with scale on the setup, the nearest mark at (182.5± 1.0)◦
is chosen as the position for the scintillator. The deviation of the angle from 180◦, which
would be expected due to the momentum conservation of the 2γ decay, could have the
following reasons: It can be a result of a shifted scale, or less probable, since it is screwed
to the setup, a shift in the position of scintillator 2. Another origin of this shift might
be the source. Since it is mounted on a foil of which neither size nor orientation are
known, this also might have some influence on the maximum counting rate. By checking
the counting rates of the single scintillators this assumption is substantiated. Here an
angle dependence of scintillator 1, whose position is changed, is found. It is also found
that scintillators, which are close together, seem to influence each other, as can be seen
in Figure 8 for scintillator 1 and 3 at large angles. The mutual influence is no problem in
this experiment, since the scintillators are 120◦ apart in the 3γ coincidence measurements
and thus not in the critical region. What causes the influence could not be determined
here. For this some additional tests would have to be performed.

To find the optimum gas pressure for which a maximum possible amount of positronium
decays can be detected, the coincidence counting rate is measured for different pressures
between 0 bar and 7 bar. Scintillators 1 and 2 are used for this. A plateau is found
in the range of 5.5 bar to 7.0 bar. Because of this an operating pressure of 7.0 bar is
chosen. The expected decrease of the counting rate at even higher pressures can not be
observed due to the low pressure in the gas bottle, which limits the maximum pressure
to 7 bar. The single counting rates of scintillators 1 and 2 in this measurement, show
a behaviour which was not expected. One would expect both single counting rates to
develop in similar ways. Instead the counting rate of scintillator 1 rises as expected for
higher pressure, but that of scintillator 2 decreases slightly. No real explanation for this
behaviour is found, especially since the coincidence rate increases. One possible source
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of this behaviour might be that the counter for scintillator 2 is somehow broken, but in
order to verify this assumption, scintillator 2 would have to be analyzed in more detail.

In order to measure 3γ coincidences, the SCA windows of scintillator 2 and 3 are closed
so that the peak at 511 keV and higher energies are not measured. The three scintillators
are positioned with 120◦ between them. At first, the spectrum, which is gathered with
scintillator 1, is measured together with a background spectrum, which is subtracted
from the main spectrum. To get the energy spectrum, the calibration, which was done
with the peaks of the 22Na-spectrum, is used. In this way the energy of the 3γ decay is
determined to be

E3γ = (337± 9) keV.

This is in a 1σ range to the theoretically expected value of Etheo, 3γ = 340.7 keV with a
relative uncertainty of 2.6 %.

The random 3γ-coincidence background rate is also obtained by delaying one of the
signals and results in

Ṅrandom, 3γ = (9.8± 0.3) ms−1.

Finally, the hyperfine splitting of positronium is determined by measuring the 3γ coinci-
dences with different magnetic fields applied. By fitting Equation 1 to the data the fine
splitting

∆Wffree = (215± 29) GHz

with a relative uncertainty of 13.5 % and the f -value

ffree = 0.49± 0.04

are found. This is compared to the splitting which is obtained for the two f -values
ftheo, 1 = 0.5 and ftheo, 2 = 0.404, proposed by [8]. For both values of f the splitting is
determined and listed in Table 8.

ftheo ∆W [GHz]
0.5 225± 13

0.404 164± 13

Tab. 8: Hyper fine splitting results which are determined with fixed f -values.

The free f -value is in a 1σ range to ftheo, 1 and 3σ to ftheo, 2 with a relative uncertainty
of 8.2 %. This indicates that the fitted value is in better agreement with ftheo, 1, but due
to the relative uncertainty also a description by ftheo, 2 would be possible.
The splitting ∆Wffree is also better described by ∆Wftheo, 1 , to which it is in a range of
less than 1σ, whereas ∆Wftheo, 2 deviates by 3σ. It follows that ftheo, 1 seems to describe
this experiment better, which is expected due to the geometry of the setup.
Comparing ∆Wffree to the literature value ∆Wflit, 1 = 204.4 GHz [1], which was used in
the plot in Figure 12, a deviation of less than 1σ is found. This is also the case, if the
result of a precision measurement of the ground state hyperfine splitting is considered [2],
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where ∆Wlit, 2 = (203.3942± 0.0016) GHz was determined.
The large uncertainty on ∆W , which relativizes the good agreement with the literature, is
assumed to origin mainly from the scattering of the counting rates in the measurements
between 0.1 T and 0.2 T. This might be due to the heating of the coils, since those
measurements were performed with no brake in between, where the power supply for the
B-field would be turned off. Also the χ2

ν < 1 indicate, that noise is present in the data,
and the algorithm is overfitting the data.
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Appendix

A. Error propagation
If the N variables xi of a function f are not correlated,

sf =

√√√√( df

dx1
s1

)2

+ ...+
(
df

dxN
sN

)2

(8)

is used with the error si of xi. In case that the variables are correlated,

sf =
√

(∇f)T ·M · ∇f (9)

has to be applied. Here M is the covariance matrix.

B. Additional Plots
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Fig. 13: Spectrum of the 3γ-coincidence mea-
surement without subtracted background.
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Fig. 14: Background of the 3γ-coincidence
measurement.
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Fig. 16: 22Na spectrum measured with scin-
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quire their channel positions. The small edges,
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Fig. 17: 22Na spectrum measured with scin-
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C. Additional Tables

scintillator 1 scintillator 2 scintillator 3
positronium photopeak positronium photopeak positronium photopeak

µ 454.70± 0.03 1141.1± 0.2 553.49± 0.10 1386.2± 0.2 530.47± 0.09 1328.5± 0.2
σ 32.4± 0.2 79.8± 0.7 42.05± 0.14 81.1± 0.2 44.23± 0.08 86.2± 0.3
A [s−1] 3062± 34 1151± 18 4134± 20 1078± 2 3619± 7 930± 4
B [s−1] 17.5± 0.2 0.52± 0.05 4.48± 0.07 0.120± 0.002 3.790± 0.014 0.217± 0.009
χ2
ν 2.9 3.9 1.1 2.0 1.4 1.5

Tab. 9: Fit parameters to the energy spectra which are shown in Figure 6, Figure 16 and
Figure 17.
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