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1 Theoretical Background

This section is inspired by [5] and treats the theoretical background needed to perform the experi-
ment and analyse the data.

1.1 VMI-Spectroscopy

A Velocity-Map-Imaging-spectrometer is used to determine the velocity of ions/electrons originating
from an ionization volume. The spatial distribution is of no direct interest using this method but
the experiment should be build in a way that the initial spatial distribution does not influence
the measurement, which is realized by a proper setting for the ion optics. A schematic setup of a
VMI-spectrometer is shown in fig. 1: Between the electrodes atoms are ionized by a laser beam and
accelerated towards the detector system. The electrodes forming the ion optics should be setup
to compensate for any initial spatial-distribution. The setup used to carry out the experiment is
described in section 2.

Figure 1: Schematic sketch of the setup of a VMI-spectrometer. Potassium is ionized by a laser
and the ions are accelerated by the ion optics. Due to different velocities the beam expands on a
sphere that is mapped on the detector what gives the raw image. With help of the Abel inversion
the raw image can be the velocity map can be created. Image taken from [1]. Note however that
the shown setup differs from the actual setup used in this experiment. The used setup crosses the
laser beam and the particle beam in a plane parallel to the detector screen.

1.1.1 The Velocity Distribution

To determine the properties of the velocity-distribution we assume the particles are ionized in a
single point such that the initial spatial distribution is not relevant. Each of the ionization products
has an initial velocity vi = (vxi, vyi, vzi)

> that we want to measure. The particles are accelerated
in ez-direction by the electric field between the electrodes (ion optics), such that the initial 3-
dimensional distribution is mapped on a 2-dimensional detector surface. Using a linearly polarized
laser for ionization a cylindrically symmetric velocity-distribution in direction of the polarisation is
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created. With help of the inverse Abel-transformation the initial distribution can be reconstructed
out of the two-dimensional image, given the symmetry properties of the initial distribution.

Abel Transformation and Inversion For a cylindrically symmetric distribution f(r, y) the
observed signal can be calculated by

F (x, y) =

∫ ∞
−∞

f(r, y) dz = 2 ·
∫ ∞
0

f(r, y) dz, (1)

which can be rewritten by substituting r2 = x2 + z2 and dz = r√
r2−x2

dr, which yields

F (x, y) = 2 ·
∫ ∞
|x|

f(r, y) r√
r2 − x2

dr. (2)

Where F (x, y) is the Abel-transformation, used to calculate the observable image of an initial
distribution f .

In this experiment the Abel-inverse-transformation is needed to calculate the initial distribution
with help of the image. The inverse transformation is given by

f(r, y) = − 1

π

∫ ∞
|r|

dF (x, y)

dx

1√
x2 − r2

dx. (3)

To analyse experimental data this inverse transformation can not be used directly, since the im-
age F (x, y) will not be continuously differentiable due to the finite resolution of the detector signal.
Hence, we need a numerical method to reconstruct the desired 3-dimensional velocity distribution.

BASEX-Method As the formal inversion eq. (3) can not be solved analytically for the experi-
mental data, the BASEX-method is used as a numerical approach. The BASEX-method uses basis
functions f̄k in the space of f with known projection to the detector, calculated by eq. (2). The
basis functions should be analytically integrable, such that the Abel-transformation can be calcu-
lated. Furthermore the distribution after the transformation should be able to show sensible small
structures and be smooth on small distances. The basis

f̄k =
( e
k2

)k2 ( r
σ

)2k2
exp

(
−
( r
σ

)2)
(4)

satisfies these conditions. The parameter σ determines the width and positions of the maxima and
should be chosen close to the magnitude of the smallest structure the detector can resolve. For this
basis the Abel-transformation is

F̄k(x) = 2σρk(x)

1 +

k2∑
l=1

((x
σ

)−2l l∏
m=1

(k2 + 1−m)(m− 1
2 )

m

) (5)

Expanding the measured image F according to F̄k gives the searched initial distributions f as a
linear combination of the basis functions f̄k. In fig. 2 some basis functions for the BASEX-methods
and the Abel-transformed images are shown.
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Figure 2: In this figure the basis functions for the fit of the raw data are shown (above) and the
Abel inversed basis functions are shown (below) (source: [5]).

1.2 Properties of a Gaussian Beam

In the previous parts it was assumed that the ions originate a point source. In the experiment this
is not realized and the ionization area depends on the appearance of the focused laser. To describe
the width of the laser beam the model of Gaussian beams is used, the principle is sketched in fig. 3.
In direction of the propagation the beam shows a Lorenz-profile and perpendicular to the axis the
profile is Gaussian. The minimum width can be found in the focus of the beam. The intensity in
dependence of the distance from the z-axis r, where z is the direction of propagation is given by

I(r, z) = I0

(
w0

w(z)

)
exp

(
− 2 r2

w(z)2

)
. (6)

In this equation the origin is set in the focus of the beam and

w(z) = w0

√
1 +

(
z
zR

)2
(7)

gives the width of the laser perpendicular to the direction of propagation. The parameter w0 is the
width of the laser in the focus, hence the radius of the beam at 1

e -amplitude. For a beam focused

by lenses and assuming a parallel setup, the width of the beam can be calculated by w0 = λf
πwl

with λ the wavelength of the laser, wl the width of the beam at the position of the lens and f the

focal length of the lens. The parameter zR =
πw2

0

λ is called Rayleigh length and the focal area of
the laser is the interval [−zR, zR] centered around the position of the focus. At the edges of this
interval the width is given by w(−zR) = w(zR) =

√
2w0.
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Figure 3: Sketch of the focal region of a Gaussian beam. Image from [2], accessed: 11.03.2021

As the VMI-spectroscopy should be independent of the initial spatial distribution, the finite ioniza-
tion area created by the laser has to be compensated, since a point-like ionization area was assumed.
This is done by arranging the ion-optics such that an inhomogeneous electric field is generated. In
this experiment this is done following the Eppink-Parker-Design with three electrodes as sketched
in fig. 4. The electrodes are the closed repeller- and the open extractor- and ground-electrodes.
Depending on the distances of the electrodes as well as the radius of the holes in the open electrodes
an ideal ratio of extractor- and repeller-voltage 0 ≤ UE

UR
< 1 has to be chosen. The procedure to

determine this ratio is described in section 4.

Figure 4: Eppink-Parker-Design with repeller-, extractor-, and ground-electrode. Figure taken
from [5].

1.3 SMI-Spectroscopy

The same spectrometer with different settings in the ion optics can also be used to determine the
spatial distribution of a beam. This setup is called Spatial-Map-Imaging-spectrometer and the ion
optics have to be configured in a way that two atoms or electrons that originate the same place are
mapped on the same place on the detector, regardless of their initial velocities. The switch between
SMI- and VMI-spectroscopy can be done fast and it solely depends on the voltages applied on the
electrodes in the ion-optics, so one setup can be used to determine both distributions.
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1.4 Properties of Potassium

Potassium is an alkali metal. It has atomic number 19 and the term symbol K. The most common
isotope is 39K with an natural occurrence of 93.26 % [3]. Potassium is very reactive, hence in the
setup of the experiment it hast to be handled carefully. Any contact with air humidity has to be
avoided, therefore potassium has to be kept under vacuum conditions. The electron configuration
is [Ar]4s1 and the level scheme is shown in fig. 5.

Figure 5: Level scheme of Potassium. The laser populates the 5p3/2-state, from which the atom
can be ionized (REMPI-path). The other levels get populated by spontaneous decay and can also
be ionized by the used laser, allowed transitions are indicated by the dashed lines. Figure taken
from [8]

1.5 Photoionization and the Anisotropy-Parameter

Potassium can not be directly ionized from the ground state with the used laser. The laser has
a wavelength of about 404.5 nm and can be used to populate the 5p3/2 state from which it can
be ionized, so it follows a two photon REMPI (Resonant Enhanced Multi Photon Ionization) pro-
cess 4s1/2 → 5p3/2 → K+, which leads to a kinetic energy of circa 1.8 eV of the emitted electron.
If the system relaxes before ionisation it can be ionized out of one of the lower states, which leads
to a different kinetic energy. The different possible paths that can be taken are illustrated in fig. 5.
Therefore the energies of the different excited states can be determined using

Elevel = Ekin + Eion − Elaser, (8)
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where Elaser is the energy of the used laser, Ekin the measured kinetic energy and Eion the energy
needed to ionize Potassium.

The K-atoms inside the ionisation volume are not polarised, therefore the directions of the orbital
angular momenta are oriented arbitrarily. The laser used for ionisation is linear polarized so we
will observe all possible projections of the orbital angular momenta on the direction of polariza-
tion. Therefore the measured distribution Jnl(Θ,Φ) is the cumulation over all possible distribu-
tions Jnlm(Θ,Φ) with respect to the quantum number m, so for the absorption of a linear polarised
Photon we find

Jnl(Θ) = 1 + βP2(cos Θ). (9)

where P2(x) = 1.5x2 − 0.5 is the second Legendre polynomial and β ∈ [−1, 2] is the anisotropy
parameter. As the REMPI process is a two photon ionisation two anisotropy factors will be en-
countered and the distribution is given by

Jnl(Θ) = 1 + β2P2(cos Θ) + β4P4(cos Θ) (10)

with the fourth Legendre polynomial P4(x) = 4.375x4 − 3.75x2 + 0.375.
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2 Experimental Setup

2.1 The Laser System

The used laser is a ‘Toptica DL pro’, a single mode tunable diode laser. The frequency of the
laser can be changed by adjusting the laser current or changing the piezo voltage. The piezo
element moves a grating which reflects light back into the laser diode and adjusting the grating
will change the frequency which gets amplified by the laser diode. Reflections and scattering could
cause disturbances in the laser so they are avoided by setting up an optical diode into the beam
directly before the laser exits. Additionally the temperature of the diode impacts the band gap of
the semiconductor and therefore can also change the frequency of the emitted light.

Figure 6: Setup of the beam path. 1: laser, 2: λ/2-plate, 3: PBS, 4: the beam leaves this setup
here through a hole in the wall on the left side

Optical Elements To adjust the beam path lenses, mirrors, a polarizing beam splitter and a
λ/2-plate are used. The setup is shown in fig. 6.

λ/2-plate: A λ/2-plate is made of an anisotropic material which has different refractive indices for
the ordinary and the extraordinary beam. Going through the material both beams undergo a phase
shift and by adjusting the length of the material the relative shift between the two beams can set
to λ/2. Hence linearly polarised light with an angle of θ to the optical axis of the material will have
a polarization of −θ after passing the λ/2-plate.

Polarizing Beam Splitter (PBS): A PBS splits the beam in two perpendicular polarized parts, so
the initial beam could be described as the superposition of an orthogonal and a parallel polarized
wave.
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2.2 K-Oven

In an oven solid potassium is heated so K-atoms evaporate. The solid potassium is placed inside a
small steel container which is wrapped by a copper clamp on which the heaters are mounted. As a
well collimated beam is needed just a simple hole were the atoms could leave the oven would not
be sufficient, but the metal around the hole is cooled. Hence around the hole atoms condensate at
the walls and only the atoms with a well defined velocity vector can leave the container. In the
ionisation region the potassium beam has a diameter of about 3.5 mm. The placement of the oven
in the setup is shown in fig. 7.

2.3 LT-Detector

The Langmuir-Taylor-detector is a simple apparatus used to detect alkali atoms. In this setup
it is used to check if the evaporation of K-atoms works as expected, therefore it is placed directly
opposite of the oven. A Rhenium filament ionizes the K-atoms between two electrodes. The electric
field accelerates the ions through a hole in one of the electrodes towards a Faraday cup, where a
current is measured. With the measured current and the area of the ionising filament, which is
given as 6 mm ([7]) the intensity of the beam can be calculated. The placement of the atom-detector
is shown in fig. 7.

Figure 7: K-oven, LT-detector and ion-optics. 1: LT-detector, 2: The light that leaves the beam
path shown in fig. 6 is focussed by a lens and enters the detector setup here, 3: K-oven

2.4 Surface Detector

The ionized K-atoms are accelerated towards the surface detector so the data for the 2-dimensional
velocity map can be taken. The detector consists of three parts: Amplifying micro channel plates,
a detecting phosphor screen and a light sensitive camera. The setup of the detector is shown in
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Figure 8: Outside of the detector. 1: the beam leaves the setup shown in fig. 6 here, 2: lens used
to focus the laser (f = 150 mm, 3: glowing filament as part of the LT-detector, 4: at this high
the ion-optics (Eppink-parker-Design with repeller-, extractor-, and ground-electrode) are placed,
5: from bottom to top the MCP, the Phosphor-screen and the camera are placed here, 6: the laser
beam leaves the vacuum chamber here
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Micro Channel Plates (MCP) To amplify the signal before it is detected by the screen, a set
of micro channel plates is used. A MCP is made of highly resistive material and when a charged
particle hits the front of the MCP electrons are generated which leave the MCP on the other side.
The principle is further illustrated in fig. 9.

Figure 9: Illustration of a MCP. On the left the front view is shown. On the right side the
amplification process is illustrated: When an electron (or any charged particle) hits the MCP the
electron is accelerated due to the voltage between front and back of the MCP. While passing one of
the channels, the electron hits the walls and generates more electrons, that leave the MCP on the
other side. Image taken from [4].

Phosphor Screen The amplified signal, so the electrons that leave the MCP are accelerated
towards a phosphor screen. Each time an electron hits the screen they cause a light flash which
can be detected by a suitable camera. The used phosphor screen has a flash that takes circa 4 ms
to decay [7].

Camera The flashes of light are captured by a charge coupled device camera and the pictures
are transferred to a computer for further use.

2.5 Vacuum System

As potassium is very reactive, it needs to be kept under high vacuum conditions. Additionally the
MCP should only be used in a vacuum, otherwise electrical discharges of possible contamination
could occur. The vacuum is established with help of a membrane pump and a turbo-molecular
pump.
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3 Procedure

The first part of the experiment consisted of VMI- and SMI-spectroscopy with help of simulations.
During this part the data shown in section 4 was generated and is also discussed there.

General Preparation Before starting the experiment, the optical path was checked. A piece of
paper was used to check the path before and after each optical element and the diameter and the
brightness did not change during the path, so it was already aligned. Furthermore it was checked
if the laser entered and left the vacuum chamber at the same hight. Since this was also the case
the beam path was not readjusted.

Preparing the Oven and the Voltages To heat up the oven, the heater voltage was set to 33 V
and it was taken care, that the oven temperature does not get higher than 160 ◦C. For measurements
in SMI- and in VMI-mode the voltages of the MCP, the phosphor screen and ion-optics had to be
set. The desired polarity (positive for ions and negative for electrons) was chosen and afterwards
the input voltage of the voltage divider was set to 3 kV. Afterwards MCP and phosphor screen
were slowly set to the right voltages in steps of about 50 V to 100 V. This process has to be slow
and alternating, so the difference between UMCP and UPh does not get higher than 3 kV, and stays
as low as possible, and in a way that any dust or remaining charge in the vacuum chamber does
not destroy the MCPṪhe used voltages were about UMCP = 1600 V and UPh = 3.4 kV.

Setting the Laser Wavelength As the K-Cell-setup originally used to set the laser to the correct
wavelength was broken, a spectrometer was used to roughly set up the laser. The spectrometer was
placed behind the vacuum chamber (see position 6 in fig. 8) and connected to a computer. The
placement of the spectrometer had to be chosen in a way that the laser does not directly hit the
spectrometer, but only a small part is measured, otherwise the measured intensity would be too
high. With help of the output of the spectrometer (see fig. 29) it was tried to set the maximum of
the peak to about 405.5 nm by changing the laser current and the piezo voltage. As the signal of the
spectrometer varied a lot, even though the parameters on the laser were not changed this method
does not seem to be a good approach to determine the right laser settings. It has to be noted that
the optimal settings for the laser using the spectrometer where not used for later measurements
since no signal was measured using them. Altough the wavelength was set right the intensity was
probably not enough. Therefore it was decided to continue with setting up the laser with help of
the signal of ions in SMI-mode.

With the voltages set as explained before, the voltage ratio UE/UR = 0.9 was set and the program
FlyCapture was used to see the signal of the camera. For the set voltages and the chosen voltage
ratio a signal is expected, so the parameters of the laser were changed until signal was found.
The first signal was found for a laser current of about 50.625 mA and a piezo voltage of 1.575 V.
As these laser settings were not really stable the values were adjusted a lot during the following
measurements, but were mostly kept close to the first obtained values.

Spatial Map Imaging with Ions Having set up the laser, the first measurements were per-
formed. To later determine the image ratio, the lens used to focus the laser before entering the
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vacuum chamber (see fig. 8) was moved to different positions and for each position the obtained
signal of the camera (in SMI-mode a small horizontal line) was saved and the corresponding position
of the lens was noted.

As the optimal voltage ratio UE/UR found in the simulations is not necessarily the perfect ratio for
the experimental setup, the signal of the camera was taken for different voltage ratios. This data
can later be used to determine the ratio with the best, thus the sharpest signal.

Velocity Map Imaging with Electrons Same as for SMI-mode the simulated voltage ratio is
most probably not perfect. Therefore the signal for VMI with electrons (we expect three circles,
but for most of the cases only two are easy to see) has been taken for different voltage ratios. Again
this data can be used to find the ratio with the sharpest signal. For the best voltage ratio the signal
has been optimized again by tuning the laser and changing MCP- and Phosphor-screen voltage a
little, so the signal is bright and sharp and several pictures have been taken.

Furthermore a background signal has been taken, means the voltages were kept but the laser was
turned off.

To find a relation between the signal and the repeller-voltage, the VMI-signal was taken for different
repeller voltages while keeping the ratio constant.

Abel-Inverse with pBASEX To determine the energy of the K-states and the anisotropy param-
eters the program pBASEX has been used to process the taken pictures. The raw data can be loaded
in the program and the Abel-inverse can be calculated. Different options can be used to achieve
a better picture and also the center of the image has to be set by hand carefully. Moreover the
background can be loaded into the program and subtracted. The data of the whole Abel-inverse pic-
ture, the photo electron spectra in dependence on the radius and estimated anisotropy-parameters
in dependence on the radius can be saved.

Oven-Measurement To check the relation between the atomic flux and the temperature of
the K-oven, the flux was measured for different temperatures. First of all the oven was heated
to a maximum. Afterwards the current through the Re-filament was switched on and checked
whether it started glowing. To measure the flux in dependence on the temperature, the repeller
and extractor voltages were changed so a maximum current was measured in the femtoamperemeter.
This maximum current was found for a ratio of UE/UR ≈ 0.54. For this fixed ratio the heater-voltage
was switched off and pairs of measured current and corresponding temperature were collected.
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4 Simulations

In the first part of the experiment we did simulations using the program SimIon[6]. This program
solves the Poisson equation for a given charge distribution numerically. Therefore the trajectory
of a massive charged particle with given initial conditions can be simulated, which is also done
by SimIon. An implementation of the charge distribution was given and loaded into the program.
Since there was no information given on the precision of the simulation, no direct errors on the
simulated data are taken into account. Also for reasons discussed later in the protocol, it has to be
assumed that the loaded charge distribution differed from the one used in the experiment.

4.1 Optimal Voltage Ratio in VMI Mode

In the theoretical description of the experiment it is assumed that the potassium atoms are ionized
in a single point, which of course cannot be realized in experiment. It is therefore necessary to
compensate for the size of the ionization volume. Hence, we adjust the ion optics (repeller and
extractor) in a way that two velocity vectors, which source at different points within the ionization
volume, are mapped on the same spot on the detector screen.

At first two electrons where placed in the ionization volume with identical velocity vectors but
different spatial starting points. The first electron was set z = 0.5 mm above the center of the
ionization volume and electron 2 was set to z = −0.5 mm below the center. The repeller voltage
was set to UR = −3 kV. To find the optimal ratio of the extractor voltage UE and the repeller
voltage UR, we scanned the range UE = 2 kV, . . . , 3 kV in steps of 0.1 kV. The optimal ratio is
given when the distance on the detector screen is minimal, since ideally the two electrons should
be mapped on the same point because they started with the same initial velocity. We did a quick
analysis after the first scan to check for a smaller interval within which the minimum should be
found. This strategy was iterated a few times. The results of the simulations are shown in fig. 10.
The position of the minimum was estimated to be 0.862± 0.002. This results in an optimal extractor
voltage of UE = (2586± 6) V, given a repeller voltage of UR = −3 kV. Since there is no known
theoretical function which would be sensible to fit to the data the estimation of the minimum was
performed by direct examination of the experimental data. The error on the estimated ratio was
estimated likewise.

Variation of UR keeping UE/UR constant

For the next task we checked the behavior of the simulated signal, for changing repeller voltages UR
while keeping the optimal voltage ratio, hence changing the extractor voltage UE according to
the ratio. As expected the distance on the screen was still a minimum, since when we chose UE
different from the value dictated by the optimal ratio the distance on the screen increased. It was
noticeable that the minimum distance at this ratio was changing when we changed the repeller
voltage UR. The minimal distances are plotted against the repeller voltage in fig. 11 and we see,
that the distance gets smaller for higher voltages.
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Figure 10: In this figure the ratio of the distances is plotted against the voltage ratio. The position
of the minimum was estimated to be 0.862± 0.002. Since there is no theoretical function which
could be fitted to the data the estimation was performed by examination of the data with help of
the red line.
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Figure 11: In this figure the minimal distance on the screen is plotted against the chosen repeller
voltage UR.
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4.2 Simulation of many Particles in VMI Mode

Now 500 particles where set to the same initial position in the center of the ionization volume. The
azimuthal and polar direction of the velocity vectors where distributed by a uniform distribution,
whereas the absolute of the velocity vector was set by choosing a particular kinetic energy for all
the particles particle. We have chosen the kinetic energies Ekin. ∈ {0.1 eV, 0.2 eV, 0.3 eV}. The
measured signal for the three kinetic energies is shown in fig. 12. It is seen that the three kinetic
energies correspond to signals with three different radii, just as expected.
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Figure 12: In this figure the simulated detector signal is shown.

Estimation of the Radii (Optional)

To estimate the radii we used the data displayed in fig. 12. For every point we calculated the
distance to the middle of the detector, and then sorted the data by distance. To estimate the
radius for a given kinetic energy the ten greatest radii of the corresponding sample where used to
calculate the mean value. For good measure we also calculated the standard deviation, although
it has to be emphasized that a sample size of 10 radii wont allow an extremely precise estimation
of the mean value and the standard deviation. For a kinetic energy of Ekin. = 0.1 eV we got a
radius of r1 = (24.1661± 0.0005) mm. For a kinetic energy of Ekin. = 0.2 eV we got a radius
of r2 = (33.9873± 0.0006) mm. For a kinetic energy of Ekin. = 0.3 eV we got a radius of r3 =
(41.4535± 0.0005) mm.

Electron groups for different UE , ER (Optional)

In accordance with the previous simulations we put 500 electrons on the same position inside the
ionization volume. Again the polar and azimuthal angles are distributed uniformly. The same three
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energies as in the task before were used. In fig. 13 the simulated data is shown. As expected the
radii of the signal decreases with increasing the repeller voltage. This is caused by the decrease of
the time of flight, since the acceleration towards the detector screen is higher for higher voltages.
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Figure 13: In this figure the simulated detector signal is shown for different choices of the repeller
voltage UR. Again the signal for three different particle energies are shown. The energies displayed
are Ekin. = 0.1 eV (red), Ekin. = 0.2 eV (blue), Ekin. = 0.3 eV (grey). As expected the radii of the
signals decrease for higher repeller voltages, which is due to a reduced time of fly caused by the
higher acceleration toward the detector screen.

4.3 Optimal Voltage Ratio in SMI Mode

To determine the optimal voltage ratio for the SMI mode, two potassium ions where positioned on
the same point within the ionization volume. The velocity vectors where set in a way that they
point in opposite directions. The chosen orientation is that one velocity vector points up and one
points down parallel to the detector surface. The absolute of the velocities where set to the same
kinetic energy of Ekin. = 0.1 eV. Now the same range of voltages was scanned as in the VMI mode.
The data is shown in fig. 14. The position of the minimum was estimated to be 0.915± 0.002. Since
there is no theoretical function which could be fitted to the data the estimation was performed by
visual examination of the data. The error was estimated the same way.

4.4 Simulation of many Particles in SMI Mode

Now a bunch of 500 potassium ions where put inside the ionization volume. Now we calculated
the parameters which control the size of the ionization volume. These parameters are explained in
fig. 3. Using the relations

zR =
πw2

0

λ

w0 =
λf

πwl

(11)
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Figure 14: In this figure the distances of the point where the electrons hit the screen is plotted
against the voltage ratio. The position of the minimum was estimated to be 0.915± 0.002. Since
there is no theoretical function which could be fitted to the data the estimation was performed by
examination of the data with help of the red line.

and the optimal laser wavelength λ = 404.528 47 nm, the focal length of the used lens f = 150 mm
and the diameter of the laser beam before collimation wl = 1 mm we get

w0 = 19.315 µm

zR = 2.897 mm.
(12)

For the positions of the potassium ions a cylindrical distribution was chosen, where the radius of
the cylinder was set to r =

√
2w0 and the height of the cylinder was set to h = 2zR. The velocity

vectors where again defined by a normal distributed polar and azimuthal angle and a constant
magnitude. The optimal voltage ratio for the SMI mode was used, hence we expected that the
different velocities should not affect the signal at all. This expectation, although reasonable, was
not met to the desired extend. The signal, which is displayed in fig. 15, does change slightly for the
different magnitudes of the velocity vectors.
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Figure 15: In this figure the signal of the SMI simulation is presented. It is seen that the signals for
the different velocity magnitudes differ. Note however, that the difference in both spatial directions
is of the same magnitude. This might be an indicator for an error caused by the numerical simulation
of the trajectories. Additionally the signal shows the expected rectangle/line shape although the
velocities are distributed spherically. Hence a numerical error of the simulation might be the cause
for the unexpected broadening of the spatial signal.

Potassium groups for different UE , ER (Optional)

Since the signal in fig. 15 was not that satisfactory, caused by the deviation between the signals
with different magnitudes of velocity, we varied the ratio of the voltages again. Instead of just
checking for the distance on the screen of two ions we now examined the signal for 500 ions, to
check whether or not the different energies will be mapped on the same area for a different ratio
of voltages. Therefore we kept the repeller voltage constant and varied the extractor voltage by a
little such that the ratio is varied. The results of this simulation are shown in fig. 16. It is seen
however that the signal with the optimal ratio remains to be the optimal signal.
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Figure 16: In this figure the simulated detector signal is shown for different choices of the extractor
voltage UE in SMI mode, while keeping the repeller voltage constant, hence the ratio is varied. Again
the signal for two different particle energies are shown. The energies displayed are Ekin. = 0.1 eV
(blue), Ekin. = 0.2 eV (red). It is seen that although the two energies are not mapped perfectly to
the same area for the optimal ratio, the ratio should be still the optimal one, since when varying
the ratio the, signal gets worse.
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5 Data Analysis

5.1 Atom Beam Detector

To check the dependence of the atomic flux on the oven temperature, the intensity was measured
for different temperatures. This was done by measuring a current in a Faraday-cup created by
ionized atoms. The ratio between repeller and extractor voltage in the ion optics with the maximal
flux was UE/UR ≈ 0.54, but as the flux itself varied a lot it was difficult to determine a perfect
ratio. Thus the atomic flux J can be calculated by

J =
I

eA
, (13)

where I is the measured current, e the electric charge and A is the area of the ionising filament.

The result is shown in fig. 17 and it shows the expected exponential behaviour. The uncertainties
are 0.2 ◦C on the temperature and between 1.4 · 107 atoms/mm2s and 1.4 · 106 atoms/mm2s for
the flux. The error on the flux varies, because the change was much faster and the values were
fluctuating a lot for higher temperatures.

The later measurements were performed between 150 ◦C and 153 ◦C which gives a flux that is high
enough for the measurements but the slope of the exponential is not too steep, so the error is smaller
than for higher temperatures.
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Figure 17: Measurement of the intensity of the atom beam in dependence on the oven temperature,
an offset in the measured current has been subtracted. The errors on the temperature and on the
flux are too small to be shown. The intensity of the atom beam shows the expected exponential
behaviour.
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5.2 Spatial Map Imaging with Ions

Image ratio To determine the image ratio for spatial map imaging with ions the position of the
signal on the screen was determined for different positions of the focussing lens, the taken data is
shown in fig. 30. To determine the position of each signal in pixel, each signal was summed up
along the x-axis to achieve a signal with one spatial dimension without having to choose by eye
(or arbitrary calculations) which x-position is the most representing. Afterwards a Gauss-fit was
applied to find the position and an error for the position, the fits are shown in fig. 18 and the
relevant fit parameters can be found in table 3.
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Figure 18: Gauss-fits to determine the position of the peaks. The corresponding position of the
lens is indicated by color.

The image ratio I can be found as the ratio between the position of the peak on the screen and the
position of the lens. Thus a linear fit (fig. 19) of this data has been made and the slope yields the
searched ratio:

I = (93.33± 0.11) pixel/mm. (14)

Optimal ratio UE/UR for spatial map imaging To find the optimal voltage ratio for the
experimental setup the signal has been taken for 9 different ratios and the signal with the minimal
width has been searched. In accordance to section 5.2 each signal was summed up over the x-axis.
To determine a sensitive parameter for the sharpness of the signal Gauss-fits were applied and
the variance of each peak was determined. The calculated parameters are given in table 4. To
determine the ratio with the best signal, e.g. the ratio with the minimal variance, the variance was
plotted against the voltage ratio fig. 20. As the button to change the ratio was not precise at all
there was not data taken in smaller steps around the minimum, furthermore the data is not really
symmetric, so it does not seem to make sense to fit a quadratic function.

21



4 4.5 5 5.5 6 6.5 7

600

700

800

900

lense position [mm]

y
-p
o
si
ti
o
n
o
f
p
ea

k
[p
ix
el
]

Figure 19: Position of the peaks as determined by the Gauss-fit plotted against the position of the
lens. A linear fit of the form f(x) = mx + b has been calculated and gives the parameters m =
(93.33± 0.11) pixel/mm and b = (219.4± 0.7) pixel.
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Figure 20: Variance of the peaks for different voltage ratios.

Therefore the minimum has been estimated by eye and a rather high error, taking the experimental
setup and the estimation into account, has been applied. The optimal voltage ratio for SMI-
spectroscopy with this setup is (

UE

UR

)
SMI, exp.

= 90.0± 0.5. (15)

The ratio determined in the simulations was (UE/UR)SMI, sim = 91.5± 0.2, the simulated ratio and
the experimentally determined one are of same magnitude. Taking a look at the curve one sees,
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that even though the minimum is comparable, the lines differ and the simulated curve looks even
less as a quadratic function. This difference could be due to the differences between the real and
the simulated setup, both geometrical differences, as well as just slightly different voltages. Another
possible error is the unknown error of the simulation that could lead to different results.

Dimension of the Focal Area With the image ratio, the beam waist and the Rayleigh length
can be computed by

ω0 =
2σSMI, exp

I
, zR =

πω2
0

λ
and ωl =

λf

πω0
, (16)

so the relevant factor from the measurements is the variance. In the previous parts the signal was
summed over one axis so the error of choosing the wrong cut is avoided. This leads to rather high
values for the variance which is not a problem when searching for the minimum. For the calculation
of the focal area the variance for a not-summed signal is needed. Therefore the signal for the
determined optimal ratio was taken and the x-position with the highest signal, x = 705 pixel was
chosen to cut to obtain the intensities in dependence on y. For this cut the position of the peak and
the variance was determined with a Gauss-fit, the parameters are shown in table 4. The variance
determined and used in the calculation of the focal area is σSMI, exp. = (3.31± 0.04) pixel. Thus
the characteristics of the focal area are

ω0 = (70.9± 0.4) µm, (17)

zR = (39.0± 0.4) mm and (18)

ωl = (272.5± 0.6) µm, (19)

with λ = (404.5± 0.5) nm as the wavelength of the laser. The errors were calculated by Gaussian
error computation. The experimentally determined values are not compatible with the values we
determined in the simulation.
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5.3 Velocity Map Imaging with Electrons

In this section the data measured in VMI mode is analysed. We start by experimentally determining
the optimal voltage ratio for the ion optics.

Optimal ratio UE/UR for velocity map imaging To determine the optimal voltage ratio we
performed measurements at various voltage ratios. To the obtained data we fitted a Gauss model
to the peak corresponding to the lowest energy. We chose this peak due to its behavior. While
the peak for the highest energy did not vary visibly, the peak corresponding to the second highest
energy is very low in intensity and vanished fast for small variations around the optimal ratio. So
the optimal candidate for this analysis is the peak corresponding to the smallest kinetic energy.
The raw data and the fits are shown in figs. 31 to 33. The FWHM is plotted against the voltage
ratio in fig. 21, so for the optimal voltage ratio this plot should show a minimum. The visual
estimation of the optimal ratio yields UE/UR = (71.5 ± 0.5) %. Since during the experiment the
visual signal on the screen seemed to be a bit clearer for a ratio of UE/UR = 71 % we took a lot
of data for this ratio. Since we fortunately performed some measurements at UE/UR = 71.5 %, we
decided to analyse both datasets. We begin with the analysis of the dataset measured with a ratio
of UE/UR = 71 %.
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Figure 21: The FWHM is plotted against the chosen ratio of the measurement. This is used to
experimentally determine the optimal voltage ratio.

Calibration of the Energy Axis for UE/UR = 0.71 To calibrate the energy axis it is used that
the peak showing the highest intensity should correspond to the REMPI process shown in fig. 5.
Hence the peak position of the REMPI peak is estimated using a Gauss model, which is fitted to
the data using a least-squares method. The data and the fitted Gauss model is shown in fig. 22.
The used data is actually averaged over seven measurement, each of the measurements is shown in
figs. 34 to 37. The kinetic energy corresponding to the REMPI process is calculated using

EREMPI

kin. = ELaser + EREMPI

Level − EIon. = 1.789 15 eV, (20)
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where EIon. = 4.340 663 54 eV is the ionization energy given (see e. g. [8]). The axis is then calibrated
by assigning an energy to every radius via

Ekin. = EREMPI

kin.

r2pixel
µ2

REMPI

, (21)

as shown in the literature (see e. g. [5]). The parameter µREMPI is the mean of the Gauss model
fitted to the REMPI peak. The fit parameter was estimated to be

µREMPI = (455.67± 0.19) pixel, (22)

which results in a relative error of 0.4 %. We resume determining the energy levels of potassium
using the data measured with a voltage ratio of UE/UR = 0.71.
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Figure 22: In this figure the radial signal of the spectrometer is shown. The peak with the highest
Intensity does correspond to the REMPI process shown in fig. 5. The energy corresponding to the
REMPI process is known and therefore used to calibrate the energy axis (x-axis). The data shown
is actually averaged over seven measurements using the same voltage ratio of UE/UR = 0.71.

Energy Levels of Potassium for UE/UR = 0.71 Using the now calibrated energy axis the level
energies the of the remaining peaks where determined by additional Gauss fits shown in fig. 23.
These fits result in the following kinetic energies

Ekin.,2 = (1.380± 0.005) eV

Ekin.,3 = (0.339± 0.001) eV.

These kinetic energies result in level energies of

ELevel,2 = (2.656± 0.006) eV

ELevel,3 = (1.615± 0.004) eV.
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Figure 23: The radial signal of the spectrometer with calibrated x-axis. There are three gauss
models which are fitted to the data using a least squares approach. The legend shows, to which
ionization channel the peaks correspond. The data shown is actually averaged over seven measure-
ments using the same voltage ratio of UE/UR = 0.71.

The errors on the energy level where calculated by Gaussian error propagation using the error on
the fit parameter and the error of the laser energy which was computed to be ∆ELaser = 0.004 eV,
presupposing an error on the wavelength of ∆λ = 0.5 nm.

Calibration of the Energy Axis for UE/UR = 0.715 The calibration for the second ratio is
performed in direct analogy to the first one. The mean of the REMPI peak was again determined
by using a Gauss model, which is fitted to the data using a least-squares method. The fit and the
data used for calibration are shown in fig. 45. The computation yields

µREMPI = (449.89± 0.06) pixel, (23)

which results in a relative error of 0.01 %. The relative error on the peak position is significantly
smaller then the one for the other voltage ratio. Hence, the error on the calibration should propagate
less and therefore better results should be possible. The used data is again the average over all
measured angular intensity distributions shown in figs. 38 to 40.

Energy Levels of Potassium for UE/UR = 0.715 Again we used the data with the now cali-
brated energy axis to fit the resuming peaks. The data and the fits are shown in fig. 24. The fits
resulted in the kinetic energies

Ekin.,2 = (1.380± 0.002) eV

Ekin.,3 = (0.340± 0.002) eV.
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Figure 24: The radial signal of the spectrometer with calibrated x-axis. There are three gauss
models which are fitted to the data using a least squares approach. The legend shows, to which ion-
ization channel the peaks correspond. The data shown is actually averaged over five measurements
using the same voltage ratio of UE/UR = 0.715.

These kinetic energies result in level energies of

ELevel,2 = (2.655± 0.004) eV

ELevel,3 = (1.615± 0.005) eV.

Energy Resolution of the Spectrometer Finally the energy resolution δE was estimated using

δE =
2
√

2 ln 2σ

µ
, (24)

where σ, µ are the fit parameters of the corresponding peaks. For the energy resolution we got

δE1 = (3.52± 0.03) %

δE2 = (4.8± 0.2) %

δE3 = (18± 1) %

(25)

The error was estimated by gaussian error propagation of the errors on the fit parameters determined
by the least-squares routine.

Changing the Repeller Voltage at Constant Voltage Ratio Finally we also performed a
measurement to check how the radius of the signal behaves, when the repeller voltage is raised,
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while the voltage ratio of the ion optics remained the same. As already seen in the simulations
in fig. 11 it is assumed, that the radius of the signal decreases for higher repeller voltages. This
assumption is perfectly sensible, since the electron gets accelerated more towards the screen, which
results in a smaller time of flight. If the time of flight is reduced, the electron has less time to
propagate parallel to the detector surface, which results in a smaller displacement within the plane
parallel to the detector plane. Experimentally we set the repeller voltage to different values and
measured the radial intensity distribution on the screen. To quantise the change of the radius we
fitted a Gauss model to the most inner peak of the radial intensity distribution for every repeller
voltage used. The measured data for the different repeller voltages, including the Gauss fit, are
shown in figs. 41 to 43. The resulting dependence of the radius of the signal on the repeller voltage
is shown in fig. 25.
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Figure 25: In this figure the dependence of the radius of the signal in VMI mode on the repeller
voltage is shown.
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5.4 Anisotropy Parameter

The taken data also gives chance to estimate the anisotropy parameters β2 and β4 for the different
transitions in potassium. To determine the anisotropy parameters the angular data from the pro-
gram pBasex is taken and weighed by the normalised radial signal. This was done for each dataset
with the optimal voltage ratio UE/UR = 71.5 and the result is shown in fig. 26. The anisotropy
parameter for each transition can now be determined by averaging over all values that lie in the
FWHM of the corresponding peak in fig. 45. In fig. 26 this FWHM is indicated in grey. The calcu-

0 0.5 1 1.5 2

0

0.2

0.4

Ekin[eV]

β
2
[a
.u
.]

0 0.5 1 1.5 2

0

0.2

Ekin[eV]

β
4
[a
.u
.]

Figure 26: Estimation of the anisotropy parameters β2 on the left and β4 on the right. The grey
areas represent the FWHM taken from the peaks shown in fig. 45. The values in the FWHM were
averaged to determine the anisotropy parameters.

lated values are shown in table 1 and can be compared to the values that were calculated in [8]. The
errors that are given for our values correspond to the standard deviation of the averaged values.

transition β2 β2 (ref.) β4 β4 (ref.)
4p 0.002± 0.028 0.17± 0.03 0.006± 0.015 0
3d 0.0097± 0.0092 0.86± 0.09 0.002± 0.012 0
5p 0.4± 0.2 1.07± 0.04 0.3± 0.2 0.52± 0.08

Table 1: Calculated anisotropy parameters for the different transitions in potassium. The bench-
mark values are taken from [8].

Even though the estimated parameters do not confirm the data found in the reference the parameters
were used to calculate the image one would see for these values. This was done by calculating eq. (10)
with the corresponding anisotropy parameters for each transition and showing them at the position
of the peak with a with of the FWHM in the plot. The calculated images for our values and the
reference values, as well as an Abel-inversed image from our data are shown in fig. 27 and fig. 28.
The smallest circle corresponds to the 4p3/2

- and the 4p1/2
-state, the middle circle to 3d and 5d

and the outer circle to the 5p3/2
- and the 5p1/2

-state. The distribution shows the expected higher
intensities for the upper and lower parts of the circle, but as the estimated anisotropy parameters
are not close to the ones found in the reference, the middle and innermost circle can hardly be seen.
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(a) Calculated image with measured anisotropy parame-
ters.

(b) Calculated image with anisotropy parameters taken
from [8].

Figure 27: Calculated signal of Abel inversed images. Brighter green to yellow corresponds to
higher intensities and purple indicates lower intensities.
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Figure 28: Abel inversed image for the voltage ratio UE/UR = 71.5 %. Brighter green to yellow
corresponds to higher intensities and purple indicates lower intensities.
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6 Summary and Discussion

Atom Beam Detector To check the dependence of the atomic flux on the oven temperature a
LT-detector was used and the flux was measured for decreasing temperatures. The relation shows
the expected exponential behaviour and temperatures at around 150 ◦C will lead to a sufficient flux.

Spatial Map Imaging The image ratio for spatial map imaging with ions was determined by
analysing the dependence of the signal on the screen on the position of the focusing lens. A linear
fit over peak positions plotted against the lens position gave

I = (93.33± 0.11) pixel/mm.

Furthermore the optimal voltage ratio for SMI-spectroscopy was estimated by searching for the
signal with the smallest variance. The determined ratio is(

UE

UR

)
SMI, exp.

= 90.0± 0.5.

This optimal voltage ratio was also determined with help of simulated data what gave(
UE

UR

)
SMI, sim

= 92.5± 0.2.

The experimental and the simulated ratio are of the same magnitude, but not compatible. This
difference is most probably caused by differences between the geometry used for the simulation and
the actual geometry of the setup. We suspect that the geometry used for the simulations had a
longer tube in which the ions/electrons are propagating.

Additionally the dimensions of the focal area were determined with help of the experimental data.
This yields

ω0 = (70.9± 0.4) µm,

zR = (39.0± 0.4) mm and

ωl = (272.5± 0.6) µm.

Again these values are not compatible with the ones calculated with help of the simulated data:

w0 = 19.315 µm

zR = 2.897 mm.

Velocity Map Imaging First of all the optimal voltage ratio for VMI-spectroscopy was deter-
mined, both with experimental and with simulated data. The determine values are(

UE

UR

)
VMI, exp.

= 71.5± 0.5(
UE

UR

)
VMI, sim.

= 86.2± 0.2.
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Again the most probable reason for the difference in the values is the possible difference in the
experimental and the simulated setup.

In simulations the dependence of the radius of the signal on the kinetic energy was checked and
the data confirmed the assumption, that greater kinetic energy leads to a wider signal. This makes
sense, taking the direction of the set velocity vectors into account.

In simulations, as well as in the experiment the dependence of the signal to different repeller voltages,
but with a constant voltage ratio was checked and for increasing absolute value of the repeller voltage
the signal will get smaller. This behaviour was expected, as a larger repeller voltage will shorten
the time of flight so the velocity orthogonal to the direction of motion will be less dominant.

Energy Levels of Potassium The signal of VMI with electrons for the optimal experimental
voltage ratio was used to determine the energy levels of potassium. The signal was Abel-inversed
with the program pBasex and the radial signal was used to determine the position of the tree
peaks. The peak of the REMPI process was used to calibrate the energy axis and the other two
energies were calculated table 2. In addition to that the energy resolution of the spectrometer was
determined and is also shown in table 2.

measured [eV] literature [eV] resolution
5p3/2 – 3.065 (3.52± 0.03) %

3d 2.655± 0.004 2.670 (4.8± 0.2) %
4p 1.615± 0.005 1.617 (18± 1) %

Table 2: Measured energy levels of potassium and the energy resolution for the voltage ra-
tio UE/UR = 0.715. Literature values taken from [8]. The literature value for 4p corresponds
to 4p3/2, the difference between 4p3/2 and 4p1/2 as well as for 5p3/2 and 5p1/2 is too small for the
experimental resolution we had, so there is just one value for both levels.

Anisotropy Parameters Last the anisotropy parameters were estimated with help of the angular
data of the Abel-inversed signal. The estimated values are shown in table 1 and none of the
calculated values lies close to the values found in [8]. The main problem in this part is, that the
analysis was not performed on the raw Abel-inversed data, but on a already analysed output. The
program pBasex already calculates the anisotropy parameter for the different radii and returns these
rather than the angular distribution. This leads to difficulties in error estimation as the program
does not give any errors for its fits and the error we see in the end is hardly traceable. This problem
could be solved by taking the two dimensional data the program returns and calculating the angular
distribution out of this data, but as the data is in Cartesian coordinates one would need to rebin to
polar coordinates which also leads to high errors. Nevertheless it can be assumed that calculation
of the anisotropy parameters might be possible with the experimental data we achieved, as the
distribution in the signal looks as expected.
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A Procedure

Figure 29: Output of the spectrometer used to set the right wavelength.

B Analysis

B.1 Spatial Map Imaging with Ions

lens position [mm] peak position [pixel] peak error [pixel]
7.0 872.59 0.09
6.5 826.04 0.05
6.0 779.67 0.07
5.5 732.96 0.11
5.0 686.24 0.10
4.5 639.18 0.10
4.0 592.36 0.11

Table 3: Position of the peak as calculated with a Gauss fit for different positions of the lens.
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Figure 30: Signal for ions in SMI-mode for different positions of the lens. The background was
subtracted and the different signals are shown summed up to show the dependence on the position
of the lens. The highest line at y ≈ 550 pixel corresponds to a position of the lens of 4 mm and the
lowest line at y ≈ 850 pixel corresponds to 7 mm. In between the lens was moved in equidistant
steps of 0.5 mm

UE/UR σ [pixel] sσ [pixel]
86.0 11.85 0.09
87.0 9.89 0.07
88.0 8.42 0.06
89.0 7.72 0.06
90.0 7.96 0.08
91.0 8.10 0.06
92.0 9.98 0.06
93.0 13.34 0.08
94.0 17.17 0.13

without sum
90.0 3.31 0.04

Table 4: Variance of the Intensity as determined by the Gauss-fits for different voltage ratios. A
larger variance corresponds to a blurred signal, hence a ratio with minimal variance is searched. For
calculating the focal area the variance of a signal without summation over one spatial dimension is
needed.
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B.2 Velocity Map Imaging with Electrons

B.2.1 Optimal Voltage Ratio
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Figure 31: In this figure the data for the determination of the optimal voltage ratio in VMI mode
is shown. Shown ratios: 69 %(left) 70 %(right)
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Figure 32: In this figure the data for the determination of the optimal voltage ratio in VMI mode
is shown. Shown ratios: 71 %(left) 71.5 %(right)
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Figure 33: In this figure the data for the determination of the optimal voltage ratio in VMI mode
is shown. Shown ratios: 72 % (left) 73 % (right)

B.2.2 Energy Analysis
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Figure 34: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.71

36



0 100 200 300 400 500 600
Radial Position on the Detector Screen in [pixel]

0.0

0.2

0.4

0.6

0.8

1.0

In
ten

sit
y 

[a
rb

. u
ni

t]

0 100 200 300 400 500 600
Radial Position on the Detector Screen in [pixel]

0.0

0.2

0.4

0.6

0.8

1.0

In
ten

sit
y 

[a
rb

. u
ni

t]
Figure 35: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.71
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Figure 36: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.71

37



0 100 200 300 400 500 600
Radial Position on the Detector Screen in [pixel]

0.0

0.2

0.4

0.6

0.8

1.0

In
ten

sit
y 

[a
rb

. u
ni

t]

Figure 37: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.71
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Figure 38: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.715
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Figure 39: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.715
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Figure 40: In this figure the raw data for radial intensity distribution in VMI mode is shown.
Voltage ratio: UE/UR = 0.715
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Figure 41: In this figure the data and fits are displayed, which are used to check the dependence of
the signals radius in VMI mode on the repeller voltage.
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Figure 42: In this figure the data and fits are displayed, which are used to check the dependence of
the signals radius in VMI mode on the repeller voltage.
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Figure 43: In this figure the data and fits are displayed, which are used to check the dependence of
the signals radius in VMI mode on the repeller voltage.
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Figure 44: In this figure the data and fits are displayed, which are used to check the dependence of
the signals radius in VMI mode on the repeller voltage.
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Figure 45: In this figure the radial signal of the spectrometer is shown. The peak with the highest
Intensity does correspond to the REMPI process shown in fig. 5. The energy corresponding to the
REMPI process is known and therefore used to calibrate the energy axis (x-axis). The data shown
is actually averaged over five measurements using the same voltage ratio of UE/UR = 0.715.
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C Code used in the Analysis

C.1 Simulation

VMI-Mode

1 """

2 This module contains data from SimIon simulations. The data is used to find

3 the optimal ratio of U_E/U_R in VMI mode.

4 """

5

6 import matplotlib.pyplot as plt

7 import numpy as np

8

9 # data to find minimum of screen distance

10 z_screen1 = [8.90219e1 , 3.73373e1, 8.65263 , -9.79813 , -2.26675e1, -3.21190e1,

11 -3.93121e1, -4.49297e1, -4.94025e1, -5.30162e1, -5.59683e1] # mm

12 z_screen2 = [6.79536e1 , 2.58166e1, 2.49195 , -1.24951e1 , -2.29488e1, -3.06334e1,

13 -3.64926e1, -4.10810e1, -4.47479e1, -4.77245e1, -5.01705e1] # mm

14 u_e = np.array ([3000 , 2900, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100,

15 2000]) # V

16

17 # closer measurements

18 z_s1 = [ -1.34288e1 , -1.67619e1, -1.98317e1, -2.26675e1, -2.52941e1, -2.77329e1]

19 z_s2 = [ -1.55438e1 , -1.81510e1, -2.06448e1, -2.29488e1, -2.50834e1, -2.70659e1]

20 u_e_close = np.array ([2675 , 2650, 2625, 2600, 2575, 2550])

21

22 # even closer measurements

23 z_1_close = [ -2.15596e1, -2.37420e1, -2.47844e1 , -2.44750e1]

24 z_2_close = [ -2.20486e1, -2.38219e1, -2.46691e1 , -2.44176e1]

25 u_e_closer = np.array ([2610 , 2590, 2580, 2583])

26

27 # simulation parameters

28

29 # distance in source chamber

30 d_ini = 1 # mm

31 # repellor voltage

32 u_r = 3000 # V

33

34 # distance on detector screen

35 d_screen = [np.abs(z1 - z2) for z1 , z2 in zip(z_screen1 , z_screen2)] # mm

36 d_screen_close = [np.abs(z1 - z2) for z1, z2 in zip(z_s1 , z_s2)] # mm

37 d_screen_closer = [np.abs(z1 - z2) for z1, z2 in zip(z_1_close , z_2_close)] # mm

38

39 # combine all data

40 d_data = d_screen + d_screen_close + d_screen_closer

41 u_e_data = np.concatenate ((u_e , u_e_close , u_e_closer), axis=None)

42

43 # plot data

44 plt.scatter(u_e_data/u_r , d_data , marker="x", color="red")

45 plt.xlabel(r"$\frac{U_E}{U_R}$")

46 plt.ylabel(r"$\frac{d_{Screen }}{d_{Initial }}$")

47 plt.grid()

48 plt.show()

49

50 # sort data for pgfplots

51 data = list(zip(u_e_data , d_data))
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52 data_sorted = sorted(data , key=lambda tup: tup [0])

53 u_e_data = [data_sorted[i][0] for i in range(0, len(data_sorted))]

54 d_data = [data_sorted[i][1] for i in range(0, len(data_sorted))]

55

56 # store data for pgfplots

57 with open("vmi_sim_optimalratio_final.dat", "w") as doc:

58 doc_string = "" # "u_e/u_r\td_screen/d_initial\n"

59 for ue, d in zip(u_e_data , d_data):

60 doc_string += str(ue/u_r) + "\t" + str(d) + "\n"

61 doc.write(doc_string)

1 """

2 This module contains code to process the data in vmi_DUCR. We are supposed

3 to check wether the simulation results in vmi mode depend on the actual value

4 of the voltages or only on there ratio.

5 """

6 from matplotlib import pyplot as plt

7

8 z_particle1 = [ -2.94715e+001, -4.13515e+001, -3.39256e+001, -5.78800e+001]

9 z_particle2 = [ -2.95053e+001, -4.14551e+001, -3.39857e+001, -5.80921e+001]

10

11 d_screen = [abs(zp1 - zp2) for zp1 , zp2 in zip(z_particle1 , z_particle2)]

12 u_r = [2, 1, 1.5, 0.5]

13

14 plt.scatter(u_r , d_screen)

15 plt.show()

16

17 with open("ducr_plot_data.dat", "w") as doc:

18 doc_string = ""

19 for d, u in zip(d_screen , u_r):

20 doc_string += str(u) + "\t" + str(d) + "\n"

21 doc.write(doc_string)

1 """

2 This module contains code to process data generated by SimIon simulations.

3 In this simulations the VMI mode was used.

4 """

5

6 from matplotlib import pyplot as plt

7 import numpy as np

8

9

10 def stddev(data: list) -> float:

11 """

12 This function determines the standard deviation for a

13 list of 1d data.

14 """

15 mean = sum(data)/len(data)

16 s_sq_1 = 0

17 for i in range(0, len(data)):

18 s_sq_1 += (data[i] - mean)**2

19 return np.sqrt(s_sq_1 /(len(data) - 1))

20

21

22 YY, ZZ = list(), list()

23 with open("vmi_bunch/vmi_bunch2", "r") as data:

24 doc_raw = data.read()

25 lines = doc_raw.split("\n")
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26 for line in lines [12: -1]:

27 line_cut = line.split("\t")

28 YY.append(float(line_cut [6]))

29 ZZ.append(float(line_cut [7]))

30

31 # plot data

32 plt.scatter(YY[0:500] , ZZ[0:500] , s=3, label="E=0.1eV")

33 plt.scatter(YY [500:1000] , ZZ [500:1000] , s=3, label="E=0.2eV")

34 plt.scatter(YY [1000:1500] , ZZ [1000:1500] , s=3, label="E=0.3eV")

35 plt.xlabel("y")

36 plt.ylabel("z")

37 plt.legend(loc=1, framealpha =1)

38 plt.grid()

39 plt.show()

40

41 # save data for pgfplots

42 with open("vmi_bunch_p1.dat", "w") as doc:

43 doc_string = "" # y pos in [mm]\tz pos in [mm]

44 for yy, zz in zip(YY[0:500] , ZZ [0:500]):

45 doc_string += str(yy) + "\t" + str(zz) + "\n"

46 doc.write(doc_string)

47 with open("vmi_bunch_p2.dat", "w") as doc:

48 doc_string = "" # y pos in [mm]\tz pos in [mm]

49 for yy, zz in zip(YY [500:1000] , ZZ [500:1000]):

50 doc_string += str(yy) + "\t" + str(zz) + "\n"

51 doc.write(doc_string)

52 with open("vmi_bunch_p3.dat", "w") as doc:

53 doc_string = "" # y pos in [mm]\tz pos in [mm]

54 for yy, zz in zip(YY [1000:1500] , ZZ [1000:1500]):

55 doc_string += str(yy) + "\t" + str(zz) + "\n"

56 doc.write(doc_string)

57

58 # estimate radii of the circles

59 p1_data = [np.sqrt(tup [0]**2 + tup [1]**2) for tup in zip(YY[0:500] , ZZ [0:500])]

60 p1_data_sorted = sorted(p1_data , reverse=True)

61 r1 = sum(p1_data_sorted [0:10])/len(p1_data_sorted [0:10])

62 sr1 = stddev(p1_data_sorted [0:10])

63

64 p2_data = [np.sqrt(tup [0]**2 + tup [1]**2) for tup in zip(YY [500:1000] , ZZ [500:1000])

]

65 p2_data_sorted = sorted(p2_data , reverse=True)

66 r2 = sum(p2_data_sorted [0:10])/len(p2_data_sorted [0:10])

67 sr2 = stddev(p2_data_sorted [0:10])

68

69 p3_data = [np.sqrt(tup [0]**2 + tup [1]**2) for tup in zip(YY [1000:1500] , ZZ

[1000:1500])]

70 p3_data_sorted = sorted(p3_data , reverse=True)

71 r3 = sum(p3_data_sorted [0:10])/len(p3_data_sorted [0:10])

72 sr3 = stddev(p3_data_sorted [0:10])

73

74 print("( ", r1, " +- ", sr1 , ") mm")

75 print("( ", r2, " +- ", sr2 , ") mm")

76 print("( ", r3, " +- ", sr3 , ") mm")

1 """

2 This module contains code to process data generated by SimIon simulations.

3 In this simulations the VMI mode was used.

4 """
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5

6 from matplotlib import pyplot as plt

7 import numpy as np

8

9

10 def stddev(data: list) -> float:

11 """

12 This function determines the standard deviation for a

13 list of 1d data.

14 """

15 mean = sum(data)/len(data)

16 s_sq_1 = 0

17 for i in range(0, len(data)):

18 s_sq_1 += (data[i] - mean)**2

19 return np.sqrt(s_sq_1 /(len(data) - 1))

20

21

22 YY, ZZ = list(), list()

23 with open("vmi_bunch/vmi_bunch4", "r") as data:

24 doc_raw = data.read()

25 lines = doc_raw.split("\n")

26 for line in lines [12: -1]:

27 line_cut = line.split("\t")

28 YY.append(float(line_cut [6]))

29 ZZ.append(float(line_cut [7]))

30

31 # plot data

32 plt.scatter(YY[0:500] , ZZ[0:500] , s=3, label="E=0.1eV")

33 plt.scatter(YY [500:1000] , ZZ [500:1000] , s=3, label="E=0.2eV")

34 plt.scatter(YY [1000:1500] , ZZ [1000:1500] , s=3, label="E=0.3eV")

35 plt.xlabel("y")

36 plt.ylabel("z")

37 plt.legend(loc=1, framealpha =1)

38 plt.grid()

39 plt.show()

40

41 # save data for pgfplots

42 with open("vmi_bunch_p1_opt2.dat", "w") as doc:

43 doc_string = "" # y pos in [mm]\tz pos in [mm]

44 for yy, zz in zip(YY[0:500] , ZZ [0:500]):

45 doc_string += str(yy) + "\t" + str(zz) + "\n"

46 doc.write(doc_string)

47 with open("vmi_bunch_p2_opt2.dat", "w") as doc:

48 doc_string = "" # y pos in [mm]\tz pos in [mm]

49 for yy, zz in zip(YY [500:1000] , ZZ [500:1000]):

50 doc_string += str(yy) + "\t" + str(zz) + "\n"

51 doc.write(doc_string)

52 with open("vmi_bunch_p3_opt2.dat", "w") as doc:

53 doc_string = "" # y pos in [mm]\tz pos in [mm]

54 for yy, zz in zip(YY [1000:1500] , ZZ [1000:1500]):

55 doc_string += str(yy) + "\t" + str(zz) + "\n"

56 doc.write(doc_string)

SMI-Mode

1 """

2 This module contains data from SimIon simulations. The data is used to find
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3 the optimal ratio of U_E/U_R in SMI mode.

4 """

5

6

7 import matplotlib.pyplot as plt

8 import numpy as np

9

10 # data to find minimum of screen distance

11 z_screen1 = [5.89714e1 , 2.68545e1, 7.40245 , -5.78745 , -1.54193e1, -2.28084e1,

12 -2.86790e1, -3.34667e1, -3.74514e1, -4.08220e1, -4.37110e1] # mm

13 z_screen2 = [ -5.89714e1, 2.6854e1, -7.40245, 5.78745 , 1.54193e1 , 2.28084e1,

14 2.86790e1, 3.34667e1 , 3.74514e1, 4.08220e1, 4.37110 e1] # mm

15 u_e = np.array ([3000 , 2900, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100, 2000])

# kV

16

17 # closer measurements

18 z_s1 = [ -1.18911e1 , -9.47808 , -6.88210, -4.08013, -1.04474 , 2.25680]

19 z_s2 = [1.18911e1, 9.47808 , 6.88210 , 4.08013 , 1.04474 , 2.25680]

20 u_e_close = np.array ([2640 , 2665, 2690, 2715, 2740, 2765])

21

22 # even closer measurements

23 z_1_close = [1.57343 , -4.06870e-1]

24 z_2_close = [ -1.57343 , 4.06870e-1]

25 u_e_closer = np.array ([2760 , 2745])

26

27 # simulation parameters

28 u_r = 3000 # kV

29

30 # distance on detector screen

31 d_screen = [np.abs(z1) + np.abs(z2) for z1, z2 in zip(z_screen1 , z_screen2)] # mm

32 d_screen_close = [np.abs(z1) + np.abs(z2) for z1, z2 in zip(z_s1 , z_s2)] # mm

33 d_screen_closer = [np.abs(z1) + np.abs(z2) for z1 , z2 in zip(z_1_close , z_2_close)]

# mm

34

35 # combine all data

36 d_data = d_screen + d_screen_close + d_screen_closer

37 u_e_data = np.concatenate ((u_e , u_e_close , u_e_closer), axis=None)

38

39 # plot data

40 plt.scatter(u_e_data/u_r , d_data , marker="x", color="red")

41 plt.xlabel(r"$\frac{U_E}{U_R}$")

42 plt.ylabel(r"$d_{Screen}$ in [mm]")

43 plt.grid()

44 plt.show()

45

46 # sort data for pgfplots

47 data = list(zip(u_e_data , d_data))

48 data_sorted = sorted(data , key=lambda tup: tup [0])

49 u_e_data = [data_sorted[i][0] for i in range(0, len(data_sorted))]

50 d_data = [data_sorted[i][1] for i in range(0, len(data_sorted))]

51

52 # store data for pgfplots

53 with open("smi_sim_optimalratio_final.dat", "w") as doc:

54 doc_string = "u_e/u_r\td_screen [mm]\n"

55 for ue, d in zip(u_e_data , d_data):

56 doc_string += str(ue/u_r) + "\t" + str(d) + "\n"

57 doc.write(doc_string)
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1 """

2 This module contains code to process data generated by SimIon simulations.

3 In this simulations the SMI mode was used to map a zylindric volume onto

4 the detector screen.

5 """

6

7

8 from matplotlib import pyplot as plt

9

10 YYs = list()

11 ZZs = list()

12

13 for i in ["1", "2", "3", "4"]:

14 YY, ZZ = list(), list()

15 with open("smi_bunch/smi_bunch" + i, "r") as data:

16 doc_raw = data.read()

17 lines = doc_raw.split("\n")

18 for line in lines [12: -1]:

19 line_cut = line.split("\t")

20 YY.append(float(line_cut [6]))

21 ZZ.append(float(line_cut [7]))

22 YYs.append(YY)

23 ZZs.append(ZZ)

24

25

26 PARTICLES = list()

27

28 for yy, zz in zip(YYs [3:4] , ZZs [3:4]):

29 YY_P1 = yy [0:500]

30 ZZ_P1 = zz [0:500]

31 YY_P2 = yy [500:1000]

32 ZZ_P2 = zz [500:1000]

33

34 with open("smi_bunch_p1_UE2715.txt", "w") as doc:

35 doc_string = ""

36 for y, z in zip(YY_P1 , ZZ_P1):

37 doc_string += str(y) + "\t" + str(z) + "\n"

38 doc.write(doc_string)

39 with open("smi_bunch_p2_UE2715.txt", "w") as doc:

40 doc_string = ""

41 for y, z in zip(YY_P2 , ZZ_P2):

42 doc_string += str(y) + "\t" + str(z) + "\n"

43 doc.write(doc_string)

44

45 plt.scatter(YY_P1 , ZZ_P1 , s=5, label="E=0.2eV")

46 plt.scatter(YY_P2 , ZZ_P2 , s=5, label="E=0.1eV")

47

48 plt.xlabel("y")

49 plt.ylabel("z")

50 plt.legend(loc=1, framealpha =1)

51 plt.grid()

52 plt.show()

C.2 Analysis

Oven Measurement
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1 import matplotlib.pyplot as plt

2 import numpy as np

3

4

5 temp = []

6 flux = []

7

8 temperr = []

9 fluxerr = []

10

11 with open("ovendata.dat", "r") as data:

12 raw_data = data.read()

13 lines = raw_data.split("\n")

14 for line in lines [1: -1]:

15 entries = line.split(",")

16 temp.append(float(entries [0]))

17 flux.append ((float(entries [1]) - 0.031) * 10**( -9) / (6 * 1.602*10**( -19)))

18 temperr.append(float(entries [2]))

19 fluxerr.append ((np.sqrt (2) * float(entries [3])) * 10**( -9) / (6 *

1.602*10**( -19)))

20

21

22 with open("offsetdata.dat", "w") as off_data:

23 off_data.write("temt\tflux\temperr\tfluxerr\n")

24 for t, f, te, fe in zip(temp , flux , temperr , fluxerr):

25 off_data.write(str(t) + "\t" + str(f) + "\t" + str(te) + "\t" + str(fe)

26 + "\n")

27

28 plt.errorbar(temp , flux , xerr=temperr , yerr=fluxerr)

29 plt.show()

SMI

1 ’’’

2 This module takes the experimental SMI -data and calculated the best voltageratio

3 U_E / U_R

4 ’’’

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from scipy.optimize import curve_fit

8

9

10 def read_smi_data(filename):

11 with open(filename , "r") as smidata:

12 data = smidata.read()

13 lines = data.split(’\n’)

14 pixel = [[ float(entry) for entry in line.split(",")] for line in

15 lines [0: -1]]

16 return pixel

17

18

19 def clear_noise(pixellist , backlist):

20 return [[d - b for d, b in zip(datlines , backlines)] for datlines ,

21 backlines in zip(pixellist , backlist)]

22

23

24 def gauss(x, A, mu, sigma , C):
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25 return A * np.exp(-((x - mu)**2) / (2 * sigma **2)) + C

26

27

28 def fwhm(sigma , sigma_err):

29 return 2.355 * sigma , 2.355 * sigma_err

30

31

32 ratio_list = np.linspace (86, 94, 9)

33

34 pixel_background = read_smi_data("../ smi_ratio/ion_smi_background.csv")

35

36 pixel_1 = clear_noise(read_smi_data("ion_smi_volrat_86.csv"), pixel_background)

37 pixel_2 = clear_noise(read_smi_data("ion_smi_volrat_87.csv"), pixel_background)

38 pixel_3 = clear_noise(read_smi_data("ion_smi_volrat_88.csv"), pixel_background)

39 pixel_4 = clear_noise(read_smi_data("ion_smi_volrat_89.csv"), pixel_background)

40 pixel_5 = clear_noise(read_smi_data("ion_smi_volrat_90.csv"), pixel_background)

41 pixel_6 = clear_noise(read_smi_data("ion_smi_volrat_91.csv"), pixel_background)

42 pixel_7 = clear_noise(read_smi_data("ion_smi_volrat_92.csv"), pixel_background)

43 pixel_8 = clear_noise(read_smi_data("ion_smi_volrat_93.csv"), pixel_background)

44 pixel_9 = clear_noise(read_smi_data("ion_smi_volrat_94.csv"), pixel_background)

45

46 big_pixellist = [pixel_1 , pixel_2 , pixel_3 , pixel_4 , pixel_5 , pixel_6 , pixel_7 ,

47 pixel_8 , pixel_9]

48 big_eind_pixellist = []

49

50 for pixellist in big_pixellist:

51 big_eind_pixellist.append ([np.sum(line) for line in pixellist ])

52

53

54 xx = np.linspace(0, len(big_eind_pixellist [0]), len(big_eind_pixellist [0]))

55

56 plt.scatter(xx[500:700] , big_eind_pixellist [0][500:700])

57 popt0 , pcov0 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [0][500:700] ,

58 p0=[220000 , 600, 10, 60000])

59 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt0))

60

61 plt.scatter(xx[500:700] , big_eind_pixellist [1][500:700])

62 popt1 , pcov1 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [1][500:700] ,

63 p0=[220000 , 600, 10, 60000])

64 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt1))

65

66 plt.scatter(xx[500:700] , big_eind_pixellist [2][500:700])

67 popt2 , pcov2 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [2][500:700] ,

68 p0=[220000 , 600, 10, 60000])

69 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt2))

70

71 plt.scatter(xx[500:700] , big_eind_pixellist [3][500:700])

72 popt3 , pcov3 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [3][500:700] ,

73 p0=[220000 , 600, 10, 60000])

74 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt3))

75

76 plt.scatter(xx[500:700] , big_eind_pixellist [4][500:700])

77 popt4 , pcov4 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [4][500:700] ,

78 p0=[220000 , 600, 10, 60000])

79 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt4))

80

81 plt.scatter(xx[500:700] , big_eind_pixellist [5][500:700])

82 popt5 , pcov5 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [5][500:700] ,
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83 p0=[220000 , 600, 10, 60000])

84 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt5))

85

86 plt.scatter(xx[500:700] , big_eind_pixellist [6][500:700])

87 popt6 , pcov6 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [6][500:700] ,

88 p0=[220000 , 600, 10, 60000])

89 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt6))

90

91 plt.scatter(xx[500:700] , big_eind_pixellist [7][500:700])

92 popt7 , pcov7 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [7][500:700] ,

93 p0=[220000 , 600, 10, 60000])

94 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt7))

95

96 plt.scatter(xx[500:700] , big_eind_pixellist [8][500:700])

97 popt8 , pcov8 = curve_fit(gauss , xx[500:700] , big_eind_pixellist [8][500:700] ,

98 p0=[220000 , 600, 10, 60000])

99 plt.plot(xx[500:700] , gauss(xx [500:700] , *popt8))

100

101

102 sigma_list = [popt0[2], popt1[2], popt2 [2], popt3[2], popt4 [2], popt5[2],

103 popt6[2], popt7[2], popt8 [2]]

104

105 sigma_err_list = [pcov0 [2][2] , pcov1 [2][2] , pcov2 [2][2] , pcov3 [2][2] ,

106 pcov4 [2][2] , pcov5 [2][2] , pcov6 [2][2] , pcov7 [2][2] ,

107 pcov8 [2][2]]

108

109 with open("smi_ratio.dat", "w") as datafile:

110 datafile.write("ratio\tsigma\terr\n")

111 for ratio , sigma , err in zip(ratio_list , sigma_list , sigma_err_list):

112 datafile.write(str(ratio) + "\t" + str(sigma) + "\t" +

113 str(np.sqrt(err)) + "\n")

114

115

116 # determine the variance for the best voltageratio with ue/ur = 90:

117 # use pixel_5

118

119 maximum = 0

120 i, j = 0, 0

121 counti = 0

122

123 for line in pixel_5:

124 countj = 0

125 for entry in line:

126 if entry > maximum:

127 maximum = entry

128 i = counti

129 j = countj

130 countj += 1

131 counti += 1

132

133 max_list = []

134 for line in pixel_5:

135 max_list.append(line [705])

136

137 plt.clf()

138 plt.scatter(xx[500:700] , max_list [500:700])

139 poptmax , pcovmax = curve_fit(gauss , xx[500:700] , max_list [500:700] ,

140 p0=[220, 600, 10, 0])

51



141 plt.plot(xx[500:700] , gauss(xx [500:700] , *poptmax))

142 plt.show()

143 print(poptmax [2], np.sqrt(pcovmax [2][2]))

1 ’’’

2 This module takes SMI -data and calculates the image ratio.

3 ’’’

4 import numpy as np

5 import matplotlib.pyplot as plt

6 from scipy.optimize import curve_fit

7

8

9 def read_smi_data(filename):

10 with open(filename , "r") as smidata:

11 data = smidata.read()

12 lines = data.split(’\n’)

13 pixel = [[ float(entry) for entry in line.split(",")] for line in

14 lines [0: -1]]

15 return pixel

16

17

18 def clear_noise(pixellist , backlist):

19 return [[d - b for d, b in zip(datlines , backlines)] for datlines ,

20 backlines in zip(pixellist , backlist)]

21

22

23 def gauss(x, A, mu, sigma , C):

24 return A * np.exp(-((x - mu)**2) / (2 * sigma **2)) + C

25

26 def linear(x, m, b):

27 return m * x + b

28

29 def write_file(filename , xx, pix_list , popt):

30 xfit = np.linspace(xx[0], xx[-1], 100)

31 with open(filename + "data.dat", "w") as file:

32 file.write("x\tpix\n")

33 for x, pix in zip(xx, pix_list):

34 file.write(str(x) + "\t" + str(pix) + "\n")

35 with open(filename + "fit.dat", "w") as fitfile:

36 fitfile.write("xfit\tfit\n")

37 for x in xfit:

38 fitfile.write(str(x) + "\t" + str(gauss(x, *popt)) + "\n")

39

40

41 lense_pos = np.linspace(7, 4, 7) # in mm

42

43 pixel_background = read_smi_data("ion_smi_background.csv")

44

45 pixel_1 = clear_noise(read_smi_data("ion_smi1.csv"), pixel_background)

46 pixel_2 = clear_noise(read_smi_data("ion_smi2.csv"), pixel_background)

47 pixel_3 = clear_noise(read_smi_data("ion_smi3.csv"), pixel_background)

48 pixel_4 = clear_noise(read_smi_data("ion_smi4.csv"), pixel_background)

49 pixel_5 = clear_noise(read_smi_data("ion_smi5.csv"), pixel_background)

50 pixel_6 = clear_noise(read_smi_data("ion_smi6.csv"), pixel_background)

51 pixel_7 = clear_noise(read_smi_data("ion_smi7.csv"), pixel_background)

52

53

54 summed_pixel = [[p1 + p2 + p3 + p4 + p5 + p6 + p7 for p1 , p2, p3, p4, p5, p6 ,
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55 p7 in zip(l1, l2 , l3 , l4, l5, l6, l7)] for l1, l2, l3, l4, l5 , l6 , l7 in

56 zip(pixel_1 , pixel_2 , pixel_3 , pixel_4 , pixel_5 , pixel_6 , pixel_7)]

57

58 plt.xlabel(r"$x$ -position in pixel")

59 plt.ylabel(r"$y$ -position in pixel")

60 plt.imshow(summed_pixel , cmap="gray")

61 plt.savefig("ion_ratio.pdf")

62

63

64 big_pixellist = [pixel_1 , pixel_2 , pixel_3 , pixel_4 , pixel_5 , pixel_6 , pixel_7]

65 big_eind_pixellist = []

66

67 for pixellist in big_pixellist:

68 big_eind_pixellist.append ([np.sum(line) for line in pixellist ])

69

70

71 xx = np.linspace(0, len(big_eind_pixellist [0]), len(big_eind_pixellist [0]))

72

73 plt.scatter(xx[850:900] , big_eind_pixellist [0][850:900])

74 popt0 , pcov0 = curve_fit(gauss , xx[850:900] , big_eind_pixellist [0][850:900] ,

75 p0=[220000 , 880, 10, 60000])

76 plt.plot(xx[850:900] , gauss(xx [850:900] , *popt0))

77

78 plt.scatter(xx[800:850] , big_eind_pixellist [1][800:850])

79 popt1 , pcov1 = curve_fit(gauss , xx[800:850] , big_eind_pixellist [1][800:850] ,

80 p0=[220000 , 830, 10, 60000])

81 plt.plot(xx[800:850] , gauss(xx [800:850] , *popt1))

82

83 plt.scatter(xx[750:800] , big_eind_pixellist [2][750:800])

84 popt2 , pcov2 = curve_fit(gauss , xx[750:800] , big_eind_pixellist [2][750:800] ,

85 p0=[220000 , 800, 10, 60000])

86 plt.plot(xx[750:800] , gauss(xx [750:800] , *popt2))

87

88 plt.scatter(xx[700:750] , big_eind_pixellist [3][700:750])

89 popt3 , pcov3 = curve_fit(gauss , xx[700:750] , big_eind_pixellist [3][700:750] ,

90 p0=[220000 , 730, 10, 60000])

91 plt.plot(xx[700:750] , gauss(xx [700:750] , *popt3))

92

93 plt.scatter(xx[650:720] , big_eind_pixellist [4][650:720])

94 popt4 , pcov4 = curve_fit(gauss , xx[650:720] , big_eind_pixellist [4][650:720] ,

95 p0=[180000 , 680, 10, 60000])

96 plt.plot(xx[650:720] , gauss(xx [650:720] , *popt4))

97

98 plt.scatter(xx[600:680] , big_eind_pixellist [5][600:680])

99 popt5 , pcov5 = curve_fit(gauss , xx[600:680] , big_eind_pixellist [5][600:680] ,

100 p0=[180000 , 640, 10, 60000])

101 plt.plot(xx[600:680] , gauss(xx [600:680] , *popt5))

102

103 plt.scatter(xx[550:640] , big_eind_pixellist [6][550:640])

104 popt6 , pcov6 = curve_fit(gauss , xx[550:640] , big_eind_pixellist [6][550:640] ,

105 p0=[180000 , 600, 10, 60000])

106 plt.plot(xx[550:640] , gauss(xx [550:640] , *popt6))

107

108 peak_pos = [popt0 [1], popt1[1], popt2[1], popt3[1], popt4[1], popt5 [1],

109 popt6 [1]]

110 peak_err = [pcov0 [2][2] , pcov1 [2][2] , pcov2 [2][2] , pcov3 [2][2] , pcov4 [2][2] ,

111 pcov5 [2][2] , pcov6 [2][2]]

112
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113 popt_lin , pcov_lin = curve_fit(linear , lense_pos , peak_pos , sigma=peak_err)

114

115 with open("lin_pixel_lense.dat", "w") as data:

116 data.write("%" + str(popt_lin [1]) + "\t" + str(np.sqrt(pcov_lin [1][1])) + "\n")

117 data.write("lense\tpeak\tpeakerr\n")

118 for lense , peak , err in zip(lense_pos , peak_pos , peak_err):

119 data.write(str(lense) + "\t" + str(peak) + "\t" + str(np.sqrt(err)) + "\n")

120

121 plt.clf()

122 plt.scatter(lense_pos , peak_pos)

123 plt.plot(lense_pos , linear(lense_pos , *popt_lin))

124

125 print(popt_lin [0], popt_lin [1], pcov_lin [0][0])

126

127 write_file("pixel0", xx[850:900] , big_eind_pixellist [0][850:900] , popt0)

128 write_file("pixel1", xx[800:850] , big_eind_pixellist [1][800:850] , popt1)

129 write_file("pixel2", xx[750:800] , big_eind_pixellist [2][750:800] , popt2)

130 write_file("pixel3", xx[700:750] , big_eind_pixellist [3][700:750] , popt3)

131 write_file("pixel4", xx[650:720] , big_eind_pixellist [4][650:720] , popt4)

132 write_file("pixel5", xx[600:680] , big_eind_pixellist [5][600:680] , popt5)

133 write_file("pixel6", xx[550:640] , big_eind_pixellist [6][550:640] , popt6)

VMI

1 """

2 Module to analyse the measured energy spectrum of potassium. All taken data

3 is averaged and afterwards the averaged spectrum is analysed.

4 """

5

6 from matplotlib import pyplot as plt

7 import numpy as np

8 from scipy.optimize import curve_fit

9

10 # Global variable to set with ratio is analysed

11 RATIO = "71"

12

13 # Set output header

14 print("====================================")

15 print("The ratio " + RATIO + " is analysed!")

16 print("====================================")

17 print("")

18

19 # This handles the used fonts in the plot to make it more or less consistent

20 # with the standard latex font.

21 plt.rcParams[’mathtext.fontset ’] = ’stix’

22 plt.rcParams[’font.family ’] = ’STIXGeneral ’

23 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

24 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

25 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

26

27

28 def fwhm(sigma: float) -> float:

29 """

30 This function takes the standard deviation of a gaussian function

31 and determines its [F]ull [W]idth at [H]alf [M]aximum

32 """

33 return 2 * np.sqrt(2 * np.log(2)) * sigma
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34

35

36 def average_lists(list_initial: list) -> list:

37 """

38 This function takes a list of equally sized float lists as an argument.

39 The function returns a list of floats where every entry is the mean of

40 the entrys of the sublists at the same position.

41

42 Example:

43 Input: list_initial = [[1,2], [3, 4]]

44 Output: list_final = [(1 + 3)/2, (2 + 4)/2]

45

46 list_initial: list of float lists

47 list_final: list of floats

48 """

49 list_final = list()

50 for i in range(0, len(list_initial [0])):

51 entry_sum = 0

52 for j in range(0, len(list_initial)):

53 entry_sum += list_initial[j][i]

54 list_final.append(entry_sum/len(list_initial))

55 return list_final

56

57

58 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

59 """

60 Gauss function used to fit data.

61

62 x: x-Position

63 mu: Mean

64 sigma: Standard Deviation

65 amp: Amplitude

66 off: Offset on y-Axis

67 """

68 return amp * np.exp(-(x - mu)**2/(2 * sigma **2)) + off

69

70

71 def energy(r_pix: float , mu_cal , e_cal) -> float:

72 """

73 Function which calculates the energy dependent on the radius

74 (in pixels) on the screen.

75

76 r_pix: radius in pixel

77 mu_cal: radius of calibration signal

78 e_cal: energy of calibration signal

79 """

80 return e_cal * ((r_pix **2) / (mu_cal **2))

81

82

83 def final_energy(ekin: float) -> float:

84 """

85 Calculates the level energy with given kinetic energy of the measured

86 electron.

87 Used values are taken from the Instruction.pdf and calculations found in

88 the mathematica notebook.

89

90 ekin: kinetic energy of e- in [eV]

91 """
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92 eion = 4.34066354 # eV

93 egamma = 3.06491 # eV

94 return ekin + eion - egamma

95

96

97 # Container for data: All measurements

98 IIs = list()

99 RRs = list()

100

101 SETS71 = ["a", "b", "c", "d", "e", "f", "g"]

102 SETS715 = ["a", "b", "c", "d", "e"]

103

104 if RATIO == "71":

105 SETS = SETS71

106 else:

107 SETS = SETS715

108

109 for i in SETS:

110 # Container for data: One measurement

111 # NOTE: II and RR get redefined later.

112 II = list()

113 RR = list()

114

115 # Read data

116 with open("./data" + RATIO + "/el_vmi_"

117 + RATIO + i + "_pes.dat", "r") as doc:

118 data_raw = doc.read()

119 lines = data_raw.split("\n")

120 for line in lines [0: -1]:

121 entries = line.split("\t")

122 RR.append(float(entries [0]))

123 II.append(float(entries [1]))

124

125 # NOTE: Save Plot of every Dataset (Set 0 if not wanted)

126 if 0:

127 plt.scatter(RR, II , marker="x", s=5, c="red")

128 plt.xlim(0, 600)

129 plt.xlabel("Radial Position on the Detector Screen in [pixel]")

130 plt.ylabel("Intensity [arb. unit]")

131 plt.minorticks_on ()

132 plt.grid(which="minor", linestyle=":")

133 plt.grid(which="major", linestyle="-")

134 plt.savefig("./ plots_raw/ang_dataset_" + i + "ratio" + RATIO + ".pdf",

135 format="pdf")

136 plt.clf()

137

138 # Append Dataset to Container

139 IIs.append(II)

140 RRs.append(RR)

141

142 # Raw Data

143 # Redefine II and RR

144 RR = RRs[0]

145 II = average_lists(IIs)

146

147 # Calibrate energy axis

148 # =====================

149
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150 # Fit Gauss model (PEAK: 1) to data for calibration

151 INITIALGUESS1 = [450, 10, 0, 0]

152 popt1 , pcov1 = curve_fit(gauss , RR[191:215] , II[191:215] , p0=INITIALGUESS1)

153 XX_GAUSS1 = np.linspace (430, 475, 60)

154 YY_GAUSS1 = gauss(XX_GAUSS1 , *popt1)

155

156 # Get fit parameters

157 mu1 = popt1 [0]

158 sigma1 = popt1 [1]

159 mu1_error = np.sqrt(pcov1 [0][0])

160

161

162 # Calibrated x-axis

163 energy1 = 1.78915 # eV Used for calibration

164 EE = [energy(r_pix , mu1 , energy1) for r_pix in RRs [0]]

165

166 # Save energy axis for Mali

167 with open("energy_axis.txt", "w") as data:

168 doc_str = ""

169 for e in EE:

170 doc_str += str(e) + "\n"

171 data.write(doc_str)

172

173 # Plot raw data (x - axis not calibrated)

174 # =======================================

175 # NOTE: Non integer pixel radii due to inverse abel transform

176 plt.scatter(RR, II , marker="x", s=5, c="red", label="data")

177 plt.plot(XX_GAUSS1 , YY_GAUSS1 , label="fit1: mu=" + str(popt1 [0]))

178 # plt.ylim(0, 0.03)

179 # plt.xlim(0, 600)

180 plt.xlabel("Radial Position on the Detector Screen [pixels]")

181 plt.ylabel("Intensity [arb. unit]")

182 plt.legend(loc=1)

183 plt.grid(which="both")

184 plt.show()

185 plt.clf()

186

187 # Save raw data

188 # =============

189 # NOTE: Save raw data for pgfplots

190 with open("pse_plot_data_cal" + RATIO + ".dat", "w") as doc:

191 doc_string = ""

192 for r, i in zip(RR , II):

193 doc_string += str(r) + "\t" + str(i) + "\n"

194 doc.write(doc_string)

195 with open("pse_gaussfit1_data_cal" + RATIO + ".dat", "w") as doc:

196 doc_string = ""

197 for r, i in zip(XX_GAUSS1 , YY_GAUSS1):

198 doc_string += str(r) + "\t" + str(i) + "\n"

199 doc.write(doc_string)

200

201 # Determine Fit Parameters

202 # ========================

203

204 # Fit Gauss model (PEAK: 1) to data

205 INITIALGUESS1 = [1.75, 0.2, 0, 0]

206 popt1 , pcov1 = curve_fit(gauss , EE[191:215] , II[191:215] , p0=INITIALGUESS1)

207 XX_GAUSS1 = np.linspace(energy (430, mu1 , energy1),
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208 energy (475, mu1 , energy1), 60)

209 YY_GAUSS1 = gauss(XX_GAUSS1 , *popt1)

210

211 # Fit Gauss model (PEAK: 2) to data

212 INITIALGUESS2 = [1.4, 0.1, 0, 0]

213 popt2 , pcov2 = curve_fit(gauss , EE[166:176] , II[166:176] , p0=INITIALGUESS2)

214 XX_GAUSS2 = np.linspace(energy (380, mu1 , energy1),

215 energy (410, mu1 , energy1), 60)

216 YY_GAUSS2 = gauss(XX_GAUSS2 , *popt2)

217

218 # Fit Gauss model (PEAK: 3) to data

219 INITIALGUESS3 = [0.4, 0.1, 0, 0]

220 popt3 , pcov3 = curve_fit(gauss , EE[74:91] , II[74:91] , p0=INITIALGUESS3)

221 XX_GAUSS3 = np.linspace(energy (170, mu1 , energy1),

222 energy (230, mu1 , energy1), 60)

223 YY_GAUSS3 = gauss(XX_GAUSS3 , *popt3)

224

225 # Plot data (calibrated x-axis)

226 # =============================

227

228 plt.scatter(EE, II , marker="x", s=5, c="red", label="data")

229 plt.plot(XX_GAUSS1 , YY_GAUSS1 , label="fit1: mu=" + str(popt1 [0]))

230 plt.plot(XX_GAUSS2 , YY_GAUSS2 , label="fit2: mu=" + str(popt2 [0]))

231 plt.plot(XX_GAUSS3 , YY_GAUSS3 , label="fit3: mu=" + str(popt3 [0]))

232 # plt.ylim(0, 0.03)

233 # plt.xlim(0, 2)

234 plt.xlabel("Energy [eV]")

235 plt.ylabel("Intensity [arb. unit]")

236 plt.legend(loc=1)

237 plt.grid(which="both")

238 plt.show()

239

240 # Save data

241 # =========

242 # NOTE: Save data for pgfplots

243 with open("pse_plot_data" + RATIO + ".dat", "w") as doc:

244 doc_string = ""

245 for e, i in zip(EE , II):

246 doc_string += str(e) + "\t" + str(i) + "\n"

247 doc.write(doc_string)

248 with open("pse_gaussfit1_data" + RATIO + ".dat", "w") as doc:

249 doc_string = ""

250 for e, i in zip(XX_GAUSS1 , YY_GAUSS1):

251 doc_string += str(e) + "\t" + str(i) + "\n"

252 doc.write(doc_string)

253 with open("pse_gaussfit2_data" + RATIO + ".dat", "w") as doc:

254 doc_string = ""

255 for e, i in zip(XX_GAUSS2 , YY_GAUSS2):

256 doc_string += str(e) + "\t" + str(i) + "\n"

257 doc.write(doc_string)

258 with open("pse_gaussfit3_data" + RATIO + ".dat", "w") as doc:

259 doc_string = ""

260 for e, i in zip(XX_GAUSS3 , YY_GAUSS3):

261 doc_string += str(e) + "\t" + str(i) + "\n"

262 doc.write(doc_string)

263

264 # Calculate Energies

265 # ==================
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266

267 # Get fit parameters

268 mu1 = popt1 [0]

269 sigma1 = popt1 [1]

270 mu1_error = np.sqrt(pcov1 [0][0])

271 sigma1_error = np.sqrt(pcov1 [1][1])

272

273 mu2 = popt2 [0]

274 sigma2 = popt2 [1]

275 mu2_error = np.sqrt(pcov2 [0][0])

276 sigma2_error = np.sqrt(pcov2 [1][1])

277

278 mu3 = popt3 [0]

279 sigma3 = popt3 [1]

280 mu3_error = np.sqrt(pcov3 [0][0])

281 sigma3_error = np.sqrt(pcov3 [1][1])

282

283 # Get list index of values for beta -determination

284 # ===============================================

285 # NOTE: This ain’t nice , but it works ...

286 # Determine index intervals for FWHM around peaks; Brute Force

287 AA = list()

288 BB = list()

289 for mu, width in zip([mu1 , mu2 , mu3],

290 [fwhm(sigma1), fwhm(sigma2), fwhm(sigma3)]):

291 i = 0

292 while True:

293 if EE[i] < (mu - width /2) and EE[i+1] > (mu - width /2):

294 a = i

295 break

296 i += 1

297 i = 0

298 while True:

299 if EE[i] < (mu + width /2) and EE[i+1] > (mu + width /2):

300 b = i

301 break

302 i += 1

303 AA.append(a)

304 BB.append(b)

305 # Save index intervals

306 with open("indices_beta.txt", "w") as data:

307 doc_str = "[a, b]\n"

308 for a, b in zip(AA , BB):

309 doc_str += str(a) + "\t" + str(b) + "\n"

310 data.write(doc_str)

311

312 print("Kinetic Energies :\n=================")

313 print("E_{kin ,1} = (", round(mu1 , 5), "+-", round(mu1_error , 8), ") eV")

314 print("E_{kin ,2} = (", round(mu2 , 4), "+-", round(mu2_error , 8), ") eV")

315 print("E_{kin ,3} = (", round(mu3 , 4), "+-", round(mu3_error , 8), ") eV")

316 print("")

317

318 # Calculate level energies

319 energy1 = final_energy(mu1)

320 energy2 = final_energy(mu2)

321 energy3 = final_energy(mu3)

322

323 # Calculate level energy errors
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324 e_gamma_err = 0.00378825 # eV , if lambda_err = 0.5 nm

325 s_energy1 = 0 # Used for calibration

326 s_energy2 = np.sqrt(mu2_error **2 + e_gamma_err **2)

327 s_energy3 = np.sqrt(mu3_error **2 + e_gamma_err **2)

328

329 print("Level Energies :\n=================")

330 print("E_1 = (", round(energy1 , 5), "+-", round(s_energy1 , 5), ") eV")

331 print("E_2 = (", round(energy2 , 4), "+-", round(s_energy2 , 4), ") eV")

332 print("E_3 = (", round(energy3 , 4), "+-", round(s_energy3 , 4), ") eV")

333 print("")

334

335 # TODO: Something is wrong here ... :(

336 # Calculate energy resolution

337 deltaE1 = fwhm(sigma1)/mu1

338 deltaE2 = fwhm(sigma2)/mu2

339 deltaE3 = fwhm(sigma3)/mu3

340

341 # Calculate resolution errors

342 s_deltaE1 = np.sqrt ((( fwhm(sigma1)/mu1 **2)*mu1_error)**2 +

343 ((1/ mu1)*sigma1_error)**2)

344 s_deltaE2 = np.sqrt ((( fwhm(sigma2)/mu2 **2)*mu2_error)**2 +

345 ((1/ mu2)*sigma2_error)**2)

346 s_deltaE3 = np.sqrt ((( fwhm(sigma3)/mu3 **2)*mu3_error)**2 +

347 ((1/ mu3)*sigma3_error)**2)

348

349 print("Energy Resolution :\n=================")

350 print("dE_1 = (", deltaE1 , "+-", s_deltaE1 , ") %")

351 print("dE_2 = (", deltaE2 , "+-", s_deltaE2 , ") %")

352 print("dE_3 = (", deltaE3 , "+-", s_deltaE3 , ") %")

353 print("")

1 """

2 This module contains code to check how the VMI signal radius

3 changes wit different repellor voltages while the ratio stays

4 the same.

5 """

6

7 import numpy as np

8 from matplotlib import pyplot as plt

9 from scipy.optimize import curve_fit

10

11 # Set to True if you want to see all the plots

12 PLOT_ALL = True

13

14 # This handles the used fonts in the plot to make it more or less consistent

15 # with the standard latex font.

16 plt.rcParams[’mathtext.fontset ’] = ’stix’

17 plt.rcParams[’font.family ’] = ’STIXGeneral ’

18 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

19 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

20 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

21

22

23 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

24 """

25 Gauss function used to fit data.

26

27 x: x-Position
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28 mu: Mean

29 sigma: Standard Deviation

30 amp: Amplitude

31 off: Offset on y-Axis

32 """

33 return amp * np.exp(-(x - mu)**2/(2 * sigma **2)) + off

34

35

36 # Define repellor voltage lists and mirror them afterwards because i am dumb af

37 U_R = [1.5, 2, 2.5, 3, 3.5, 4, 4.5]

38 U_R = U_R [::-1]

39 U_R_STR = ["15", "2", "25", "3", "35", "4", "45"]

40 U_R_STR = U_R_STR [:: -1]

41

42 # Initial guess for every fit seperatly , I fuggin hate it

43 INIT1 = [160, 5, 0.2, 0]

44 INIT2 = [170, 10, 0.2, 0]

45 INIT3 = [180, 10, 0.2, 0]

46 INIT4 = [200, 10, 0.2, 0]

47 INIT5 = [200, 10, 0.4, 0]

48 INIT6 = [200, 30, 1.0, 0]

49 INIT7 = [290, 30, 1.0, 0]

50 INITS = [INIT1 , INIT2 , INIT3 , INIT4 , INIT5 , INIT6 , INIT7]

51

52 # Fit intervall for every fit seperatly , end my suffering ...

53 aa = [50, 50, 60, 60, 60, 70, 80]

54 bb = [90, 90, 100, 100, 120, 140, 150]

55

56 # Container for radii determined by fitting the lowest energy peak

57 RADII = list()

58 S_RADII = list()

59

60 # Get data fit gauss to data , usual buisness u know :(

61 for i in range(len(U_R)):

62

63 # tetra paks for radii and intensity of every measurement ,

64 # gets recycled within every iteration.

65 radius = list()

66 intensity = list()

67

68 # Get data , yeah boiii

69 with open("el_vmi_" + U_R_STR[i] + "_pes.dat", "r") as data:

70 lines = data.read().split("\n")

71 for line in lines [1: -1]:

72 radius.append(float(line.split("\t")[0]))

73 intensity.append(float(line.split("\t")[1]))

74

75 # Fit that hoe

76 a = aa[i]

77 b = bb[i]

78 popt , pcov = curve_fit(gauss , radius[a:b], intensity[a:b], p0=INITS[i])

79

80 # Save the radii and its errors

81 RADII.append(popt [0])

82 S_RADII.append(np.sqrt(pcov [0][0]))

83

84 # Generate data to plot gauss fit , AGAIN

85 xx = np.linspace(radius[a], radius[b], 100)

61



86 yy = gauss(xx , *popt)

87

88 if PLOT_ALL:

89 # Plot the data because everybody loves plots , looks as expected though

90 plt.title(r"$U_R$ = " + str(U_R[i]) + "kV")

91 plt.xlim(0, 600)

92 plt.xlabel("Radial Position on the Detector Screen in [pixel]")

93 plt.ylabel("Intensity [arb. unit]")

94 plt.minorticks_on ()

95 plt.grid(which="minor", linestyle=":")

96 plt.grid(which="major", linestyle="-")

97 plt.scatter(radius , intensity , marker="x", color="red", label="Data")

98 plt.scatter(radius[a:b], intensity[a:b], marker="x", color="blue",

99 label="Data used for Model Fit")

100 plt.plot(xx , yy, color="black", label="Gauss")

101 plt.legend(loc=2)

102 plt.savefig("./ raw_data/vmi_ur_dependence" + U_R_STR[i] + ".pdf",

103 format="PDF")

104 plt.show()

105

106 # Plot the final data , because everybody loves plots

107 plt.xlabel(r"Repellor Voltage $U_R$ in [kV]")

108 plt.ylabel("Radial Position of the Peak on the Detector Screen in [pixel]")

109 plt.minorticks_on ()

110 plt.grid(which="minor", linestyle=":")

111 plt.grid(which="major", linestyle="-")

112 plt.scatter(U_R , RADII , marker="x", color="red")

113 plt.show()

114

115 with open("vmi_ur_dependence.dat", "w") as data:

116 doc_str = "u\tr\ts\n"

117 for u, r, sr in zip(U_R , RADII , S_RADII):

118 doc_str += str(u) + "\t" + str(r) + "\t" + str(sr) + "\n"

119 data.write(doc_str)

1 """

2 Module to analyse the measured energy spectrum of potassium.

3 In this module we check the FWHM of the first peak (inner circle)

4 for different voltage ratios , to justify our chosen ratio.

5 """

6

7 from matplotlib import pyplot as plt

8 import numpy as np

9 from scipy.optimize import curve_fit

10

11 # This handles the used fonts in the plot to make it more or less consistent

12 # with the standard latex font.

13 plt.rcParams[’mathtext.fontset ’] = ’stix’

14 plt.rcParams[’font.family ’] = ’STIXGeneral ’

15 plt.rcParams[’mathtext.rm’] = ’Bitstream Vera Sans’

16 plt.rcParams[’mathtext.it’] = ’Bitstream Vera Sans:italic ’

17 plt.rcParams[’mathtext.bf’] = ’Bitstream Vera Sans:bold’

18

19

20 def fwhm(sigma: float) -> float:

21 """

22 This function takes the standard deviation of a gaussian function

23 and determines its [F]ull [W]idth at [H]alf [M]aximum.
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24 See e.g. https ://en.wikipedia.org/wiki/Full_width_at_half_maximum

25 """

26 return 2 * np.sqrt(2 * np.log(2)) * sigma

27

28

29 def gauss(x: float , mu: float , sigma: float , amp: float , off: float) -> float:

30 """

31 Gaussian function used to fit to the data. Gaussian model might not be

32 totally justified by the theory , but is a good enough method to find the

33 position of a "gauss -like" shaped peak.

34

35 x: x-Position

36 mu: Mean

37 sigma: Standard Deviation

38 amp: Amplitude

39 off: Offset on y-Axis

40 """

41 return amp * np.exp(-(x - mu)**2/(2 * sigma **2)) + off

42

43

44 # Container for data: All measurements

45 IIs = list()

46 RRs = list()

47 MUs = list()

48 SIGMAs = list()

49 S_MUs = list()

50 S_SIGMAs = list()

51

52 for i in ["69", "70", "71", "715", "72", "73"]:

53 # Container for data: One measurement

54 II = list()

55 RR = list()

56

57 # Read data

58 with open("./ el_vmi_" + i + "_pes.dat", "r") as doc:

59 data_raw = doc.read()

60 lines = data_raw.split("\n")

61 for line in lines [0: -1]:

62 entries = line.split("\t")

63 RR.append(float(entries [0]))

64 II.append(float(entries [1]))

65

66 # Fit Gauss model (PEAK: 1) to data

67 INITIALGUESS = [200, 100, 0, 0]

68 popt , pcov = curve_fit(gauss , RR[0:160] , II[0:160] , p0=INITIALGUESS)

69

70 # Get fit parameter

71 mu, sigma = popt[0], popt [1]

72 s_mu , s_sigma = np.sqrt(pcov [0][0]) , np.sqrt(pcov [1][1])

73

74 # Get fit data to plot it

75 XX_GAUSS = np.linspace(RR[0], RR[160], 80)

76 YY_GAUSS = gauss(XX_GAUSS , *popt)

77

78 # NOTE: Save Plot of every Dataset (Set 0 if not wanted)

79 if 1:

80 plt.scatter(RR, II , marker="x", s=5, c="red", label="Data")

81 plt.plot(XX_GAUSS , YY_GAUSS , c="blue", label="Gauss Model")
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82 plt.xlim(0, 600)

83 plt.xlabel("Radial Position on the Detector Screen in [pixel]")

84 plt.ylabel("Intensity [arb. unit]")

85 plt.minorticks_on ()

86 plt.grid(which="minor", linestyle=":")

87 plt.grid(which="major", linestyle="-")

88 plt.legend(loc=2)

89 plt.savefig("./ plots_raw/ang_dataset_" + i + ".pdf", format="pdf")

90 plt.show()

91 plt.clf()

92

93 # Append Data to corresponding Container

94 IIs.append(II)

95 RRs.append(RR)

96 MUs.append(mu)

97 SIGMAs.append(sigma)

98 S_MUs.append(s_mu)

99 S_SIGMAs.append(s_sigma)

100

101 # Calculate desired quantities

102 FWHM = [fwhm(sigma) for sigma in SIGMAs]

103 S_FWHM = [fwhm(s_sigma) for s_sigma in S_SIGMAs]

104 RATIO = [69, 70, 71, 71.5, 72, 73]

105 S_RATIO = [0.2 for _ in RATIO]

106

107 # Plot the voltage ratio against the FWHM

108 plt.scatter(RATIO , FWHM , c="red")

109 plt.errorbar(RATIO , FWHM , xerr=S_RATIO , yerr=S_FWHM , ecolor="black",

110 capsize =2.5, fmt="none")

111 plt.minorticks_on ()

112 plt.xlabel(r"Voltage ratio $U_E / U_R$")

113 plt.ylabel(r"FWHM [pixel]")

114 plt.grid(which="minor", linestyle=":")

115 plt.grid(which="major", linestyle="-")

116 plt.show()

117

118 with open("vmi_ratio_data.dat", "w") as data:

119 doc_str = "fwhm\tsfwhm\tr\tsr\n"

120 for f, sf, r, sr in zip(FWHM , S_FWHM , RATIO , S_RATIO):

121 doc_str += str(f) + "\t" + str(sf) + "\t" + str(r) + "\t" + str(sr) +\

122 "\n"

123 data.write(doc_str)

Anisotropy

1 ’’’

2 This module takes angular and radial VMI -data and calculated the anisotropy

parameters.

3 ’’’

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 r = []

8

9 with open("../ energy_analysis/energy_axis.txt", "r") as data:

10 raw_data = data.read()

11 lines = raw_data.split("\n")
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12 for line in lines [0: -1]:

13 r.append(float(line))

14

15 def read_data(filename):

16 with open(filename + "ang.dat", "r") as data:

17 b1 = []

18 b2 = []

19 raw_data = data.read()

20 lines = raw_data.split("\n")

21 for line in lines [0: -1]:

22 entries = line.split("\t")

23 b1.append(float(entries [1]))

24 b2.append(float(entries [2]))

25 with open(filename + "pes.dat", "r") as data:

26 pes = []

27 raw_data = data.read()

28 lines = raw_data.split("\n")

29 for line in lines [0: -1]:

30 pes.append(float(line.split("\t")[1]))

31 weight_b1 = [b1 * p / np.sum(pes) for b1 , p in zip(b1, pes)]

32 weight_b2 = [b2 * p / np.sum(pes) for b2 , p in zip(b2, pes)]

33 return weight_b1 , weight_b2

34

35

36 b1a , b2a = read_data("el_vmi_715_")

37 b1b , b2b = read_data("el_vmi_715a_")

38 b1c , b2c = read_data("el_vmi_715b_")

39 b1d , b2d = read_data("el_vmi_715c_")

40 b1e , b2e = read_data("el_vmi_715d_")

41

42

43 beta1_list = b1a + b1b + b1c + b1d + b1e

44 beta2_list = b2a + b2b + b2c + b2d + b2e

45 r_long = 5 * r

46

47

48 plt.ylim(-1, 2)

49 plt.scatter(r_long , beta1_list)

50 plt.scatter(r_long , beta2_list)

51 plt.scatter(r[190] , 1)

52 plt.scatter(r[194] , 1)

53 plt.scatter(r[166] , 1)

54 plt.scatter(r[171] , 1)

55 plt.scatter(r[79], 1)

56 plt.scatter(r[88], 1)

57 plt.show()

58

59

60 # calculate beta2

61 beta_1_left_l = b1a [79:87] + b1b [79:87] + b1c [79:87] + b1d [79:87] + b1e [79:87]

62 beta_1_middle_l = b1a [166:170] + b1b [166:170] + b1c [166:170] +\

63 b1d [166:170] + b1e [166:170]

64 beta_1_right_l = b1a [190:193] + b1b [190:193] + b1c [190:193] + b1d [190:193] +\

65 b1e [190:193]

66

67 beta_1_left = np.mean(beta_1_left_l)

68 beta_1_left_err = np.std(beta_1_left_l)

69 beta_1_middle = np.sum(beta_1_middle_l) / len(beta_1_middle_l)
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70 beta_1_middle_err = np.std(beta_1_middle_l)

71 beta_1_right = np.sum(beta_1_right_l) / len(beta_1_right_l)

72 beta_1_right_err = np.std(beta_1_right_l)

73

74 print("beta 2")

75 print(beta_1_left , beta_1_middle , beta_1_right)

76 print("beta 2 err")

77 print(beta_1_left_err , beta_1_middle_err , beta_1_right_err)

78

79 # calculate beta4

80 beta_2_left_l = b2a [79:87] + b2b [79:87] + b2c [79:87] + b2d [79:87] + b2e [79:87]

81 beta_2_middle_l = b2a [166:170] + b2b [166:170] + b2c [166:170] +\

82 b2d [166:170] + b2e [166:170]

83 beta_2_right_l = b2a [190:193] + b2b [190:193] + b2c [190:193] + b2d [190:193] +\

84 b2e [190:193]

85

86 beta_2_left = np.sum(beta_2_left_l) / len(beta_2_left_l)

87 beta_2_left_err = np.std(beta_2_left_l)

88 beta_2_middle = np.sum(beta_2_middle_l) / len(beta_2_middle_l)

89 beta_2_middle_err = np.std(beta_2_middle_l)

90 beta_2_right = np.sum(beta_2_right_l) / len(beta_2_right_l)

91 beta_2_right_err = np.std(beta_2_right_l)

92

93 print("beta 4")

94 print(beta_2_left , beta_2_middle , beta_2_right)

95 print("beta 4 err")

96 print(beta_2_left_err , beta_2_middle_err , beta_2_right_err)

97

98

99 with open("anisotropy.dat", "w") as data:

100 data.write("energy\tbeta2\tbeta4\n")

101 for e, b2, b4 in zip(r, beta1_list , beta2_list):

102 data.write(str(e) + "\t" + str(b2) + "\t" + str(b4) + "\n")

103

104 print(r[79], r[87], r[166], r[170], r[190], r[193])

1 ’’’

2 This module takes the experimental and the reference anisotropy parameters and

calculates

3 the possible Able inversed picture.

4 ’’’

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8

9 # reference values

10 beta_2 = [0.17, 0.86, 1.07]

11 beta_4 = [0, 0, 0.52]

12

13 # experimental values

14 # beta_2 = [0.002 , 0.0097 , 0.4]

15 # beta_4 = [0.006 , 0.002 , 0.3]

16 #

17 radius = [[79, 80, 81, 82, 83, 84, 85, 86, 87],

18 [166, 167, 168, 169, 170],

19 [190, 191, 192, 193]]

20

21
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22 def legendre(theta , b2 , b4):

23 return (1 + b2 * (1.5*( np.cos(theta))**2 - 0.5) + b4 *

24 (4.375*( np.cos(theta))**4 - 3.75*( np.cos(theta))**2 + 0.375))

25

26

27 dataarray = np.ones ([200 , 360])

28

29 for transition , tb2 , tb4 in zip(radius , beta_2 , beta_4):

30 for r_ind in transition:

31 for angle in range(0, 360):

32 dataarray[r_ind , angle] = legendre (( angle + 90) * np.pi / 180, tb2 , tb4)

33

34 rbins = np.linspace(0, 200, 200)

35 phibins = np.linspace(0, 2*np.pi, 360)

36

37 ang , rad = np.meshgrid(phibins , rbins)

38 fig , ax = plt.subplots(subplot_kw=dict(projection="polar"))

39 ax.set_yticks ([])

40 ax.set_xticks ([])

41 pc = ax.pcolormesh(ang , rad , dataarray , cmap="viridis")

42

43 plt.savefig("anisot_exp.png")

44 plt.show()
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