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Abstract

This report is a study of various aspects of the standard model with a special
focus on the Z0 boson. Specifically, data from the OPAL experiment at CERN is
used and analysed in a way similar to the historic experiment, but in a simplified
fashion. Using Monte Carlo simulated data of the experiment, conditions were
defined with which particular decay rates could be extracted from real experimental
data. These rates could be recalculated into cross-sections for different beam energies
at which Breit-Wigner functions were fitted. From this fits the Z0 boson mass
MZ = (91.19 ± 0.05) GeV, its total decay width Γ = (2.52 ± 0.07) GeV and its
partial decay widths Γe = (82 ± 3) MeV, Γµ = (81 ± 4) MeV, Γτ = (85 ± 8) MeV,
Γh = (1820 ± 70) MeV were determined.

These results are quite reasonable and the current reference values given by the
Particle Data Group [4] are within a 1-σ environment for most of these results; the
exception being the hadron decay width Γh, for which the reference value is within
a 2-σ environment.

By comparing different leptonic branching ratios, the lepton universality could
be verified to a degree. Furthermore, the number of neutrino generations could be
determined from the decay widths to a value of Nν = 2.7 ± 0.6, which is a satisfying
result and compatible with the expected value of 3.

At last, the forward-backward asymmetry of muons was determined and used to
find an estimation of the squared sine of the Weinberg angle sin2 θW = 0.239±0.005
which is again in good agreement with the reference value of the Particle Data
Group.
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1. Introduction

1. Introduction
Todays best known model to describe the physics of elementary particles is the Standard
Model of particle physics. It describes three of the four known fundamental forces, that
is, the electromagnetic force, the weak force and the strong force. The gravitational
force, however, is not included in the Standard Model. With the finding of the Higgs
boson in 2012 the last predicted particle of the Standard Model was found and also if
there are physical effects which indicate that the standard model is not sufficient and
extensions have to be made, it is still the most precise model to describe the interaction
of elementary particles known.

In the 90s the OPAL (Omni Purpose Apparatus at LEP) experiment was operated
at CERN. It was one of the major experiments at the Large Electron-Positron Col-
lider (LEP). In the first half of the 90s the main goal of the experiment was to investi-
gate the Z0 boson, calculating its mass and decay width precisely for example. In the
second half, after the expansion of the LEP which lead to the possibility of conducting
experiments with much higher center of mass energies, the investigation focused mainly
on W±boson pairs.

In this report we present an analysis of OPAL data from the early 90s. Following
the analysis done back than in a simplified way, with the goal to calculate the Z0 mass,
decay width, its partial decay widths, the number of neutrino generations, an estimation
of the squared sine of the Weinberg angle using the forward-backward asymmetry of
muons and verify the lepton universality.

The experiment can roughly be divided into two parts. In the first part, the event
display GROPE will be used to visualize the characteristic detector signals of the dif-
ferent particles. Based on the properties of these signals, we devise selection criteria to
differentiate between different event types. In the second part, Monte Carlo (MC) data
simulating the actual OPAL data will be used to further refine these cuts in the detector
data. After that, these selection criteria will be applied to the OPAL data, such that
the wanted variables can be computed using a statistical analysis.

The report itself is structured as follows. In section 2, a short overview for the needed
theoretical background is given. Further, structure and function of the detector is pre-
sented and the characteristics of the different particles will be discussed. Afterwards in
section 3 this is followed by the description and presentation of the analysis. At the end
we summarize and discuss the results of the analysis in section 4.
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2. Theory

2. Theory

2.1. The Standard Model

In the Standard Model the interaction between particles is described by the three fun-
damental interactions: electromagnetic, weak and strong interaction. The fourth funda-
mental interaction that we know of, gravitation, is not described by the Standard Model,
but is also to weak to play any role regarding experiments with single particles.

Each of this interactions or forces has different mediator particles, which all are bosons
(integer spin particles) which classifies one of two groups of elementary particles in the
Standard Model. The second group are the fermions (half-integer spin particles), which
can be divided in further subgroups. For the electromagnetic interaction the mediator
particle is the photon (γ) which couples to the electric charge of particles. For the weak
interaction there exist three mediator particles, namely the W+, W− and Z0 bosons.
The weak bosons couple to the weak isospin. So called gluons (g) are the mediator
bosons for the strong interaction they connect to the color charge. The last boson of
the Standard Model is the higgs boson (H0), the only boson of the Standard Model with
spin zero (the other one named have spin one). It is the latest discovered particle of the
Standard Model and is needed for the mass generation of the other vector bosons via
spontaneous symmetry breaking. An overview over the vector bosons is given in table 1.

The fermions can be divided in three generations of quarks and leptons. Quarks are
the fundamental particles out of which hadrons are build and for each generation one
pair of quark exists. The leptons can be divided further into charged and non charged
leptons which refers to the electric charge of the particles. The non charged leptons are
called neutrinos and in total there are three neutrinos, one for each generation. There
are also three charged leptons: electron, muon and tau. An overview over the fermions
is given in table 2.

A more in-depth presentation of the Standard Model of particle physics is given in the
book of Povh [6]. A more casual introduction can be found in the reference [8].

In the following paragraphs we will especially focus on the creation of Z0 boson via
electron-positron scattering.

Table 1: An overview over the bosonic particles of the Standard Model. Based on the
book of Povh [6].

Interaction Vector Boson El. Charge [e] Mass [GeV/c2
0]

Electromagnetic γ : Photon 0 0
Weak W±: W±-boson ±1 80.399

Z0: Z0-boson 0 91.188
Strong g: Gluons 0 0

3



2. Theory

Table 2: An overview over the elementary fermionic particles of the Standard Model.
Based on the book of Povh [6].

Group Generation Flavour El. charge [e] Mass [MeV/c2
0]

Leptons (Spin- 1
2 ) First e: Electron −1 0.511

νe: Electron neutrino 0 < 0.002
Second µ: Muon −1 105.66

νµ: Muon neutrino 0 < 0.19
Third τ : τ -lepton −1 1776.99

ντ : τ -lepton neutrino 0 < 0.18

Quarks (Spin- 1
2 ) First u: Up 2/3 2.2 +0.5

−0.4
d: Down −1/3 4.7 +0.5

−0.3
Second c: Charm 2/3 1290

s: Strange −1/3 95 +9
−3

Third t: Top 2/3 172 900
b: Bottom −1/3 4190

2.2. The Z0 boson and e+e−-interactions

The process studied in this report is e+e− → ff̄ which in lowest order of perturbation
theory is mediated by a photon or Z0 boson. The Feynman diagrams for this processes
are show in fig. 1. It should be mentioned that the top quark cannot be produced by
decays of the Z0 boson as the top quark’s high mass makes this process kinematically
impossible.

If the center-of-mass energy of the electron positron pair is near the Z0 mass the s-
channel decay is mostly mediated by the Z0boson, which can be seen as a peak of the
cross-section.

One goal of the analysis in this report is to determine the total decay width and the
partial decay widths, with the total decay width Γ being given by the sum of the partial
widths:

Γ = Γe + Γµ + Γτ + Γhadr. + Γν + Γunknown. (1)

The Standard Model predicts a value of zero for the partial decay width Γunknown.
The rate of processes where a Z0 boson mediates the interaction e+e− → ff̄ rather

than a photon (i. e. the two Feynman diagrams on the left in fig. 1) is highest at center-
of-mass energies near the mass of the Z0 boson. This is evident from the fact that
fermionic cross section σf follow a relativistic Breit-Wigner distribution:

σf = 12πΓeΓf

s · M2
Z

· |χ(s)|2 = 12π

MZ
· sΓeΓf(

s − M2
Z
)2 +

(
s2Γ2

Z/M2
Z
) , (2)

with the partial decay widths given by

Γf = Nf
c

3 α
(
M2

Z

)
· MZ ·

(
v2

f + a2
f

)
= Nf

c

√
2

12π
Gf M3

Z

(
(gf

V )2 + (gf
A)2

)
(3)
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Figure 1: Shown are the lowest order Feynman diagrams for e+e− → ff̄ the top row
shows the s-channel and bottom row the t-channel which is only possible if the
finale state is e+e−.
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2. Theory

There, the propagator χ is given by

χ(s) = s(
s − M2

Z
)

+ isΓZ/MZ
(4)

Nf
c stands for the color factor and Qf for the electric charge of a fermion f . The

symbol s refers to the Mandelstam variable and can be written as square of the center-
of-mass energy Ecom, i. e. s = E2

com. vf and af are the vectorial and axial components
of the matrix element of the process and depend on the fermion’s quantum numbers Qf

and (I3)f ; the latter being the axial component of the fermion’s isospin:

vf = (I3)f − 2Qf sin2 θW
2 sin θW cos θW

= gf
V

2 sin θW cos θW
, (5)

af = (I3)f

2 sin θW cos θW
= gf

A

2 sin θW cos θW
. (6)

θW is the Weinberg angle which describes the mixing angle between the original basis
fields B0, W0 and the physical fields γ and Z0. Experimentally, cos θW = MW/MZ
describes the ratio between the mass of the W± boson and the mass of the Z0 boson.

Note that in the case f = e there is an additional contribution at lowest order: If
the outgoing particles are given by an electron-positron pair, the incoming electrons can
not just annihilate (this is the case of the diagram in the upper right in fig. 1) but also
scatter (this is the diagram in th lower right in fig. 1). This implies that for the process
e+e− → e+e− the contribution to the cross section is not only given by the s-channel,
but also by the t-channel of the process. Which of these channel dominates depends on
the scattering angle θ, i. e. the angle between incoming and outgoing positively charged
particle: For large scattering angles θ the s-channel is dominant while the t-channel
dominates for small θ. The dependence of the differential cross section of different
channels with regard to the scattering angle can be written as dσ

d/ cos θ ∝ 1 + cos2 θ in
the s-channel case and dσ

d/ cos θ ∝ (1 − cos θ)−2 in the t-channel case.
The quantum numbers and partial decay widths of every outgoing particle we consider

are given in table 3. Summing each partial decay width multiplied by the number of
particles in that row gives the total decay width of the Z0 boson

ΓZ = 2422.303 GeV. (7)

In that calculation, the Weinberg angle was set to sin2 θW = 0.231 21 [4]. Further, for
each particle a ratio is given between the total decay width of the Z0 boson under the
assumption that another member of that particles family would exist and the total decay
width predicted by the Standard Model given by eq. (7). In addition, the theoretical
total cross section of every particle’s family was calculated using eq. (2) at the resonance
center-of-mass energy

√
s = MZ. As we don’t differentiate up-type quarks from down-

type quarks in our actual analysis, the total cross section and sum of partial widths have
been performed over all five relevant quarks.
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2. Theory

Table 3: Overview over the quantum numbers, decay widths, and cross sections of differ-
ent particles. Note that the sum in the last two columns sum over all charged
leptons, all neutrinos, and all quarks, in each row, respectively.

Particle Nf
c (I3)f Qf Γf [MeV] 1 + Γf /ΓZ

∑
f

Γf [MeV]
∑

f
σf [nb]

e, µ, τ 1 − 1
2 −1 83.40 1.034 250.23 6.28

νe, νµ, ντ 1 1
2 0 165.88 1.068 497.64 12.49

u, c 3 1
2

2
3 285.40 1.118

1674.43 42.02
d, s, b 3 − 1

2 − 1
3 367.87 1.152

2.2.1. Luminosity

The t-channel process can be used for the calculation of the luminosity L of the experi-
ment. By definition of the cross section σ of any scattering process

dn

dt
= σL, n = σ

∫
L dt, (8)

holds where L refers to the particle accelerator’s luminosity and dn
dt is the event rate of

the process in question. That means that the luminosity of the experiment is needed to
calculate the cross sections of the different processes from the number of events of the
respective process. Since the cross section of the t-channel of the e+e− process is well
approximated by the theory, it can be used to calculate the luminosity. In the actual
experiment, however, the integrated luminosity is provided for specific center-of-mass
energies.

2.2.2. Forward-backward asymmetry

In this report the forward-backward asymmetry AFB will be determined for muons.
This quantity is especially useful as it provides an unostentatious way to compute the
squared sine of the Weinberg angle, sin2 θW. The forward-backward asymmetry itself is
a measure of the asymmetry of the process with respect to the beam direction and is
defined via the differential cross section as

AFB =
∫ 1

0
dσf

d cos θ d cos θ −
∫ 0

−1
dσf

d cos θ d cos θ∫ 1
0

dσf

d cos θ d cos θ +
∫ 0

−1
dσf

d cos θ d cos θ
. (9)

At lowest order perturbation theory the differential cross section is given by

dσf

d cos θ
= α2Nf

c

4s

(
F1(s)

(
1 + cos2 θ

)
+ 2F2(s) cos θ

)
, (10)

with

F1(s) = Q2
f − 2vevf Qf ℜ(χ(s)) +

(
v2

e + a2
e

) (
v2

f + a2
f

)
|χ(s)|2 (11)

F2(s) = −2aeaf Qf ℜ(χ(s)) + 4veaevf af |χ(s)|2. (12)
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2. Theory

Carrying out the integrations, the forward-backward asymmetry can be written as

AFB = 3
4

F2
F1

. (13)

Exactly at the maximum, i. e. at
√

s = MZ, the asymmetry can be expressed as

(AFB)f (M2
Z) = 3 (v/a)e

1 + (v/a)2
e

(v/a)f

1 + (v/a)2
f

. (14)

Since the ratio vl/al = 1 − 4 sin2 θW is very small the forward-backward asymmetry at
the peak (for leptons) can be further approximated by

(AFB)f (M2
Z) ≈ 3

(
vl

al

)2
. (15)

Thus, by measuring the forward-backward asymmetry at the resonance energy, a good
estimation for the squared sine of the Weinberg angle can be obtained

2.3. The OPAL detector

The OPAL detector is made up of a number of components; a sectional view of the
detector is shown in fig. 2. In the following, some of the main components and their
function will be explained. The inner most part of the detector is the central detector
whose components mainly are used to measure the tracks of charged particles and there
momenta. In the central detector the component nearest to the collision point is the
µ-vertex-detector, followed by the vertex chamber again followed by the jet chamber and
at the end the Z chamber. The inner detector is positioned within a cylindric pressure
vessel which is surrounded by a solenoid which induces a harmonic magnetic field into
the inner detector. After the solenoid follows a time of flight detector (TOF), which
is a scintillator counter used to trigger events and measure the time of flight of the
particles which can be used to calculate the particle’s velocity. This all is surrounded
by the electromagnetic calorimeter (ECAL) which consists of one barrel surrounding the
central part and two end caps enclosing the outer parts at the beam pipe.

With this setup, 98 % of the solid angle is covered. The ECAL can measure the position
and energy deposition of electromagnetic showers (which are triggered by photon through
electromagnetic showering, electron and positron). Forward detectors are built into the
end caps of the ECAL, which are used to measure luminosity by coincident detection of
electrons and positrons at small angles. A hadron calorimeter (HCAL) is built around
the ECAL which also consists of of a central barrel and two end caps. In this the energy
deposition and position of a hadron shower can be measured. The outermost part is
build from muon detectors which detect the position and direction of muons. For a more
detailed description of the different parts of the OPAL and how they are build up one
can have a look at ref. [2].
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2. Theory

Figure 2: A sketch of the OPAL detector showing its components layer by layer [2].
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2. Theory

2.4. Particle selection

The different particles produced by the collision of the beams can be detected and
distinguished by the tracks they leave in the detectors. In the following paragraphs we
focus on the different decay modes of the Z0 boson and how the outgoing particles can
be seen in the detector. A graphical overview of different particle tracks is given in fig. 3.

If the Z0 boson decays in to a e+e− pair the resulting particles both leave a track
in the inner detector, so that two charged particles can be detected. Further, the sum
of the momenta measured in the inner detector should be near to the beam energy as
this is a relatively “clean” process. This is also the reason why the energy measured in
the ECAL should be similar to the measured momenta and thus near the beam energy.
Since the particles should have by now lost all their energy in the ECAL, the energy
measured in the outer detectors should be close to zero.

If the Z0 decays in a muon-antimuon pair, the signature measured in the inner detector
is the same as for the electron-positron pair; however there should be near to no energy
deposit into the ECAL or HCAL due to the high mass of muons.

Fully describing the tracks of an tau-antitau pair is a little bit more difficult since
they decay extremely fast and can decay in a couple of different possible other particles.
Therefore the number of charged particles and how much energy is deposit in which
detector can differ. However, since the most prominent decays of the tau has neutrinos
(which can carry a relatively large amount of energy) as end products the energy de-
posited in ECAL and HCAL should be quiet a bit lower than the beam energy. This is
thus one possibility to separate them from muons or electrons.

In the case of a decay into quarks, it is quite hard to look out for special quarks,
since they are not stable as single particles and therefore interact frequently with the
detector hardware; however, this provides the possibility to separate hadronic events in
general from lepton events. In the case of hadrons a large number of charged particles
are detected, whereas for the leptonic events, only a few are produced. In general, a
further separation of different hadrons is very well possible, but exceed the scope of the
analysis done in this report.

If the Z0 decays into neutrinos, we can not detect them since they do not interact with
any of the detectors.

2.4.1. A note on Monte-Carlo based event selection

Before we start to try analyzing real detector data, we first look at simulated events.
These events are created using Monte-Carlo based simulations of the behaviour of par-
ticles created inside the detector. This allows us to study specific signals the detector
displays while knowing exactly which particles caused them. After a thorough investiga-
tion we arrive at a selection algorithm which takes detector events as input and assigns
them some educated guess about which particle comes out after the collision. This selec-
tion algorithm, however, is not perfect in general. If nMC

ij is the number of Monte-Carlo
generated events of particles j which are classified as en event of particle i and NMC

j

is the total number of Monte-Carlo generated events of particle j, we can compute a

10
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Figure 3: Examples of signals given by different particles in the opal detector. Adapted
from the reference [8].
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so-called efficiency

ϵij =
nMC

ij

NMC
j

(16)

which is a measure of the goodness of our classification scheme.
Assuming our algorithm is perfect, the efficiencies ϵij would be given by Kronecker

symbols δij as a particle of type i would be classified as a particle of type j if and only
if i = j. This assumption, however, is not correct in general and the number of events
our scheme classifies as being of type i is given by

Ni =
n∑

j=1
ϵijNMC

j , (17)

or, as a matrix equation,N1
...

Nn

 =

ϵ11 · · · ϵ1n
...

...
ϵn1 · · · ϵnn

 ·

NMC
1
...

NMC
n ,

 = E

NMC
1
...

NMC
n ,

 , (18)

where E is the efficiency matrix.
In the case where we have to deal with the real OPAL data, the correct amounts of

each particles created is unknown. We name these unknowns Ñi for each particle of
type i. Instead, our classification scheme gives us guessed amounts N1, . . . , Nn. Yet,
under the assumption that our Monte-Carlo data is accurate, the relationship between
the actual numbers of created particles Ñ1, . . . , Ñn and the numbers of particles classified
by our algorithm is given by N1

...
Nn

 = E


Ñ1
...

Ñn.

 (19)

That is, by inverting the above matrix-vector equation we can obtain the correct numbers
of particles actually created in the detector:

Ñ1
...

Ñn.

 = E−1

N1
...

Nn

 . (20)

Thus, one of our goals is to determine the efficiency matrix E (or rather, its in-
verse E−1) as accurately as possible. Once the inverse is calculated, the total cross
sections can be obtained by dividing by the integrated luminosity L =

∫
L dt:σ1

...
σn

 = 1
L


Ñ1
...

Ñn

 = 1
L

E−1

N1
...

Nn

 . (21)
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3. Methodology and Analysis

3.1. First event analysis using GROPE

For a first rough analysis the application GROPE [10] was used. Grope visualizes a tidy
selection of detector events by drawing detected tracks and displaying a summary of the
event data which allows to find event selection criteria to distinguish different particles.
Not only can different pre-selected event collections be selected, but the tracks can be
visualized in three dimensions.

Figure 4 gives an overview of the optical reconstruction of some events in the OPAL
detector: The behaviour of the different particles explained in section 2.4 can be nicely
recognized in the pictures. For example, it can be seen that the electron and muon event
both show two opposing charged tracks in the inner detector, but at the electron event
the energy mostly is deposit into the ECAL (shown as blue cuboids) and for the muon
event nearly no energy is deposit into the ECAL or HCAL but, following the path of
the charged particles in the inner detector, the associated signals in the muon detectors
can be observed.

One can also evaluate some of the measurement variables statistically by creating
histograms to figure out which can be used to determine which events can be assigned to
which particles. The variables on which the histograms are based are briefly explained
in the following: E.ECAL and E.HCAL refer to the total amount of energy deposited
in the electromagnetic and hadronic calorimeter, respectively. The total scalar sum of
the momenta of charged particles determined by the inner detector (i. e. the sum of all
absolutes of the momentum vectors) is called P.CHARGED. N.CHARGED is the total
number of charged particles detected by the inner detector. Similarly, N.MUON is the
number of muons detected by the muon detectors.

Exemplary histograms are shown in fig. 5. It can be seen that hadronic and leptonic
events could be separated quite well using the number of charged particles since only
hadron events seem two have more than about 15 charged tracks. For the distinction
between muonic events and electron and tau events one could use the ratio between
P.CHARGED and E.ECAL (which we call RATIO in the following) since it seems to
be near to one for the electrons and tau and to be mostly higher as five for the muon.
In addition, an additional cut using the number of muon signals (N.MUON) could be
helpful, but this data will not be provided later in the Monte-Carlo and OPAL data
so it can not be used for an effective separation. For the separation between tau and
electrons the energy deposition in the ECAL seems to be a quite good variable for a cut.
The energy deposition into the HCAL, on the other hand, seems to be to mixed up to
use it for a satisfying cut.

3.2. Setting cuts using the Monte-Carlo data

The Monte-Carlo data is structured similarly to the data we gathered in the statistical
data analysis using GROPE data. The variable names defined in the previous section
will thus be used throughout this analysis. Additionally, there is also COS.THRU which,
in the case of hadronic events, refers to the cosine of the thrust axis, and COS.THET

13



3. Methodology and Analysis

Figure 4: The reconstruction of the detector events done by grope are shown. In the
upper left one sees an electron-positron event, in the upper right a muon-anti-
muon event is shown, in the bottom left a tau-anti-tau event is shown and in
the bottom right a hadron event is shown.
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Figure 5: The histograms of the grope data for the four different event types.
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3. Methodology and Analysis

which, in the case of leptonic events, refers to the cosine of the angle of the outgoing
positively charged particle to the incoming positron beam.

3.2.1. Separating the different particle events

Using the Monte-Carlo data we first created histograms similar to what we have done for
the GROPE data and tried to find some satisfying cuts. In fig. 6 histograms visualizing
different measurement values are shown.

As seen before for the GROPE data the hadronic events and leptonic events can be
nicely separated by the number of charged tracks. The cut was set that every event
showing seven or more charged track was identified as a hadron event and every event
with strictly less than seven charged tracks was guessed to be a lepton event.

To separate the lepton events the ratio between P.CHARGED and the energy de-
position in the ECAL was considered (see the last plot in fig. 6). Unlike the GROPE
data, however, the ratio does not seem to be suitable for a cut in the Monte-Carlo data.
The bump in the muon data at a ratio of zero is given by the bump for the sum of
the momenta at zero. This bump could be reasoned by the fact that if the muonic
scattering angle is too small the inner detector can not correctly detect their momenta
(e. g. due to a lack of coverage of that detector volume). However, by closely inspecting
the particles with vanishing P.CHARGED, one finds that all other observables seem to
be distributed just like those of the particles with non-vanishing P.CHARGED, with the
exception of the cosine of the scattering angle COS.THET which seems to be close to
either −1 or 1. Further, for muonic events one obtains an N.CHARGED around 2 (as
expected), implying that the inner detector seems to be working. Different observations
of the Monte-Carlo data set with events where P.CHARGED vanishes can be seen in
the appendix in figs. 13 and 14.

Another possibility to separate the leptons is to look at the energy deposition into the
ECAL: It can clearly be seen that electrons deposit the most energy into the ECAL so
it was decided to separate the electrons from the other leptons by cutting the leptons
at ECAL = 70 GeV. Each event with an energy deposition higher or equal to 70 GeV
is treated as a electron event. Now that electrons and hadrons are dealt with, muon
and tau events need to be separated. This was done by once doing a cut in the ECAL
energy and at the same time doing a cut in the sum of the momenta. If an event has
an energy deposition into the ECAL smaller as 25 GeV and at the same time the sum
of the momenta is either greater or equal 70 GeV or equal to 0 GeV it was selected as a
muon event otherwise it was selected as a tau event. The reasoning for this cuts can be
nicely seen in a two dimensional histogram as shown in fig. 7.

The last important variable of measurement to look at is cos θ, with θ for leptons
being the angle between the positive lepton to the positron beam direction and for the
hadron events the angle of the thrust axis. This variable is shown in fig. 8. For the
hadronic, muonic and tau final states the distribution shows the expected 1 + cos θ2

s-channel behaviour nicely. The electronic final state events show an overlapping of the
s-channel and the t-channel ((1 − cos θ)−2) behaviour as expected. It should be noted
that for some of the events the detection mechanism was not able to compute a value

16



3. Methodology and Analysis

0 10 20 30 40 50 60 70 80 90 100 110
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

·104 E.ECAL
Hadrons Electrons

Muons Taus

0 5 10 15 20 25 30 35 40
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

·105 E.HCAL
Hadrons Electrons

Muons Taus

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
·105 N.CHARGED

Hadrons Electrons

Muons Taus

0 10 20 30 40 50 60 70 80 90 100 110 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

·104 P.CHARGED

Hadrons Electrons

Muons Taus

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

·104 RATIO

Hadrons Electrons

Muons Taus

Figure 6: Histogram for different measurement variables for the different particles using
the Monte-Carlo data. It should be noted that the plot of RATIO (lower left)
cuts away most of the muon data which mostly has a ratio > 8. This is done
so that the peak of muon events at a ratio of zero can be identified.
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for COS.THET; these events are not shown in the angular distributions. These events
however do show normal behaviour in the other variables, so that they can be used as
long as no information about θ is needed.
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Figure 7: Separation of muonic and tau events by considering the two-dimensional dis-
tribution of P.CHARGED and E.ECAL.

3.2.2. Calculating the efficiency matrix

In order to evaluate the quality of our cuts and to be able to estimate the actual number
of events from the OPAL data later on, the efficiency matrix

E =


ϵee ϵeµ ϵeτ ϵeh

ϵµe ϵµµ ϵµτ ϵµh

ϵτe ϵτµ ϵττ ϵτh

ϵhe ϵhµ ϵhτ ϵhh

 (22)

was calculated. The indices e, µ, τ, h represent electron, muon, tau and hadron events,
respectively. Recall that the efficiencies ϵij are defined by

ϵij =
nMC

ij

NMC
j

(23)

where nMC
ij is the number of events of particle j which are classified by our cuts as an

event of particle i and NMC
j is the total number of events of particle j. Important to

note is, that not the length of the dataset given for each particle was used as NMC
j

but instead the fixed value 100 000, which also takes into account internal processes of
the simulations. The cuts that we initially chose were optimized by small variations of
the numeric cut limits. Our goal at this stage was to approximate an identity matrix
with our efficiency matrix, as that would be an efficiency matrix for a perfect particle
selection algorithm. Thus, we required our diagonal matrix elements to be as close to
one as possible and non-diagonal matrix elements to preferably vanish. With this we
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Figure 8: For the three different leptons the histogram of the cosine of the angle between
the positive lepton and the positron beam direction and for the hadronic final
states the angle of the thrust axis.
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got the cuts with the cut limits as mentioned above, which are just small deviations of
the cuts we chose initially. Numerically, our efficiency matrix reads as follows:

E =


9.2097 · 10−1 0 3.18 · 10−3 2.5 · 10−4

1.0 · 10−5 9.1224 · 10−1 2.859 · 10−2 0
8.4 · 10−3 8.09 · 10−3 7.4954 · 10−1 9.76 · 10−3

3.4 · 10−4 0 4.76 · 10−3 9.8043 · 10−1

 (24)

In addition to the efficiencies itself, errors for the efficiencies were calculated, too. To
do so, we assumed nMC

ij and NMC
j to be distributed following a Poisson distribution: As

our selection is basically a counting experiment with large sample size and low probability
to miscount, this assumption seems reasonable. The Maximum-Likelihood estimator
for the standard deviation of Poisson-distributed variable is given by its square root,
i. e. we set the uncertainty on nMC

ij and NMC
j to be

√
nMC

ij and
√

NMC
j , respectively. By

propagating this uncertainty we obtain the following formula for the uncertainty of the
efficiencies:

σϵij =

√√√√√√ nMC
ij(

NMC
j

)2 +

(
nMC

ij

)2

(
NMC

j

)3 (25)

which results in the following error matrix for the efficiencies:

σE =


4 · 10−3 0 1.8 · 10−3 5 · 10−5

1.0 · 10−5 4 · 10−3 5 · 10−4 0
3 · 10−4 3 · 10−4 4 · 10−4 3 · 10−3

6 · 10−5 0 2 · 10−3 4 · 10−4.

 (26)

3.2.3. s-channel separation

In having separated the different particles we now also need to separate the s-channel
and t-channel for the electronic decay channel. This can be done using the distribution
of the scattering angle or the cosine of the angle, which is how it is given in the data. A
histogram of the cosine distribution is shown in fig. 9. As electron scattering corresponds
to shallow angles (these are angles whose cosine is close to ±1), the s-channel can be
selected by only choosing events where COS.THET ∈ [u, l] where u and l are the upper
and lower bounds that we have to choose for best selection efficiency. To separate the
channels we start by fitting the function

F (x) = A
(
1 + x2

)
+ B

(1 − x)2 (27)

at the histogram using the least squares fitting method curvefit from the python mod-
ule scipy.optimize [3] which was supplied with the Poisson errors on the cosine bins.

20



3. Methodology and Analysis

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

·103

cos θ

electronic final state

MC electron data
t-channel
s-channel

both

Figure 9: The histogram for cos θ for the electronic events. Also shown a fit of the form
eq. (27) and the single s-channel and t-channel distributions using the results
of the fit.
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This fit is also plotted into fig. 9, we get the results

A = 60.6 ± 0.5, (28)
B = 7.06 ± 0.10, (29)(

cov(A, A) cov(A, B)
cov(B, A) cov(B, B)

)
=
(

0.294 −0.024
−0.024 0.011

)
. (30)

Using this we can calculate an efficiency for the s-channel selection by calculating

ϵs =
∫ u

l
dσs

d cos θ (x) dx∫ u
l F (x) dx

(31)

where dσs
d cos θ (x) = A

(
1 + x2) is the distribution of the s-channel and l and u are the

boundaries of the section we want to cut out. By choosing upper and lower bounds such
that the efficiency is the highest will result in a high cleanliness rate of electrons from
the s-channel. However, by this picky selection of s-channel electrons, a lot of s-channel
electrons will be discarded leading to a skewed counting rate. To evade this problem we
multiply the number of guessed s-channel electrons by the following correction factor:

r =
∫ 1

−1
dσs

d cos θ (x) dx∫ u
l

dσs
d cos θ (x) dx

=
A
[

x3

3 + x
]1

−1

A
[

x3

3 + x
]u

l

=

[
x3

3 + x
]1

−1[
x3

3 + x
]u

l

= 8
u3 − l3 + 3(u − l) . (32)

r gives the ratio between the total number of s-channel electrons and those that are
actually selected by a cut. That means, if we multiply the number of s-channel electron
events after the cut with this number, we should gain the actual number of s-channel
electron events that happened. As boundaries we have chosen l = 0.9 and u = 0 which
results in

ϵs = 0.9539 ± 0.0009, r = 2.3330. (33)

For the ratio r no error can be calculated since it just depends on the chosen boundaries
which means that this ratio is exact. For the efficiency ϵs, the error was calculated using
the covariance matrix of the fit also given above.

Now, our original efficiency matrix given in eqs. (22) and (24) must be corrected by
multiplying the efficiency ϵs of the s-channel to the first column of the matrix. The
errors for the affected entries is propagated by

σϵij = ϵ̂ijϵs ·
(

σϵs

ϵs
+

σϵ̂ij

ϵ̂ij

)
, (34)

where ϵ̂ indicates the old efficiencies and ϵs the s-channel efficiency. This results in the
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corrected efficiency matrix and error matrix

E =


8.786 · 10−1 0.000 3.180 · 10−3 2.500 · 10−4

9.539 · 10−6 9.122 · 10−1 2.859 · 10−2 0.000
8.013 · 10−3 8.090 · 10−3 7.495 · 10−1 9.760 · 10−3

3.243 · 10−4 0.000 4.760 · 10−3 9.804 · 10−1

 , (35)

σE =


4.842 · 10−3 0.000 1.786 · 10−4 5.001 · 10−5

9.549 · 10−6 4.177 · 10−3 5.423 · 10−4 0.000
2.852 · 10−4 2.856 · 10−4 3.621 · 10−3 3.139 · 10−4

5.594 · 10−5 0.000 2.187 · 10−4 4.406 · 10−3

 (36)

3.2.4. Inversion of the efficiency matrix and its error

To calculate the estimations of the actual number of events for each particle out of
the OPAL data given we need to multiply the inverse of the efficiency matrix to the
number of events for each particle we gain after applying our cuts to the OPAL data
(see section 2.4.1 for more details). While the inverse E−1 of the efficiency matrix can
be calculated straightforward to be

1.138 4.283 · 10−5 −4.829 · 10−3 −2.421 · 10−4

3.694 · 10−4 1.097 −4.183 · 10−2 4.163 · 10−4

−1.217 · 10−2 −1.184 · 10−2 1.335 −1.328 · 10−2

−3.175 · 10−4 5.745 · 10−5 −6.479 · 10−3 1.020


(37)

the calculation of the errors of the inverse matrix is more elaborate and will be presented
in the following paragraphs.

We started with a numerical study by creating a large number (500 000) of 4 × 4-
matrices containing random numbers. The random number at i, j was distributed fol-
lowing a normal distribution with a mean given by the i, jth entry of the efficiency
matrix ϵij and variance σ2

ϵij
. At this point, one could argue, that the assumption of a

normal distribution is inaccurate as each of the ϵij can by its definition only take on
discrete values due to the Monte-Carlo sample being finite. However, we justify this
approximation by appealing to an argument involving the central limit theorem keeping
the large number of toy experiments in mind.

Each of the resulting 500 000 random matrices were inverted and the distribution of
each entry was examined; these distributions are visualized in fig. 10. One can see
that the distribution of each element of the inverse matrix follows roughly a normal
distribution. The red line in each plot corresponds to the probability density function of
a normal distribution (scaled each histogram’s frequencies). The mean and the standard
deviation of each of these normal distributions was estimated using Maximum-Likelihood
estimators, i. e. sample mean and (Bessel corrected) sample variance. The variances (or
rather, their square roots) were used for the error on the efficiency matrix’ inverse given
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Figure 10: Monte Carlo study of the distribution of the elements of an inverted ma-
trix originally consisting of normally distributed random numbers. Each his-
togram shows the distribution of its corresponding element of the inverse
matrix. The red line shows the probability density of a Gaussian (scaled to
frequencies) with parameters estimated using the Maximum-Likelihood esti-
mators for mean and variance. Please note the axis scaling of each diagram.
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in eq. (37). Thus, the error on E−1 is given by

σE−1 =


6.274 · 10−3 2.868 · 10−6 2.739 · 10−4 5.823 · 10−5

1.974 · 10−5 5.013 · 10−3 8.409 · 10−4 1.591 · 10−5

4.421 · 10−4 4.255 · 10−4 6.455 · 10−3 4.364 · 10−4

6.506 · 10−5 3.369 · 10−6 3.013 · 10−4 4.579 · 10−3

 .

(38)

There is an alternative way to calculate the error on E−1 which we will use to cross-
check the result in eq. (38). If we assume the covariance of the elements of the efficiency
matrix to vanish, the errors on the elements of E−1 are given by [5]

σ̃E−1 =

√√√√ 4∑
i=1

4∑
j=1

(E−1)2
αi(σE)2

ij(E−1)jβ


1≤α≤4
1≤β≤4

=


6.274 · 10−3 2.866 · 10−6 2.737 · 10−4 5.817 · 10−5

1.973 · 10−5 5.022 · 10−3 8.412 · 10−4 1.590 · 10−5

4.424 · 10−4 4.253 · 10−4 6.451 · 10−3 4.364 · 10−4

6.508 · 10−5 3.362 · 10−6 3.008 · 10−4 4.585 · 10−3

.


(39)

Thus, the exact result is in agreement with the result of our numeric study given in
eq. (38). The small numeric deviations likely stem from the statistical nature of the
execution of the Monte-Carlo based study.

Immediately from the fit results in table 4 we can obtain an estimate for the mass of
the Z0 boson by taking the weighted mean

MZ =
∑

f=e,µ,τ,h(MZ)f · σ−2
(MZ)f∑

f=e,µ,τ,h σ−2
(MZ)f

= (91.19 ± 0.05) GeV/c2. (40)

In the equation above, (MZ)f refers to the value for MZ given in the row of particle f in
table 4. The error on our weighted mean for MZ was estimated by the standard deviation
for the sample mean, that is, we divided the sample standard deviation by

√
n = 2

and used that as error for MZ. We justify this conservative error estimation by the
observation that the errors for the different fit results differ by one order of magnitude
even though the fit method is the same and our goodness-of-fit estimates don’t seem to
correlate well with the errors.

3.3. The OPAL data

Now that the cuts are set and the efficiency matrix, its inverse as well as their errors are
calculated, we proceed to analyze the real OPAL data. Plots similar to the ones already
shown for the Monte-Carlo data are given in the appendix in figs. 15 and 16.
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3.3.1. Breit-Wigner fits

First the given OPAL data was separated using the cuts defined with the Monte-Carlo
data, i. e. each event of the OPAL data was assigned a guess variable containing the
particle type assigned by our cuts. Events that are not selected by any cuts are discarded.
Afterwards the data was grouped by the beam energies for which the luminosity was
given. It should be noted that the actual beam energies for the OPAL data is not strictly
the same as the once for which the luminosity was given but rather differ by a small
amount from the energies in the luminosity data. For further calculation this difference
was ignored and the beam energy was set to the nearest energy in the luminosity data
frame. To be on the safe side we calculated the standard deviation for each group of
beam energies assigned to one energy in the luminosity data. Using this sorted data the
cross sections were calculated using

σe

σµ

στ

σh

 = 1
L

E−1


Ne

Nµ

Nτ

Nh

+ corrections (41)

for each beam energy separately. “corrections” is a beam-energy dependent correction
term responsible for the radiation corrections. It can be found the appendix in table 9.

Further, in the equation above, L is the integrated luminosity and e, µ, τ and h
describe electron, muon, tau and hadron events. The errors were calculated by error
propagation

σσi =

√√√√(σi

L
σL

)2
+

∑
j=e,µ,τ,h

((
σi − ϵijNj

L

)
σNj

)2
+

∑
j=e,µ,τ,h

((
σi − ϵijNj

L

)
σϵij

)2
.

(42)

For each particle the cross sections are plotted against the according beam energies (see
fig. 11) and relativistic Breit-Wigner functions of the form

σf (Ecom) = 12π

M2
Z

E2
comΓeΓf

(E2
com − M2

Z)2 + E4
com

Γ2
Z

M2
Z

(43)

were fitted against this data using the non-linear least squares fit nls from R [7] which
was supplied with the error on the cross sections. After a visual inspection of the ratio
between errors on the cross section and the errors on the center-of-mass energies we
decided that the latter was negligible for the non-linear least squares fit. This way we
extracted ΓeΓf , MZ, and ΓZ for each of the four outgoing particle types as fit parameters.
The values of the fit parameters are given in table 4 alongside their errors which were
extracted from the covariance matrix supplied from the fit.

Further, a residual standard error (denoted here as χ2/df) was calculated for each fit
and also given in table 4. As a rule of thumb, a residual standard error close to one is an
indication of a good fit – if the value is much larger than one, the model doesn’t fit the
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data very well while a value much smaller than one is a sign of over-fitting. Although our
degrees of freedom are only four, the residual standard errors obtained are quite good.
To further understand the fit we also calculated test statistics alongside their p-values
for each fit parameter of each fit. This was done by constructing the t-statistic of each
parameter of each fit and finding the (two-sided) quantile of the t-distribution with four
degrees of freedom. The results are given in table 5. The observation that all p-values
are smaller than 10−4 indicates a great significance of each fit parameter. Interestingly,
the fit parameter with the highest significance by far is MZ whose p-values lie below the
p-values of other parameters by several orders of magnitude. This extreme difference in
orders of magnitude suggests that an estimation of the mass of the Z0-boson is easier
(geometrically, the mass of the Z0-boson falls together with the location of the peak of
the Breit-Wigner distribution) and can be done with more accuracy than the other fit
parameters. All in all, the low p-values suggest that our curve fits the data nicely.
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Figure 11: Cross sections of the different outgoing particle types at different beam ener-
gies. Note that error bars are plotted for both axes, even if the error in

√
s

is not visible.
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3. Methodology and Analysis

Table 4: Fit results from the cross section fit displayed in fig. 11. The underlying model
of the fit is a relativistic Breit-Wigner distribution given in eq. (43). As a
measure for the goodness of fit, the residual standard error is given. For each
of the fits, there are four degrees of freedom (df).

Particle ΓeΓf [103 MeV2] MZ [GeV/c2] ΓZ [GeV] χ2/df

e 6.7± 0.5 90.99 ± 0.04 2.47± 0.11 1.53
µ 6.6± 0.2 91.19 ± 0.02 2.42± 0.04 0.73
τ 7.8± 0.6 91.19 ± 0.05 2.75± 0.12 1.26
h 149.0± 1.7 91.198± 0.008 2.53± 0.02 1.02

Table 5: Overview over test statistics of the estimated parameters of each fit of table 4.

ΓeΓf MZ ΓZ

Fit t-value p-value t-value p-value t-value p-value

e 13.55 1.72 · 10−4 2103.15 3.07 · 10−13 22.02 2.52 · 10−5

µ 31.95 5.72 · 10−6 4358.75 1.66 · 10−14 54.84 6.62 · 10−7

τ 13.81 1.59 · 10−4 1863.73 4.97 · 10−13 23.67 1.89 · 10−5

h 84.68 1.17 · 10−7 11 247.12 3.75 · 10−16 −127.51 2.27 · 10−8

3.3.2. Number of Neutrino Generations

Based on the fit results given in table 4 we are now able to calculate the partial width
of each outgoing particle group we consider (e, µ, τ, and hadrons) and calculate their
partial widths: To this end, we first consider the electron fit results and calculate the
electronic decay width by taking the square root of ΓeΓf = Γ2

e. This gives

Γe =
√

Γ2
e = (82 ± 3) MeV (44)

with the error propagated as

σΓe = 1
2
√

Γ2
e

σΓ2
e

= 3.04 MeV. (45)

With the electronic decay width, we can calculate the remaining decay widths Γf simply
by dividing ΓeΓf by Γe. This gives

Γµ = (82 ± 3) MeV,

Γτ = (81 ± 4) MeV,

Γµ = (1.81 ± 0.07) GeV,

(46)
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where the error on the partial widths were propagated as

σΓf
=
√(

σΓeΓf

Γe

)2
+
(ΓeΓf

Γ2
e

· σΓe

)
, f ̸= e. (47)

Before we can calculate the invisible decay width and with that an estimate for the
number of neutrino generations, we need a unique total decay width for the Z0 boson.
To this end we simply take the weighted mean of the values for ΓZ obtained via the fit
and given in table 4:

ΓZ =
∑

f=e,µ,τ,h(ΓZ)f · σ−2
(ΓZ)f∑

f=e,µ,τ,h σ−2
(ΓZ)f

= (2.54 ± 0.07) GeV. (48)

Here, (ΓZ)f refers to the value for ΓZ obtained via the non-linear least squares fit over
the cross sections of particle f . The error on the weighted mean was not propagated
via normal error propagation. Instead, we opted for a more conservative estimation and
used the standard deviation for a sample mean, i. e. we divided the sample standard
deviation by

√
n =

√
4 = 2 and used that as error for ΓZ.

Now we are ready for the calculation of the invisible width, or rather, the number
of neutrino generations: As presented in section 2.2, the neutrino decay width is given
by Γν = 165.88 MeV. Now, dividing the invisible width, which is the difference between
the total decay width and the sum of the partial decay widths we observed, by the the-
oretical value for the neutrino decay width gives us the number of neutrino generations:

Nν =
ΓZ −

∑
f=e,µ,τ,h Γf

Γν
= 2.6 ± 0.6. (49)

Again, the error was propagated using Gaussian error propagation:

σNν =

√
σ2

ΓZ
+
∑

f=e,µ,τ,h σ2
Γf

Γν
= 0.615. (50)

3.3.3. Lepton universality

Using the distribution of the cross section developed in section 3.3.1 we are ready to
analyze lepton universality. As the cross section is proportional to the event rate, an
interesting measure of the coupling between the Z0 boson and leptons is given by the
ratio σf (MZ)/σh(MZ) (f = e, µ, τ) right at the resonance. The calculation of σf (MZ) is
straightforward; inserting MZ into the Breit-Wigner distribution gives

σf (MZ) = 12πΓeΓf

M2
Z · Γ2

Z
(51)

with error

σσf (MZ) =

√√√√√√√( ∂σf
∂ΓeΓf

∂σf
∂MZ

∂σf
∂ΓZ

)
· Vf ·


∂σf

∂ΓeΓf
∂σf
∂MZ
∂σf
∂ΓZ

, (52)
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where Vf is the covariance matrix of each fit. Table 6 shows the total cross section
at the peak σf (MZ) as well as the ratio between the fermionic and the hadronic cross
section at the peak. Further, the ratio between the partial decay widths are given. These
were calculated using the results of the previous section and the error of this ratio was
propagated by Gaussian error propagation,

σΓf /Γh
=

√√√√(σΓf

Γh

)2
+
(

Γf

Γ2
h

· σΓh

)2

. (53)

As one can see in table 6, the ratios of both the cross sections and the branching ratios
are consistent in each respective group. In order to test if both ratios are in agreement
(as predicted by eq. (51)), we can use a two-sample t-test on both ratios. A Welsh
two sample t-test performed using t.test in R gives a p-value of 0.836; a two-sample
Kolmogorov-Smirnov test using ks.test gives a p-value of 1. Though the significance
of the Kolmogorov-Smirnov test can be disputed as it is an asymptotic test used on a
sample of size 3, the Welsh two-sample test does not allow us to reject our hypothesis that
both samples follow from the same distribution. Thus, our calculations seem consistent
in itself.

Table 6: Total cross section at the Z0 resonance for the different outgoing particles along
with the ratio of the fermionic and hadronic peak cross section. Further, the
ratio between the fermionic and hadronic partial decay widths are displayed.

Particle σf (MZ) [nb] σf (MZ)/σh(MZ) Γf /Γh

e 1.952± 0.018 0.047 ± 0.003 0.045± 0.002
µ 2.013± 0.003 0.0488± 0.0016 0.045± 0.003
τ 1.815± 0.015 0.044 ± 0.003 0.052± 0.004
h 41.3 ± 0.3 1 1

3.3.4. Forward-backward asymmetry

To calculate the forward-backward asymmetry AFB of muons the Monte Carlo data for
the muons must be separated into the events for which 0 < cos θ ≤ 1 holds and the
ones where we have −1 ≤ cos θ < 0. Note that this automatically removes the events
for which the detector could not define a proper cosine. Further, this means that events
with cos θ = 0 are not counted; however, we found none of such events. This selection
by the value of cos θ corresponds geometrically to picking the events with the outgoing
particle in the forward and backward hemisphere with respect to the beam direction.
After this separation by hemispheres, we count the number of muonic events in the
forward region NF and in the backward region NB and calculate

AFB = Nf − Nb
Nf + Nb

+ correction, (54)
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“correction” is a beam-energy dependent correction term, which can be found in the
appendix in table 9 and is responsible for the radiation corrections. Although this
equation technically differs from eq. (9) in the theory as it would have to incorporate
the cross sections and not just the number of events, but as the luminosity is the same
for each cross section under consideration, the luminosity cancels out, so that one can
calculate the forward-backward asymmetry directly from the event numbers Nf and Nb.
The error of AFB can be calculated as

σAFB = AFB

√√√√( √
Nf

Nf + Nb

)2

+
( √

Nb
Nf + Nb

)2

+
(

AFB
Nf + Nb

√
Nb

)2
+
(

AFB
Nf + Nb

√
Nf

)2
.

(55)

With the Monte Carlo data this results in

AMC
FB = 0.022 802 ± 0.000 015. (56)

Under the assumption that the beam energy of the Monte Carlo events are close enough
to the peak energy that eq. (15) can be used, the squared sine of the Weinberg angle
sin2 θW can be calculated from the asymmetry with

sin2 θW = 1
4 ·

1 −

√
AFB

3

 (57)

and propagate the error with

σsin2 θW
= sin2 θW

σAFB

8
√

3AFB
. (58)

This gives us

sin2 θW = 0.228 294 6 ± 0.000 001 6. (59)

Roughly the same calculations can be done for the real OPAL data. As before for the
cross section calculation, the estimation for the real number of events can be calculated
by multiplying the inverse of the efficiency matrix just as described in sections 2.4.1
and 3.3.1. The forward and backward number of events for each beam energy can be
found in table 7. Forward-backward asymmetry and sin2 θW are calculated in the same
way as for the Monte-Carlo data with the results shown in table 7. Furthermore the
values for the forward-backward asymmetry AFB are plotted against the beam energies
in fig. 12.

Having values for the forward-backward asymmetry at different beam energies allows
us to refine our analysis a bit; before, we used eq. (57) for every value AFB regardless of
the fact whether the beam energy is at resonance or not. Figure 12 shows the forward-
backward asymmetry at different beam energies. By a Deming regression supplied by
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3. Methodology and Analysis

the R package deming [9] we carry out a linear model of the form AFB ∼
√

s with errors
both in AFB and in

√
s. The regression gives

Intercept: − 7.0 ± 1.4, (60)
Slope: 0.077 ± 0.015, (61)

and as a prediction for AFB(MZ) at the resonance:

AFB(MZ) = 0.0046 ± 0.0243 (rounding deliberately unorthodox). (62)

The error was obtained by propagating the error of MZ = (91.19 ± 0.05) MeV/c2 with
covariance matrix given by the fit. The predicted value for the forward-backward asym-
metry at the resonance is also depicted in fig. 12. Now, using this value we use the
approximation given in eq. (57) applied to the newly obtained value and arrive at

sin2 θW = 0.239 ± 0.005. (63)

At this point we want to justify the choice of a linear model for the forward-backward
asymmetry near the resonance. For one, the forward-backward asymmetry as a function
of the center-of-mass energy is differentiable (for an analytic expression, see the refer-
ence [8]) and can thus be linearly approximated in a small neighbourhood. That this
approximation is valid in the energy sector we consider can be seen by a visual inspection
of the data points.

Table 7: Overview over the calculation of the forward backward asymmetry using OPAL
data. Note that sin2 θW is just an approximation and was calculated by using
the (approximate) eq. (57).

√
s [GeV] Nf Nb AFB ≈ sin2 θW

88.476 ± 0.006 35± 6 47± 8 −0.118 ± 0.017 0.2003 ± 0.0007
89.466 ± 0.006 103± 11 132± 13 −0.106 ± 0.009 0.2029 ± 0.0004
90.219 ± 0.002 209± 15 237± 17 −0.046 ± 0.003 0.2191 ± 0.0002
91.229 ± 0.018 1420± 40 1488± 43 −0.0057± 0.0005 0.239 09± 0.000 11
91.964 ± 0.004 290± 20 264± 18 0.084 ± 0.003 0.208 10± 0.000 13
92.9622± 0.0014 134± 12 68± 9 0.39 ± 0.03 0.1602 ± 0.0005
93.713 ± 0.002 148± 13 122± 12 0.191 ± 0.007 0.1869 ± 0.0002
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Figure 12: Forward backward asymmetry at different beam energies with linear deming
regression and predicted AFB value at the Z0 resonance.
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4. Discussion
In the first part of the experiment GROPE was used to analyze example events using a
graphical representation of the events in the detector. This provided a good opportunity
to understand the meaning of the different measurement variables. Even if some ideas of
cuts were made by using the GROPE example events the actual analysis started in the
second part, when using the Monte-Carlo data. Using the histograms of the different
measurement variables the cut finally were set as seen in table 8.

The hadron events and also the electron events could be cut out quiet nicely, but the
separation of the muon and tau events turned out to be more difficult. As mentioned
in the analysis (see section 3.2.1 and also in the theory in section 2.4) the muon events
should show a high sum of momenta in the inner detector, which also is true for a lot of
muon events but in the Monte-Carlo data there happens to be a peak not to be neglected
at a zero momentum. One possible explanation for this peak could be that the momenta
measurement at small angles is difficult and the actual momentum can not be measured.
This explanation is supported by the fact that the muon events with a zero momentum
do have a small or non defined angle, but it is puzzling that the number of charged tracks
was correctly detected to be two most of the time regardless of which momentum was
measured. This deviation from expectations may could be interesting to look at more
closely, but this would need to have accessibility to the code which provides the Monte
Carlo data. Over all regarding the cuts one can say that the analysis done to define the
cuts is highly simplistic and the actual analysis done at OPAL [1] goes a lot more into
detail, but such a intense analysis would easily exceed the time frame of this lab course.
So, while it certainly is comfortable working with data that we got as tidy data (i. e. a
model matrix) it would certainly be interesting from the physical point of view to learn
more about the way the “raw” detector data gets to that tidy form.

Using the OPAL data we could obtain four different values for the Z0 mass from the
Breit-Wigner fits, calculating the mean for the four masses gives us the result

MZ = (91.19 ± 0.05) GeV. (64)

In comparison the value for 2020 given by the Particle Data group [4]

(91.1876 ± 0.0021) GeV. (65)

Condition Particle assignment

N.CHARGED ≥ 7 Hadron
E.ECAL < 25 and (P.CHARGED ≥ 70 or P.CHARGED = 0) Muon

E.ECAL ≥ 70 Electron
E.ECAL < 70 and 0 < P.CHARGED < 70 Tau

Table 8: Final cut values used to separate events and assign them outgoing particles. The
conditions are hierarchically ordered, that is, an event only passes a condition if
it hasn’t passed the conditions above that one before. Events without particle
assignment get discarded.
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This reference value lies in a 1-σ environment of our result (with respect to our error)
while having a relative error of just ≈ 0.05 %. All in all, this result can be considered
quite good.

Further, the full decay width of the Z0 boson was obtained in the form of four different
values – one from each fit – and the mean was calculated to be

Γ = (2.52 ± 0.07) GeV. (66)

In comparison, the value given by the Particle Data group [4] is

(2.4952 ± 0.0023) GeV. (67)

Again, the reference value lies in a 1-σ environment while this time the relative error
being about 3 %, so the result is again compatible with the reference value. This time,
however, the precision of the result is by far not as good as for the mass of the Z0 boson
as can be seen in the paragraph above.

Also the partial decay widths into each of the four considered groups of outgoing
particles could be calculated using the fits:

Γe = (82 ± 3) MeV, (68)
Γµ = (81 ± 4) MeV, (69)
Γτ = (85 ± 8) MeV, (70)
Γh = (1820 ± 70) MeV. (71)

Again this values can be compared to the once given by the Particle Data Group, which
is

(83.984 ± 0.086) MeV (72)

in the case of leptons and in the hadronic case

(1744.4 ± 2.0) MeV. (73)

So for the leptons the reference value again lays in a 1-σ environment for each three
values we have, with the result for tau being the least precise with a relative error of
approximately 9 % and the electrons giving the most precise lepton result with a relative
error of approximately 4 %. The hadron decay width given by the dpg lays in a 2-σ
environment of our result, while the result has an relative error of about 4 %.

The quality of the results may be surprising, considering the small number of data
points for each fit, leaving just four degrees of freedom: We did fit Breit-Wigner functions
with three fit parameters to seven data points which is not too satisfying. One way to
obtain results with a higher precision would probably be to use data sets where the beam
energies are spread out more. Of course, this would also entail having the knowledge of
the luminosity of these beam events.
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Using our results and the theoretical value for the neutrino decay width we could
calculate the number of neutrino generation which resulted in

Nν = 2.7 ± 0.6. (74)

The Particle Data Group gives as number of neutrino generation determined by mea-
surement of the invisible Z0 width

2.92 ± 0.05. (75)

So our result is compatible with this reference value and also compatible with the ex-
pected value of three, but it is rather inaccurate with an relative error of ≈ 20 %.

To verify the lepton universality, the branching ratio for the three different lepton
events was calculated:

Γe

Γh
= 0.045 ± 0.002, (76)

Γµ

Γh
= 0.045 ± 0.003, (77)

Γτ

Γh
= 0.052 ± 0.004. (78)

While the branching ratio for the electrons and the muons are well compatible with
each other, the tau branching ratio varies the other two. This variation is not to bad
and this ratios still assist the assumption of a lepton universality. It is also not too
surprising that we get the most divergent results for the tau, since our cuts were the less
efficient for the tau events. Choosing the tau events to be the least efficient particles
was almost as deliberate choice: in setting the cuts we had to balance the background
and asymptotic loss of each particle type. In order to make our electron and muon cuts
more pure (the hadronic events didn’t matter at this point, because they were quite
easily dealt with using the N.CHARGED cut), we had to sacrifice the “purity” of the
tau events. The reason we wanted the electron and muon events to be the most efficient
is twofold: First, the calculation of each partial decay relies on knowing the electronic
decay width. Making this decay width the most accurate by selecting electrons to be
extremely clean seems like a reasonable choice. Second, only the muonic events are used
for the calculation of the forward-backward asymmetry and thus the electro-weak mixing
Angle θW. Because of these reasons, we deemed the tau events to of least importance
for the analysis.

The last analysis done in this report was the calculation of the forward-backward
asymmetry and using this the squared sine of the Weinberg angle sin2 θW. From the
Monte Carlo data the forward-backward asymmetry was calculated to be

AMC
FB = 0.022 802 ± 0.000 015. (79)

and, assuming that the beam energy used for the Monte-Carlo data is near the peak
energy, the squared sine of the Weinberg angle was estimated as(

sin2 θW
)

MC
= 0.228 294 6 ± 0.000 001 6. (80)
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The results of the same calculations for the OPAL data can be found in table 7.
Since the formula used for the calculation of the squared sin of the Weinberg angle is an
approximation only valid at the resonance peak of Z0 we did an additional calculation
of the squared sine of the Weinberg angle. We carried out a linear model of the form
AFB ∼

√
s and, using this linear model, predicted the forward-backward asymmetry at

the resonance to be

AFB(MZ) = 0.0046 ± 0.0243. (81)

From this we obtained the final result

sin2 θW = 0.239 ± 0.005. (82)

As before we use the Particle Data Group for the reference value which is

0.231 21 ± 0.000 04. (83)

So the reference value lays in a 2-σ environment of our result obtained by the linear
model. Keeping in mind that we could only use seven different data points for the
linear model and the model itself is just an approximation this result seems to be quite
good. Looking at table 7 and the result for the Monte-Carlo data one can find that the
approximation in eq. (57) seems to be decent if the beam energy is close to the resonance
peak.
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Figure 13: Histograms for the different measurement variables in the Monte-Carlo data
set for which P.CHARGED vanishes.
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Figure 14: Histograms for angular distribution of the particles in the Monte-Carlo data
set for which P.CHARGED vanishes.
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Figure 15: Histograms for the different measurement variables in the OPAL data set.
Note that the particle types given here are only the one assigned by our
selection scheme.

43



A. Appendix

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

·103

cos θ

hadronic final state

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
·103

cos θ

electronic final state

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3

·103

cos θ

muonic final state

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.2

·103

cos θ

tau final state

Figure 16: Histograms for the angular distribution of the events in the OPAL data set.
Note that the particle types given here are only the one assigned by our
selection scheme.

44



A. Appendix

Table 9: Radiation corrections to the cross section and to the forward backward asym-
metry for a specific beam energy.

Correction to σ

√
s [GeV] Hadronic channel Leptonic channel Correction to AFB

88.47 2.0 0.09 0.021 512
89.46 4.3 0.20 0.019 262
90.22 7.7 0.36 0.016 713
91.22 10.8 0.52 0.018 293
91.97 4.7 0.22 0.030 286
92.96 −0.2 −0.01 0.062 196
93.76 −1.6 −0.08 0.093 850
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